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Approximation by transcendental polynomials

by Jozer Siciak (Krakow)
To the memory of my teacher Frunciszek Leja

Abstract. The main object of this paper is the following resull. Let h be a transcendental
entire function of a complex variable. Let E be a compact subset of C such that C—E is
connected and let /' be any {unction holomorphic in a neighbourhood of E.

Then there cxists a sequence of polynomials of two variables [P, (z, w)] such that
deg P, < k and

(+) lim (sup|f (z) - P (z, h(=)}) “ = 0.

k—r zcE

If, moreover, E is infinite, we show that polynomials P, satislfying (+) may be lound by

k+2 .
5 POINtS 4y ... Zkim,

interpolation. Namely, we prove that for every k > 1 there exist n, .= (
in E with the following properties:
1° for every k there exists a polynomial L, (z, w) of degree < k uniquely determined by the
equations
Lk(.’.’kj, h(z‘u)) =4/.(:kj)’ / = l"""”k:

2° the polynomials P,:= L, satisfy (+).
The result is obtained by the method of the extremal function @ (see [7]-[11]) defined for
every compact subset K of C" by the formula

(+ +) @y (z):=sup(sup {[P(2)}; P(2) = Y 2% |IPllx S 1))V zeCn
k21

la| €k

Il n=1, then log®,(z) = G(z) for ze C—K. where G is the Green function with pole at
infinity and K denotes the polynomially convex hull of K.

1. Introduction. Let @ be a domain (open connected set) in C". We say
that a holomorphic map g =(g,,....9gm): € » C™ is quasientire, il

(1 2(g, K):= liminf /o,(g, K) =0

for some compact subset K of Q with int K # @, where

(2) o.(g, K):=inf{l|g—Plx}, |g9—Plx:= max [lg;— Pjllk.

1<j<m
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the infimum being taken over all polynomial mappings P: C" —» C™ of degree
< v and [|g;— Pjl|x denoting the supremum norm of g;— P; on K.

It is known [1] (see also Theorem 10.1 in [10]) that g is quasientire in
if and only if (1) is satisfied for all compact subsets of Q. It is obvious that
every entire mapping g: C"— C™ is quasientire.

We say that a holomorphic map g: Q —» C™ is transcendental, if there is
no nonzero polynomial P: C"x C™3(z, w) > P(z, w)e C with P(z, g(z))=0
in .

If g(z) is quasientire and P(z, w) is a polynomial, then the function
P(z, g(2)) is called a transcendental polynomial.

The main object of this paper are the following two theorems.

THEOREM 1. Let g: Q — C™ be a quasientire transcendental map such that
the set

3) A:=1{zeQ; g(z) =0}

is a 1-dimensional complex submanifold of Q. If K is a polynomially convex
compact subset of A such that A—K is connected, then

4 o(f, K):= limsup Vo,(f, K) =0

vV—®

for every function feO(K) (i.e. f holomorphic in a neighbourhood of K).

CoroLLARY. If h: D— C is a transcendental quasientire function in a
simple connected domain D — C, then for every polynomially convex compact
subset E of D and for every function fe O(E) there exists a sequence of
polynomials {P,(z, w)} of two complex variables such that deg P, <v and
(5) lim (sgg If (2P, (z, h(2))"" =0.

In order to get the Corollary it is sufficient to apply Theorem 1 with
m=1, n=2 Q:=DxC, g,(z, w):=w—h(z), A:=the graph of h K:
= {(z, h(2)); ze E} and with f(z) treated as a function of two variables z, w
that does not depend on w.

If E = C is of positive logarithmic capacity, C—E is connected and f is
holomorphic in a neighbourhood of E but not on the whole plane C, then by

Bernstein—~Walsh theorem [14] the best approximation of f by polynomials
satisfies

(6) 0 <e(f, E):=limsup Je,(f, E) <1,

while the behaviour of the best approximation of f by the transcendental
polynomials P,(z, h(z)) is given by (5).
In the Corollary we may take in particular D = C and h(z) = €. Then

v

P,(z, h(2)) = ¥ c;j(2)€',

j=0
where ¢; is a polynomial in z of degree <v—j.
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Transcendental polynomials P,(z, h(z)) satisfying (5) may be found by
interpolation. Namely, let e¢,, e¢,,... be a sequence composed of all
monomials z*w' with k+1 > 0 of two complex variables (z, w)e C* such that
dege, < dege,,,, cg.

