ANNALES POLONICI MATHEMATICI XLII (1983)

On a Fučík problem

by VALTER ŠEDA (Bratislava)

Dedicated to the memory of Jacek Szarski

In paper [6] S. Fučík considered the boundary value problem u'' + h(u) = f(t), $u(0) = u(\pi) = 0$, where h is a continuous function such that

$$\lim_{u\to\infty}\frac{h(u)}{u}\neq\lim_{u\to-\infty}\frac{h(u)}{u}.$$

He called a function h with this property jumping. In the mentioned paper he solved a number of problems with jumping non-linearities using the concept of the Leray-Schauder degree of a mapping. The problems have also been attacked in the book [7]; they can be handled in the framework of the so-called Fredholm alternative for non-linear operators [5]; for other results see paper [9] by J. Nečas. In [6] S. Fučík formulated many open problems both for ordinary and partial differential (d.) equations. L. Aguinaldo and K. Schmitt [1] solved one of the listed problems using the famous Mawhin continuation theorem.

In this paper the problem of jumping non-linearities is generalized to the case where h depends not only on u and the existence of limits at ∞ and $-\infty$ is not necessary. The method of solving problems is elementary, but it goes to the core of the problem. Although the statement of the results resembles the Fredholm alternative for non-linear operators, no abstract theory is given.

Let n > 1 be an integer, a > 0 and $p \in C([0, \pi])$. Write $x^- = \max\{-x, 0\}$ and consider the boundary value problem

(1)
$$x'' + n^2 x = ax^- + p(t) \quad (0 \le t \le \pi),$$

$$(2) x(0) = 0 = x(\pi).$$

First we show that the method of lower and upper solutions of (1), (2), as given in Theorem 4, [10], p. 528, is not applicable. Recall that a function

 $f \in C^2([0, \pi])$ is a lower (upper) solution of (1) in the interval $i \subset [0, \pi]$ if $f'' + n^2 f \ge a f^- + p(t)$ ($f'' + n^2 f \le a f^- + p(t)$) in i. It is known that any solution of (1) can be extended to the whole interval $[0, \pi]$ and it is uniquely determined by the initial conditions.

LEMMA 1. Suppose that x is a lower and y an upper solution of (1) on $[a, b] \subset [0, \pi]$ such that $x(t) \leq y(t)$ and $x(t) \not\equiv y(t)$ in [a, b]. Then $b-a \leq \pi/n$ and, in the case of $b-a = \pi/n$, x and y satisfy (1) in [a, b], x(a) = y(a), x(b) = y(b) and $x(t) \geq 0$, $y(t) \geq 0$ in [a, b].

Proof. x (resp. y) fulfils the d. equation $x'' + n^2x = ax^- + p_1(t)$ (resp. $y'' + n^2y = ay^- + p_2(t)$) in [a, b] with $p_1(t) \ge p(t) \ge p_2(t)$ in [a, b]. Thus u(t) = y(t) - x(t) satisfies $u'' + n^2u = a(y^-(t) - x^-(t)) + p_2(t) - p_1(t)$ in [a, b] and the variation of parameters formula yields

(3)
$$u(t) = v(t) + \int_{a}^{t} \frac{\sin n(t-s)}{n} \left[a \left(y^{-}(s) - x^{-}(s) \right) + p_{2}(s) - p_{1}(s) \right] ds$$

$$(a \leq t \leq b),$$

where v is the solution of $v'' + n^2v = 0$ determined by v(a) = y(a) - x(a) $\geqslant 0$ and v'(a) = y'(a) - x'(a). Suppose that $b - a \geqslant \pi/n$. As $y^-(t) - x^-(t) \leqslant 0$ in [a, b], (3) implies that

(4)
$$0 \leqslant u(t) \leqslant v(t) \quad \text{in } [a, a+\pi/n].$$

Two cases may occur. If v(a) > 0, then there is a t_1 , $a < t_1 < \alpha + \pi/n$, such that v(t) > 0 in $[a, t_1)$, $v(t_1) = 0$ and v(t) < 0 in $(t_1, t_1 + \varepsilon)$ for $\varepsilon > 0$ sufficiently small. This contradicts (4) and hence $b - a < \pi/n$.

If v(a) = 0, then $v(t) = A \sin n(t-a)$ for an $A \ge 0$, $v(a+\pi/n) = 0$, and by (4) $u'(a) \ge 0$, $u'(a+\pi/n) \le 0$. (3) yields

$$0 \leqslant u\left(a + \pi/n\right)$$

$$= \int_{a}^{a+\pi/n} \frac{\sin n (a+\pi/n-s)}{n} \left[a \left(y^{-}(s) - x^{-}(s) \right) + p_{2}(s) - p_{1}(s) \right] ds \leq 0$$

and thus $p_1(t) = p(t) = p_2(t)$ in $[a, a+\pi/n]$, which shows that x and y are two solutions of (1) in $[a, a+\pi/n]$. At the same time $u(a+\pi/n) = 0$. If $u'(a+\pi/n) = 0$ and $b-a > \pi/n$, then we obtain (4) on $[a+\pi/n, c]$ with $c = \min(a+2\pi/n, b)$, but the initial conditions for v at $a+\pi/n$ imply $v(t) \equiv 0$ in $[a+\pi/n, c]$ and thus $u(t) \equiv 0$. Proceeding in this way we arrive at the conclusion that x and y are identical on [a, b], which contradicts the assumption. Hence $b-a \leq \pi/n$. If $u'(a+\pi/n) < 0$, we get $b-a = \pi/n$.

