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Radial limits of the Poisson kernel on the classical Cartan domains

by MANFRED STOLL (Columbia)

Abstract. Let D be a classical Cartan domain of type I-1V, B the Bergman-
Silov boundary of D, and P the Poisson kernel on D x B. In the paper we prove that
for each domain D, there exists a constant pp depending only on D, such that the

following holds: for each # € B and every neighborhood # of u, there exists a finite
constant M such that

limsup (1 —7)*PP(rt,u)< M for all te B— 2,

r—>1

and for each a< pp, there exists ¢ v such that limsup(l—7)?P(rt, u) = + co.
r—1
The constants p are computed for each of the four types of domains.

Let D denote the unit disec in C, T' the boundary of D, and P(z,1?)
the Poisson kernel on D xT. Then P satisfies

1— 1
T < P(rt, u) <~

1
@) 1+7r 1—r

for all ¢, w € T. Furthermore, given any neighborhood # of u € T, there
exists a constant M depending only on %, such that for all te T —%
(2) limsup (1 —7)"'P(rt, u) < M < oo.
r—1

Harnack’s inequality (1) has been extended to the classical Cartan domains
by Tung in [5], and recently to irreducible bounded symmetric domains
by Koranyi in [3]. In this note we prove the following generalization
-of (2) for the classical Cartan domains.

THEOREM. Let D be a classical Cartan domain of type I-1V, B the Bergman—
Silov boundary of D, and P the Poisson kernel on D xB. For each domain
D, there exists a constant pr,, depending only on D, such that the following hold :

(a) for each uw € B and every neighborhood U of w, there exists a constant
M < oo such that

(3) limsup (1 —7)"PP(rt, u) < M

7—1
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for all t e B—%, and

(b) for every a < pp, there exisis t #* u such that limsup (1 —r)°*P(rt, u)
— +m. r—1 '

For the domain D,(m, n) (m < n), p;(m,n) = —n(2—m); for D,(n),
Pa(n) = (n—2)(n+1)/2; for D(n), ps(n) = (n—1)(n—4)/2 for even =
and ps(n) = n(n—>5)/2 for odd n; for D,(n), p, = 0.

1. Notation. The classical Cartan domains of type I-IV, which we
will denote by D,k =1,...,4, may be defined as spaces of matrices
[2]. For a matrix z of complex entries, 2* = z’ denotes the complex con-
jugate of the transposed matrix 2’, and I™ denotes the identity matrix of
order n. Also, for a hermitian matrix H, H > 0 means that H is positive
definite.

The first three Cartan domains are defined by

D, = {z: I —zz*> 0},

k=1,2,3, where, for D, = D,(m,n),2z is & (m, n) matrix. Since the
condition I — zz*> 0 and I — 2*2 > 0 are equivalent, we assume that
m < n. For D, = D,(n), z is a symmetric matrix of order », and for D,
= Dy(n), 2z is a skew-symmetric matrix of order n. The fourth domain,
D, = D,(1, n) is the set of all (1, n) matrices or n-dimensional vectors
(» > 2) of complex numbers satisfying

1+ |22'|2—222*% >0, |22'| < 1.

The (complex) dimensions of these four domains are mn, n(n+1)/2,
n(n—1)/2 and = respectively.

The Bergman-Silov boundaries B, of the domains D,, k =1, ...,4
are as follows: B, = B,(m, n) consists of all (m, n) matrices » satisfying
uu* = I™ and B, = B,(n) consists of all symmetric unitary matrices
of order n. B, = B,(n), for even n consists of all skew-symmetric unitary
matrices of order n. For odd #, B; consists of all matrices of the form «’ Du,
where % is an arbitrary unitary matrix and

. 01] 01JrO
I ) L P

B, = B,(1, n) consists of all (1, n) matrices # of the form
% =6z, ax'=1, 0<6<m,

where x is a real vector.