_ 2 2 Ko k-1 k=1 ok
fe,) =11z, w, 2% zw, wi . 25 2w, zwt T we L)

Given any system of v points x,,...,x, in C? we define the generalized
Vandermondian V of order v by

(7) Vixy,...,x,):=det[e (xj)]i,j= SRS

A system of points {£,q,...,¢,,} = K is called a system of the extremal points
of K with respect to the generalized Vandermondian V of order v, if

(8) [V (Eiseen &l = max IV (xy,..., X )5 1%g,..., %) < KJ.

The definition and properties of systems of the extremal points of
compact subsets of C" may be found in [7]-[11]; see also Section 4 of this

paper.
We can now state

THEOREM 2. Let h: D — C be a transcendental quasientire function in a
simple connected plane domain D. Let E be an infinite polynomially convex

42
compact subset of D. Put K:= {(z, h(2)); ze E} and let m,:= (‘; ) be the
number of monomials of two variables of degree <v. Then

1° V(&,,...,E) #0 for every v=1;
2° If fe O(E), then the interpolating polynomials

o V(éla""c’—ls X, '+11""‘§m)
9) L,(z, w):= n(&; y ! .
( ,.;f () Vs &m)
with x:=(z, w) satisfy (5). In the formula (9) n denotes the canonical projection
of C? onto the first coordinate plane, and &,,..., &, is a system of the extremal

points of K with respect to the generalized Vandermondian V of order v.

Assertion 1° will be proved in Section 4 (Proposition 4.1). Assertion 2°
follows from Theorem 1 owing to the following inequality

(10) |f @) —L,(z, h(2))) < (m,+De,(f, K), zeE,

where f(z, w):=f(z) and K:= {(z, h(2)); zeE}.
Inequality (10) is a simple consequence of the definition of the extremal
points of K with respect to V (see [10], p. 199).

Remark. It would be interesting to find the behaviour (as v — o) of the
transcendental polynomials P,(z, h(z)) of the best approximation (or the
behaviour of the interpolating polynomials (9)) of functions fe #*[—1, 1],
k > 0, especially in the case h(z) = ™.
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The results of this paper are obtained by the method of the extremal
function &, (see [7]-[11]).

It is a good opportunity to recall at this place that Franciszek Leja, to
whose memory this volume of Annales Polonici Mathematici is dedicated at
the occasion of his centenary, was the creator of the method of extremal
points and extremal functions on the complex plane. The method appeared
to be a very useful tool in dealing with many problems of the complex
analysis (for the references see e.g. [5], [8]). He has also initiated extending
his method to the case ol several variables by introducing extremal points
and extremal function of a compact subset of C? with respect to
homogeneous polynomials of two variables ([2]-[5]). His papers and ideas
were fundamental for the authors extending and applying his method to the
case of C", n> 2. The present author had a privilege to be a student of
F. Leja and he has gained a lot from the personal contacts with his Teacher
during a period of more than 25 years.

In the sequel we shall need the following known

ProposiTioN 1 (Lemma 84 in [10]). Let p; (i = 1,...,m) be polynomials
of n complex variables of degree < d. Given R> 1 and t > 0, define

D;:= {zeC"; ¢(z) <R'}, where ¢(z):= max |p;(z)|'".

1<jsm
Assume D, is bounded.
If f is holomorphic in D,, then

o(f, D)< R™'  for all s with 0 <s <.
Proposition 1 will be used to prove the following

LEMMA 1. Given a compact subset K of C" the following conditions are
equivalent:

(a) Px(z) = +0 in C"-K;

(b) Px(z) = +0 in Q—K, Q being a neighbourhood of K;

(c) K=K and o(f, K) =0 for every feO(K),

(d) g(h,, Ku {a}) = O for every point ac C"— K, where h, is the function
defined by h,(z):=0 on K and h,(a):= 1.

