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A continuation theorem for holomorphic mapping
into a Hilbert space

by M. SKEWARCZYRSKI (Warszawa,)

Introduction. Let us consider a domain D in the space of » complex
variables. Denote by L*H (D) the space of all holomorphic functions which
are square integrable with respect to the Lebesque measure in D. Let
Kp(z,1) be the Bergman function of D (see [1]). An example of anti-
holomorphic mapping into a Hilbert space is furnished by the imbedding
Z:D > L’H(D) given by & (t)(2) = K(z, 1) (see [1] and [3]). Bremermann
in [2] has studied the necessary and sufficient conditions for the mapping
Z to possess an analytic continuation into a larger domain G, D < @G.
The aim of the present note is to extend Bremermann’s result to the case
of an arbitrary holomorphic mapping.

1. Preliminary remarks.

1.1. A mapping 2: D - H of a domain D < (" into a Hilbert space
H is called holomorphic if for every feH, (% (z), f) is a holomorphic function
of 2 in the domain D.

1.2. If &: D — H is holomorphic, then the function k(z, ) = (%(2),
Z (t)) is holomorphic in D x D*, where D* = {Z: zeD} and the function
k(z,z2) = ||Z(2)|? is real-analytic in D.

1.3. If k(2, z) is a real-analytic function in a domain @, then there
exists a neighborhood U of the “diagonal” {(z,?)e@x G*:z =t} and the
unique extension of k(z,z) to the holomorphic in U function k(z,?).

2. Continuation theorem. We state the following
THEOREM 2.1. Consider a holomorphic m&pping into a separable Hilbert
space H
:D—->H, Dc(C

“
Suppose that the function ||Z (2)||* possesses a real-analytic extension
to a larger domain G, D — Q. Then the mapping X (z) can be continued
analytically along an arbitrary path in G.

Proof. Denote by Fk(z,z) the real-analytic extension of [%'(2)||2
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defined in G. According to 1.3, k(z, z) extends to a holomorphic function
k(z,i) on U. Consider now an arbitary path

y(8)e@, 0<s<1, y(0)=2z'eD.
We can cover y by a sequence of polydises @; (¢ =1,2,...,m) in
such a way that:

1° The radius 7; of each polydisc is smaller than the distance in the
norm |2|] = max|¢;] of the set
i

IF'={(,De@XG: 2z =y(s), t =y(s), 0< <1}
to the boundary of U.
2° The center of polydisc Q; is 2'= y(s'), and 0 = s < s2< ... < s™
=1.
3° y(s)eQ, for s <s< s, i =0,1,...,m—1.
We shall show first that #'(2) possesses a holomorphic extension

to @,. By repetition of this argument the possibility of further extensions

to polydises Q,, ..., @, will then follow. As a result we obtain a continua-
tion of Z'(2) along .

Since %(z, t) is holomorphic in a neighborhood of the polydisc
P, ={(z,)eGx @ : |z—2' < 1y, [[—2 < 1y},

it can be developed into the power series convergent uniformly and
absolutely in P,
- 11 n 0"tk (2, 1)
(2.2) k(z,t) = 2——(z—z‘)”(t—2‘)"—_—z= 1.
’ i p!q! A

It follows that there exists a constant M such that for all p, ¢q

11,

(2.3) TT

i< M,

where k*? is an abbreviation for the corresponding partial derivative.
Let us now fix a complete orthonormal system ¢,,» =1,2,...,in H.
The Fourier coefficients a,(z) in the norm-convergent power series

(2.4) Z(@) = D a(e,
v=1
are holomorphic in D. Since k(z, z) is continuous in D, the series

(2.5) k(z,2) = D la,(2)]?

converges locally uniformly in D.
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We can now apply the Schwarz inequality to obtain the locally
uniform convergence of the series

(2.6) k(z,f) = Za (2)a,(t)

in Dx D".
Differentiating (2.6) at (2%, z1)eD x D* term by term and substitut-
ing the result into (2.3) we obtain

| Y avaglrtr < M,
v=1
where
o — 1 0%a,(2)
" — -
p! 027 =2zl

In particular, for p = ¢
Mlapprr < M
v=1

holds. Using this estimate and the Schwarz inequality, we can prove
exactly as in [2] that

1° The Taylor series for a,(z) at 2! converges in @,, and therefore
a,(2) possesses an extension to the polydisc Q,.

2° Series (2.6) converges locally uniformly and absolutely in P,.

We see that Z(2) has an extension to @, given by (2.4) for ze¢Q,.
Now the whole argument can be repeated for @, Q,,2? instead of D,
@, 2, and so on. After a finite number of steps we shall continue % (z)
into a neighborhood of the point y(1).

The proof is completed.

COROLLARY 2.7. Under the assumptions of Theorem 2.1, the function
k(z,t) possesses a holomorphic continuation along any path in the domain
ax @G

Proof. This continuation is given by (2.6).

In general, however, the continuation of % (z) into the domain G
may not be univalent. We end our considerations with the following

EXAMPLE. Let D — {2: |¢|] < 1, Im # > 0}. Let H = C!, Z(2) = V=,
Z(3€™?) = }¢™, The real- analytlc function || (2)||? = |2| possesses an
analytic eXtension to the domain G = {z: # # 0}. However, the continua-
tion of ¥z is not univalent in G.
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