For each domain D, let @ denote the connected component of the
identity of the group of holomorphic automorphisms of D and let K
denote the isotropy subgroup of G at the origin. Since K acts transitively
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on B and P(rt, k-u) = P(rk™'-t, u), it suffices to prove the result for a con-
veniently chosen « € B, which we will denote by e.

Throughout the paper we will denote the unitary group of order
m by % (m). Furthermore, the topology on B will always be the Euclidean
topology in C” restricted to B.

2. Proof of the theorem for D, and D,. The Poisson kernel P, on D, X
X B, is given by
1 [det(I—=zz%)]"

4 P -
) (2, %) V. |det(I —zu*)*™’

where z € D,(m, n), v € B;(m,n) and V, is the Euclidean volume of B,.
For the domain D, we take ¢ — [I™, 0], where 0 is the zero matrix of
order (m, » —m). Furthermore, for each » € B,(m, n), we write v = [u,,
%,], where %, is an (m, m) matrix and %, is an (m, » —m) matrix. Since
u € B,, we have w,u; +u,u; = I™. By (4),

1 (Q—ryme
V. |det(I—ru,)™’

{5) Py(ru, e) =

Since any (m, m) matrix is similar to an upper triangular matrix, we can
choose s € % (m) such that s*u,8 = [t;;],4,j =1,...,m,and ¢; = O0forj < i.
Consequently,

m
(6) ldet (I —ru)] = [ [11—rt;1,
i=1
where the t; are the eigenvalues of u,.

We now proceed to show that for any neighborhood % of e, there
exists ¢ > 0, depending only on %, such that for any v = [u,, u,] € B, —
—% (the complement of # in B,), there is at least one eigenvalue i,
of u, such that |1 —17,,| > e.

We define 3 mapping t of % (m) xB,(m, n) onto B,(m, n) by

T(8, u) = [su,8*%, 8us],

where s e % (m), 4 = [4,, ;] € B,(m, n). Clearly t(s, u) e B, for all s e % (m)
and all ueB,. Also, z(s,e¢) =e¢ for all se¥(m) and =(I,u) =u
for all % € B,. Since matrix multiplication is continuous, 7 is a continuous
mapping of % (m) x B, onto B,.

Let % be an arbitrary neighborhood of ¢ in B,. By continuity, for
each s € % (m) there exist neighborhoods ¥, and 0, of s and e respectively
such that z(¢, u) e for all (f,u)e?, xX0,. Since the unitary group
%(m) is compact, a finite number of the ¥, say ¥ , ..., ¥, covers %(m).
Let

1?

0=N0o,.

j=1
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Then 0 is an open neighborhood of ¢ and
(7) [su,8*, su,l e %

for all s e % (m) and all 4 = [u,, u,] €0.
For each &> 0, let

(8) N (6) = {u € By [L—ugl24+ D luylt < e?,i=1,..., m}
i#i

Since the collection {A#",(¢)} is a neighborhood base at e, choose £> O
such that A7, (e) = 0.

Let w € B— % be arbitrary. Then for all s € % (m), [s*u,s, s*u,] ¢4 .(¢).
If not, then by (7) it would follow that [u,,u,]€%. Choose s e % (m)
such that s*u,s = [#;], 4,j =1,...,m, with #; = 0 for j < i. For con-
venience, we denote the elements of s*uz byt;,t=1,...,m,j =m+1, ..
<oy n. Since [s*wu,s, s*u,] = [t;] ¢ A .(¢), there exists a k, 1<k<m,
such that

n
(9) L=t D) 2> e
i=k+1
Since [t,,]eB,, Z‘ltul2 =1forall ¢ =1,...,m and [t; <1 for all ¢,j.