Remark. If n=1 and if g(f, K) =0 for every feO(K), then &(z)

= +o00 in C—K. We do not know whether the same implication is true in
C" n=2.

By means of Lemma 1 and of Sadullaev’s [13] criterion for an analytic
set to be algebraic, we shall get

LEMMA 2. Let g: Q - C™ be a quasientire map of a domain Q < C" and
let A be given by (3).
Then

(1) Px(z2) = +0 in Q— A for every compact subset K of A.
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If, moreover, Q is polynomially convex, g is transcendental and A is a 1-
dimensional connected complex submanifold of 2, then

(i) Px(z) = +00 in C"—K for every compact subset K of A with
connected A—K.

Theorem 1 is a direct consequence of Lemmas 2 and 1.

2. Proof of Lemma 1. The implications (a)=(b) and (c)=(d) are
obvious.

(b) = (c). One may assume 2 is bounded and ®4(z) = +© on Q—K.
Let r > 0 be a fixed positive real number such that Q = P(0, r):= {ze C"; |Z|
:= max |z;] <r}. Let G be a neighbourhood of K such that G is a compact

1<j<n
subset of Q. Given any R > 4r, by the definition of ¢, and by assumption

(b), we can find a finite system of polynomials g; (j =1,...,m) such that
llgjllx <1 and max |qj(z)|l/dj>R/r on Q—G, where d;:=deggq;. Put d:

1€j<m
=d,cdy pr=aqT (G=1,0m) Pui(@:i=(M (G =1,....,n), @(2):
= max |p;(z)]'"". Then the polynomial polyhedron

1<jSm+n

(2.1 D;:={zeC"; ¢(z2) <(R/ry}, 0O0<s<1,

is contained in the polydisk P(0,R) and K =D, (0 <s<1). Put 4,:
=D,nQ2 and 4,:=D,—4,. Then A,n4, =@, because 4, <G and
4, < P(0, R)—Q. It is also obvious that K < 4.

We are now ready to show (c). At first we claim that K < 4,. If K ¢ 4,
then K c 4, and K n A, # @. The function h defined by h(z):= 0 on 4, and
h(z):=1 on 4, is holomorphic in D,. Thus by Proposition 1

o(h, Ky<o(h, D)< (r/R)'"5, 0<s<l.
Hence

o(h, K) <r/R < 1/4.

Therefore there exist a polynomial P and an integer v > 1 with degP <v
and with |h(z)—P(z)] <47" for all z in K. Then [P(z)) < 1/4 on K and
|P(z)) >3/4 on KnA,. Hence Knd,=@. We have obtained a
contradiction which shows that K < 4,.

Since Px(z) = + o0 in Q—K, $4(z) =1 on K and K < Q, we conclude
that K = K.

Now we shall prove the second statement of (c). Given any f € O(K), we
may choose a bounded neighbourhood 2 of K with fe 0 (£2) and with @,(2)
=+ in Q—K. Since 4gn 4, =@ and K < 4,, we may assume f(z) = 1
on A4,. Then by Proposition 1

e(f, Ky<e(f,D)<(r/R)'™, O<s<l,
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which implies ¢(f, K) < r/R. By the arbitrariness of R > 4r we get o(f, K)
= 0. '
(c)=(a) (The proof due to T. Winiarski). Let a be a fixed point of
C"—K and let P be a polynomial with P(a) =1 >||P|lx. By (c), if f(2):
=1/(P(z)—P{a)), we have o(f, K) =0, ie. there exists a sequence of
polynomials {P,] such that degP,<v and lim|/—PJl¥*=0. Put g,

v —a

(sup|1— (P(2)-P@)P,))" and Q,(z):=[1—(P(z)—P(a)P,(2)]&; "
Thcn by the definition of @
[Q, (2 < Pg(z) in C" for all v=1.