Therefore 2 It,‘:,lﬂl =1 — [¢,,|®. Furthermore, since |1 —#[2+1 —|t|2<<4 |1 —¢}
J=k+1

for all ¢, |t} < 1, by (9) we obtain |L-—1,,| > }&’. Therefore by (6), |det (I —
—7y)| = (1 —=7)""' 1 —rtyl, and by (5),

mn (1_r)n(2—m)
Vi L—rf™

Py(ru,e) <
Let p, = p(m,n) = —n(2—m). Then

» gmn 9o 4in
lim sup (1 —r) 1Py (ru, ) < —— (—)
r—1 V1 €
for all 4 € B, — %. Since we can always choose % such that », = diag[4,1,...
1], Al =1,4 #£1, u ¢ and for any a < p,, llmsup( —7)*P(ru,e)
= + oo, Whlch proves the result for D,.
For the domain D,, the Poisson kernel P, is given by

1 [det(I—zz))+E

10 P -1
(10) 22 ) = 5 T et — e

where 2 € D,(n), ¥ € B,(n) and V, is the Euclidean volume of B,. For
D,, we take ¢ = I, Since B, consists of all symmetric unitary matrices
of order n, for each u € B,, we can choose s € U(n) such that s*us =
diag [4,, ..., 4,] (diagonal matrix), where the A; are the eigenvalues of «.
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Hence by (10),

, 1 1 _1,2 n(n+1)/2
P,(ru,e) = o -2

Vz ["Q ll —1‘1,-”"’“

Let % be an arbitrary open neighborhood of ¢ in B,. As in the proof
for D,, there exists an open neighborhood @ of e in B, such that sus* e %
for all » € @ and all s € %(n). Choose ¢ > 0 such that A4",(¢) = 0. Then for
all ueB,—u, s*us ¢ & ,(e) for all s € %(n). Let u € B,—% be arbitrary.
Choose s e %(n) such that s*us = diag[4,,...,4,]. Hence, since s*us
¢ A ,(e), there exists & such that |1 —4,| > &. Therefore,

Idet(I—- r'ue")l = (1 —'r)""1 11— 7‘/1,‘]
and
' 2n(n+1)l2 (1 _r)(n+1)(2—n)l2
Py (ru, 6) < 7, L — i, | +D

Therefore

lim sup (1 —r)"2P,(ru, ) <
r—+1 Vz

2n(n+l)/2 1 n+1
= [¢)
for all v € B,— %, where p, = p,(n) = (n—2)(n-+1)/2.

3. Proof of the theorem for Dy. The Poisson kernel: P; on Dy X.Bg
is given by
1 [det(l—22*)]°
Vs {det(I —zu®)*e’

(11) Py(z, u) =

where z € Dy(n), u € Bg(n), Vg is the Euclidean volume of B;, and a
= (n—1)/2 for even » and a = n/2 for odd ».
For » even, we let ¢, = diag[F,, ..., E,,], where

B 01
i _109

. e(n—l) 0
(12) ¢, = diag[H,, ..., E(n-l)lzy 0] = 0 ol

and for n odd, we take

For even n, ¢, is a skew-symmetric unitary matrix and for odd n,e,

satisfies,
, I(n—l) 0
= —€,, €6, = 0 ol



212 M. Stoll

In both cases
{13) [det(I —rPee*)]® = (1 —r*)"n=D2,

We first consider the case where n is even. In this case, Bs(n) consists
of all skew-symmetric unitary matrices of order %». Congider the mapping
7 of By(n) into % (n) given by

T(u) = ue'.

Clearly 7 is continuous, 7(u) € % (n) for all n, and z(u) = I™ if and only
if u =e,.

Let % be an arbitrary open neighborhood of ¢, in B;(n). Since t
is continuous and z(w) = I if and only if v = e,, there exists a neigh-
borhood ¥ of I™ in % (n) such that # Nv(B,—%) = @. Hence for all
% € By—%, ue, ¢ 7. As in Section 2, we can choose @, an open neighborhood
of I'™ such that s@s* = ¥ for all s € % (n). Now choose ¢ > 0 such that
A ,(I™) « 0. Combining the above, we obtain that if w € B,—%, then
s*(uey)s ¢ A ,(I'™). Since we, is unitary, choose s € #(n) such that

s*(uel)s = diag[A;, ..., 4,].

n

Consequently, |det(I —rue,)| = [] |1 —rA;|, where A; are the eigenvalues
=1

of ue,, and for each u € B, — % tjhere exists k, 1 < k < m, such that |1 — 2,

> &. Furthermore, as in [4], since % is skew-symmetric, we, — % (2 & var-

iable) is skew-symmetric, and by [1], p. 481, det(zI —ue,) = det(we, —u)

is a perfect square. Consequently the eigenvalues of we, occur in pairs.