In particular 1/, = |Q,(a)]'”” < Px(a), v=1, which implies that @, (a)
= + oo, because ¢, —» 0 as v — 0.

3. Proof of Lemma 2. (i) Given any compact subset K of 4 and any
point a in Q— A4, put E:= K U {a} and let P: C"— C™ be a polynomial map
of degree < v such that {[g— P|z =0,(g, E). Since g=0 on A and g is
quasientire, we have

lh

liminf|P,|}* < liminf|lg—P,|;* =0 = lim|g—P, de

v—a vV —a j—-x

for a subsequent {v;} of {v}. Since g(a) # 0, we get lim |P, (a)ll/"’ = 1. Thus
j—=x

we may assume P\,.(a) # 0 for all j. If there exists j with ij =0 on K, then

1/v

m|P, (a)|“” < ®y(a) for all m>1,
s0 Px(a) = +oo. If |P, l,(:;é 0 for all j, then

(1P @NPJx)" < @x(@), =1,
which gives @, (a) = + o0. The proof of (i) is concluded.

(ii) By (i) K n(Q—4) = @. If Q is polynomially convex, then K = Q and
consequently K — A4 for every compact subset K of A. Since ®,(z) = + ¢ in
2—A and A is a 1-dimensional complex submanifold, the extremal function
log®y is on A—K locally a limit of an increasing sequence of harmonic
functions (see the next Proposition). By the Harnack principle either &4 =
+00 in A—K or log®y is harmonic in A—K. The second possibility is
excluded, because by Sadullaev [13] the extremal function @, is not locally
bounded on 4 —K, if A4 is transcendental. Therefore ®4(z) = + o in Q—K,
which by Lemma 1 gives (11).

In the proof of the next Proposition we shall need the following
Zaharjuta’s theorem [15] (see also [10], [12)):

Let L be the class of all plurisubharmonic functions u in C" with
sup {u(z)—log(l +]z]); ze C"} < + 0. Then

(3.1) log®x(z) =sup {u(z); ueL, u<0 on K}, zeC"
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ProrosITION 3.1. Let g: € —> C™ be a quasientire map of a domain
Q< C" into C™ such that

A:=1{zeQ; g(z) =0}

is a 1-dimensional complex submanifold of Q.
Then for every compact subset K of A the function log®g is on A—K
locally a limit of an increasing sequence of harmonic functions.

Proof. For the simplicity of notation we shall assume (without loss of
generality) that n = 2. Let p be a fixed point of A —K. The set A is locally a
graph of a holomorphic function. More precisely, we can find a coordinate
system in C? and a holomorphic function h on a disc D(a, R):= {zeC;
lz—al <R} such that Ag:= {(z, h(2)); ze D(a, R)} is contained in A and
p = (a, h(a)). We may assume that Az K = Q.

Let r and ¢ be fixed real numbers with 0 <r < < R. Let u be a fixed
nonnegative continuous function of the class L. Let us define a subharmonic
function v on A by the formulas

v(z,w):=u(z,w) on A—A,, v(z,w):=1ve(z) on 4,

where v, is the harmonic function in D,:= D(a, r), continuous on D, with
vo(2) = u(z, h(z)) on éD,. The function v is continuous and subharmonic on
A, harmonic in 4,, v>u on A and v =u on A—A4,.

We shall first prove the following

Claim. Given ¢ > 0, there exists a function fe L with f =u on K and
f =max {v—e¢, u} on Ag.

In order to show the Claim let G be a neighbourhood of Az such that
GNn(A-AR)=0, GcQ, {zeC; (z, weG} =D(a, R) and v(z, h(z))—¢
=u(z, h(z))—e <u(z, w) for all (z, we G with [z—a|] = ¢. Put E:= K U Ag.
It is known [10] that there exists an increasing sequence {F;} of continuous
functions of the class L with log @¢(z) = sup F;. It is obvious that $¢(z) = 1

7

on E and by Lemma 2 (i) @;(z) = + 0 in Q—E. Take j so large that
Fi(z, w) > v(z, h(z)) for (z, w)edG with |z—a| <. Then the required
function f is given by

max {Fj(z, w), u(z, w), v(z, h(z))—e}, if (z, weG, |z—a| <,
max {F;(z, w), u(z, w)}, if (z, w)¢ G or |z—al = 9.

f(z, w):={

We are now ready to accomplish the prool of Proposition 3.1. Let {u;}
be an increasing sequence of continuous functions of the class L with log &
= sup {u;; j > 1}. Apply the Claim with u = u; and ¢ = 1/j. Then for every j
there exists f;e L such that f; = max {v;—1/j, u;} on Ag and f; = u; on K,
where v;e L and v; is harmonic on A,. Therefore

fi(z, w) < log @ (z, w) in C?

20 — Annales Polonici Mathematici XLVI
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and
) uj(z, w)=1/j < vj(z, w)—1/j <log P (z, w) on 4, (j=1).

The sequence ;u;} being increasing in C?, the sequence {v;} is increasing
on A, and thus {v;—1/j} is increasing on A,. By (§) we get log®y =
sup{v;—1/j; j = 1} on A,. The proof is concluded, because v,-—l/j are har-
monic on A,.

Remark. The above proof is a modification of the Sadullaev’s proof of
Corollary 3.1 in [13]. Here a modification is necessary, because in [13] the
set A is given by A={zeC"; g,(2) =0,...,gn(z) =0}, where g; are
polynomials.

4. Unisolvent subsets of C" and the Lagrange interpolation formula for
polynomials of n complex variables. Let a: N3v— a(v)e Z". be a bijection
such that |ax(v)| < |a(v+1), where |a|:=a, + ... +a, for any multiindex «
= (ay,...,a,)eZ% . Let

ap(v) ap (V)
e,(2):="=z""...2"", v>1,

be the sequence of all monomials of n variables corresponding to the
bijection a. Then every polynomial P of n variables of degree < v can be
uniquely written in the form

P(z) = Z": ce(z)  with m\,:=(v+n).

h

We say that a subset E of C" is unisolvent of order v, if there exist points
Xy,..., X%, in E such that

4.1 Vixy,...,x):=det{e;(x)]i=1,..  # 0.

We say that E is unisolvent, if it is unisolvent of order v for every v > 1.
The mapping

(Cn)va(xl’---sxv)_’ V(xla"'axv)ec

will be called generalized Vandermondian of order v.
By the elementary theory of systems of linear equations, if

V(xy,...,x,)#0 and P,(z)= ) c,e,(z), then the following Lagrange
k=1

interpolation formula is true

V(xla'“’xl—la Z, xk+la""xv)
V(xh'“’xv) ’

42 P = 3 Pl

i.e. the polynomial P is uniquely determined by its values at the points
X{,..-, X,. In particular, if P is any polynomial on C" of degree < v and if
Xi,..» Xm, is @ system of m, points of C" for which the determinant V' of
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order m, is different from zero, then

zeC".

V(X1seees Xko15 2, Xga 150203 Xm)
“3) P(z)= .‘Z:‘n P(xy) V1) ,

ProposITION 4.1. Given a holomorphic map h: D — C™ of a plane domain
D into C™, the following conditions are equivalent:

(1) h is transcendental, i.e. there is no nonzero polynomial P: C x
x C"3(z, w) > P(z, w)e C with P(z, h(z)) =0 in D;

(ii) for every infinite subset F of D with F' D # @, F’' denoting the set
of the limit points of F, there exists a sequence of points z, in F such that, if
X : = (24, h(z))), then (4.1) is true for every v > 1;

(iii) for every infinite subset F of D with F'nD # Q the subset E

= {(z, h(2)); ze F} of CxC™ is unisolvent.