‘Therefore

|det (I —rue,)] = (1 —7)"" 2|1 —ri,|%,
‘where k is such that |1 —4,| > . Hence for even =,

2n(n— 1)/2 (1 _ ,r)(n— 1)(4—n)/2

.Ps(?'u, e'n) < Va T —rzk|2(n—1)

and

lim sup (1 —7)"3 Py(ru, €,) <b———
rs1 Vs

2n(n-—1)/2 1 2(n—-1)
(2

for all w € B;— %, where py(n) = (n—1)(n—4)/2. Part (b) of the theorem
is obvious.

For odd n, By(n) = {W'e,W: W is unitary of order =}, and e, is
given (12). Suppose U = W'e, W € Bs(n). Let

-1 ¢
W = y wWhere w = [w;]}721, b =[W; 0y ey W10l
d w,,

d = [wn’l, seey wn.n_l].
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Since _
e(n—l) 0 ’ % b
6, = and A'e,_ b =0 U =
n [ 0 0 (n—1) ’ —p 0 9
where u = w'e,,_,yw, b = w'e,_h. Consider
. wu* +bb* —ud
UU” = ISP P
—(ub)” b'd
Since W is unitary, ww* -+hh* = w*w+d*d = I™ ", and therefore
wu® 4 bb* = w'e(, ) (ww* +hh*) e, B = w'w.
n—1
Since w'@w+d’'d = I™ ", each element on the diagonal of ' w() |
i=1
j =1,...,,m—1) is less than or equal to one. Hence the same is true for
uu*-+bb*, and consequently also for wu*. Therefore if

)
U= € B3(n),

We; |2,

b0
and if v = [u;]};2,, then

n—1
(12) D luglr<1, i=1,..,n-1,
i=1

Next we consider the mapping v of B,(n) into the space of (n—1,
% —1) matrices (with the euclidean topology) given by

U % b ,
: U = — U, _1y-
v b 0 (n—1)

Clearly 7 is continuous. Furthermore 7(U) = I® Y if and only if U = e,.
To see this, we note that v(U) = IV if and only if

-

[en_l b
U= .
"ol

However, by the above, every diagonal element of e, €, +bb* =I") +
+ bb™ must be less than or equal to one. Hence every element on the dia-
gonal of bb* is zero. Consequently b = 0 and U = e,,.

Let # be an arbitrary open neighborhood of e, in B;. Since B; is
compact and 7 is continuous z(B;—%) is a closed set not containing
I"1, Hence there exists an open neighborhood ¥" of I™ " such that
Y Nnt(B;—%) =9. As in Section 2, since #(n—1) is compact and the
mapping (s, v)—>s*vs is continuous, there exists an open neighborhood
0 of I"™Y such that s*@s < ¥ for all s € %(n—1). As in (8) we let

H oI = Lo: vzt Yioglt< ety i =1,...,'n—1}.

J#e
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Choose ¢ > 0 such that 4", (I™ V) < @. Then for all

—b" 0

u b
-5 0

and choose s € % (n —1) such that s(ue, ,)s* =t = [t;]is upper triangular.
Then

u b ,
U= [ ] e By—«, s(ue,_;)s* ¢ N (1" D),
Let

n—1
|det (I" —rUe,)| = |det(I™ ) —rue,_,)| = H 11 —rtyl,

j=1

where the ¢; are the eigenvalues of we, ,. Since ¢ ¢ A4 (I™Y), there exists
k,1<k<n—1,suchthat

n—1
(15) L—tl2+ D) lhyl2 > &2

i=k+1

s 0
S = .
Then 8 € % (n) and therefore SUS’ € B;(n). Since
sus’ sb]

Let

SUS" =
—b's" 0
and (sus’)(sus’)* = suu*s* = (sue,_,s%)(se,_,u"s") =", by (14)
n—1
(16) Mlr<1, i=1,...,n-1.

j=i
Therefore, by (15) and (16), if 1 < k<< n—2
1~ ta[2 1 — [f[2 > &2

and consequently |1—t,,]| > }e?. If k¥ = n—1, then we obviously have
|11 —1%,,] = € > } €% Therefore, for all

% b
—b' 0

there exists at least one eigenvalue 1, of ue,_, such that |[L—i,| > }é&.
However, as for the even case, since « is skew-symmetric, the eigenvalues
of we,_, occur in pairs. Therefore,

ldet (I™ —rTUe,)| = (1 — )" 3L — 2t ",
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Therefore by (11) and (13)
2n(n+ 1)/2 (1 _r)n(s—n)lz

Py(rU, e,) <

and hence for all U € B;— %,
on(n+1)/2 4 \2»
lim sup (1 —7)"3Py(rU, ¢,) < —— (—) ,
r—1 Va &2

where py(n) = n(n—>5)/2 (n odd).
Using diagonal matrices for W, then if U = W'e, W,

U = diag[ Dy, ..., Dy,_yyp, 0],

D, = [0 Z"] 2] =1
PR— 9 . _— ’
J _ 1] O 2

and for such a U, Ue, = diag[A;, A1, ..., 44, 44, 0], 6 = ( —1)/2, and

where

1 (1 _ 7.2)1;(11-1)/2

173 (n—1)/2

-PS(TU’ en) = .
[T 11—r2™
i=1

With the appropriate choice for 4;, part (b) of the theorem follows.
4. Proof of the theorem for D,. On D,(n), the Poisson kernel is given by

1 (14 |e2’|® —22)"2

P _
(75 ) V, |1+ze'ua’ —2zu*"’

where z € D,(n), v € By(n), and V, is the volume of B,. Here we take
¢ =(1,0,...,0). Then for v = 6z, = (#,,...,2,), 52’ =1,0< < =,

1 (1 —1‘2)2 nf2
Py(ru, e) = V, [ 11 +rzez"°—2reiew1|2] .

For », # cos 0,

1 1
17 lim (1 —-7»)""P = .

Consider the case where z;, = cosf # 1. Since

[1+72€* —2re*z,|* = (1 —7%)*sin® 0 + ((1 +7°) cos 8 —2ra,)?,

1
(18) imP,(ru, ) = 7 (1—ab)~"™2,

r—>1 4
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For 2, =cos0 =1 (v =e), limP(ru, e¢) = +oo. Combining (17) and

r—1

(18), we obtain that for all v # e,

0, x, # cosb,

(19) limP,(ru,e) = {1
r—1 Tr

Vs

For &> 0, define 4,(¢) by

(L—2%)"", @ = cosH.

N, (e) = {u = 6“%: Ie""wl—llz—l-z |22 < 52}.
j=2
Then for any u e B,, u ¢ 4" ,(e), u = ¢z,

e < |6z, —1°+ 2 ;"= |62, —1+1—a] = 2(1 —=z,cos0).
j=2

Consequently if « ¢ .47 (e),
0 x, # cos0,

?
limsupP,(ru,e) < | 1 [2\*
pLq(ru, ) ?( ) , ® = cosf.
4

r—1 o

82
Hence for D,, p, = 0.
Taking « = ¢*°(cos 6, sinb,0,...,0),0 # 0, shows that

limsup(1 —7)*P,(ru, €) = -} o0

r—1

for all @ < 0, which proves the result.
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