Proof. (i) =(il)). Put C:=CxC™. If v=1, then V(x,) = ¢,(x,) = 1 for
every x, in F. Given v > 1, assume the points x,,...,x, of F are already
chosen in such a way that V(x,,..., x,) is diflerent from zero. Then P,,,(x)

1= V(Xpyeeny Xyo X) = V(Xp,..., X )04, (X)+ Y. cre(x) is a nonzero poly-
k=1

nomial of x:=(z, wje C xC™. Since h is transcendental, P,,,(z, h(2))#0

on D and consequently, by the identity property of holomorphic tunctions,

P,.,(z, h(2)) # 0 on F. Thus there exists a point x,,; =(z,+y, h(z,+,)) in F

with P, (x,+1) = V(x,,...,%X,+1) # 0. By the mathematical induction the

proof of (ii) is concluded. '

(1) = (i) is obvious.

(iii) = (i). Suppose h is not transcendental. Then there exists a nonzero
polynomial P with P(z, h(z)) 0 on D. In particular P(z, w) =0 on the
unisolvent set E:= {(z, h(z)); ze F}. Thus P =0. This is a contradiction,
which concludes the proof.

5. A necessary condition for the equation: &, (z) = + o0 in C"—-K.

PROPOSITION 5.1. If ®x(2) = + o0 in C*—K, then K satisfies the following
condition:

(e) For every irreducible algebraic subset X of C" with dimX > 1 the
extremal function ®y_x is not locally bounded on X.

Proof. If (¢) does not hold, then there exists an irreducible algebraic set
X in C" with dim X > 1 such that &y is locally bounded on X. Let R > 0
be so large that KnX < P(0, R). By [12] there exists a function f
holomorphic in P(0, R) such that if S is any irreducible component of the
analytic set X n P(0, R), then the set S is the maximal domain of existence of
f1S on X. By (c) of Lemma 1 there exists a sequence of polynomials {P,}
such that deg P, < v and lim ||f— P||}¥* = 0. Hence lim ||P,—P,_,||{" = 0. By

\ And" 7] A And" <]
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the obvious inequalities

IPy(2)—Py—y () < ||Py—P,_,llx Px~x(2), zeX, v21,
[ -]
the series P, + ). (P,— P,_,) is locally uniformly convergent on X. Its sum f
v=2
is a holomorphic function at all regular points of X and f=f on Kn X.
The extremal function @4,y being locally bounded on X, the set K n X
is not pluripolar on X (see [13]). Since a countable union of pluripolar sets
on X is pluripolar on X, and the set of irregular points of X is pluripolar on
X, it follows that there exists a regular point a of X such that for every r > 0
the set Kn X nP(a, r) is not pluripolar on X. Let § be the irreducible
component of the analytic set X n P(0, R) such that aeS. Then /= f on §,
which implies that f is an analytic continuation of f|S on X beyond S. We
have got a contradiction which shows that (e) is true.

ProBLEM. By Proposition 5.1 condition (a) of Lemma 1 implies
condition (e). Is the implication (e) =(a) true?

PROPOSITION 5.2. Given a compact subset K of C", let D be a bounded
domain in C" with DN K = Q. If ®x(z) = + 00 on 0D, then ®x(z) = + 0 in
D. In particular the set

{ae C"—K; &x(z) < + 0}

contains no isolated points.

Proof. Given ¢ > 0 and a point aelaP, there exists a polynomial P, of
degree d, such that ||P,||x < 1 and |P,(z)| a5 1/ in a neighbourhood U, of
a. By the compactness argument there is a finite system of polynomials

P, (j=1,...,s) such that [[PJlx<1 and max |P;(z))"’“>1/c on a
1<j<s
neighbourhood of éD. Put

1
u(z):= max{a—logiPJ(z)l; Jj= 1,..,.,3} in C"
J

and
u,(z):=u(z) on C"—-D, ul (z):= max%log%, u(z)} on D.

Then u,eL, u,(z) <0 on K. Therefore u,(z) <log®x(z) in C" and in

particular log(1/¢) < u,(z) < log Px(z) in D. Q.E.D.
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