By inspecting the proof we see that $b-a=\pi/n$ implies that x and y are two different solutions of (1) in [a, b] and x(a) = y(a), x(b) = y(b), as well as $x(t) \ge 0$, $y(t) \ge 0$ in [a, b].

Now consider two different solutions x, y of (1) in $[0, \pi]$. By Lemma 1 their graphs have at least one point of intersection in each interval $[a, b] \subset [0, \pi]$ with $b-a \geqslant \pi/n$. On account of the uniqueness of initial value problems for (1) the total number of points of intersection is finite. Call the t-coordinate of any point of intersection a knot of the pair of solutions x, y. We can order the set of all knots of the pair x, y into a finite increasing sequence $0 \leqslant t_0 < t_1 < \ldots < t_m \leqslant \pi$, where $m \geqslant n$.

The estimation from below of the distance of two consecutive knots is given by the following lemma.

LEMMA 2. Let x and y be two solutions of (1) on $[a, b] \subset [0, \pi]$ such that x(a) = y(a), x(b) = y(b), x(t) < y(t) in (a, b). Then $b-a \ge \pi/\sqrt{n^2 + a}$ and if $b-a = \pi/\sqrt{n^2 + a}$, then $x(t) \le 0$, $y(t) \le 0$ in [a, b].

Proof. Write $c^+ = \max\{c, 0\}$. Then $c = c^+ - c^-$ and the difference u(t) = y(t) - x(t) $(a \le t \le b)$ satisfies $u'' + (n^2 + a)u = a(y^+(t) - x^+(t))$. Thus

(5)
$$u(t) = w(t) + \int_{a}^{t} \frac{\sin \sqrt{n^2 + a}(t-s)}{\sqrt{n^2 + a}} a[y^+(s) - x^+(s)] ds$$
 $(a \le t \le b)$

where w is the solution of $w'' + (n^2 + a)w = 0$ determined by w(a) = y(a) - x(a) = 0 and w'(a) = y'(a) - x'(a) > 0. Hence $w(t) = A \sin \sqrt{n^2 + a}(t - a)$ with A > 0. Suppose that $b - a < \pi/\sqrt{n^2 + a}$. Then (5) implies that $u(t) \ge A \sin \sqrt{n^2 + a}(t - a)$ ($a \le t \le b$), which contradicts the assumption u(b) = 0. Therefore $b - a \ge \pi/\sqrt{n^2 + a}$. If $b - a = \pi/\sqrt{n^2 + a}$, then $y^+(t) - x^+(t) \equiv 0$ in [a, b], which in view of x(t) < y(t) in (a, b) is equivalent to $y(t) \le 0$, $x(t) \le 0$ in [a, b].

The next lemma gives a sufficient condition for three solutions of (1) to have the same consecutive knots.

LEMMA 3. Let x, y and z be three solutions of (1) in $[a, b] \subset [0, \pi]$ such that x(a) = y(a), x(b) = y(b), z(t) < x(t) < y(t) in (a, b). Then z(a) = x(a) = y(a), z(b) = x(b) = y(b).

Proof. For the differences y-x, y-z we have in [a, b] the equalities

$$(y(t)-x(t))''+n^2(y(t)-x(t)) = a[y^-(t)-x^-(t)],$$

 $(y(t)-z(t))''+n^2(y(t)-z(t)) = a[y^-(t)-z^-(t)].$

Multiplying the first equality in [a, b] by y(t) - z(t) and the second one by -(y(t) - x(t)) and adding the resulting equalities, we get

In view of y(b) = x(b), y(a) = x(a), integration over [a, b] yields

(6)
$$(y'(b)-x'(b))(y(b)-z(b))-(y'(a)-x'(a))(y(a)-z(a))$$

= $a\int_{a}^{b}[(y^{-}(t)-x^{-}(t))(y(t)-z(t))-(y^{-}(t)-z^{-}(t))(y(t)-x(t))]dt$.

Since the integrand on the right-hand side of (6) is non-negative and the left-hand side is non-positive, the two sides must be equal to 0 and thus y(b)-z(b)=0, y(a)-z(a)=0, which was to be proved.

Now consider the homogeneous equation

$$(7) x'' + n^2 x = ax^-.$$

To this equation there corresponds a unique natural k such that

(8)
$$0 \leqslant \beta = \pi - k \left(\frac{\pi}{n} + \frac{\pi}{\sqrt{n^2 + a}} \right) < \frac{\pi}{n} + \frac{\pi}{\sqrt{n^2 + a}}.$$

If x, y are two different solutions of the problem (7),

$$(9) x(0) = 0,$$

then we get the following relations for their knots:

$$t_{2j}=jigg(rac{\pi}{n}+rac{\pi}{\sqrt{n^2+lpha}}igg) \hspace{0.5cm} (j=0,1,...,k),$$

while the odd knots satisfy the inequalities

$$(10) t_{2j} + \frac{\pi}{\sqrt{n^2 + a}} \leqslant t_{2j+1} \leqslant t_{2j} + \frac{\pi}{n} (j = 0, 1, ..., k-1 \text{ or } k).$$

 t_{2k} is the last knot iff $0 \le \beta < \pi/\sqrt{n^2 + a}$. Otherwise t_{2k+1} is the last one. Especially, if x is a non-trivial and z a trivial solution of the problem (7), (9), then instead of (10) we have

$$t_{2j+1} = t_{2j} + \frac{\pi}{n}$$
 $(t_{2j+1} = t_{2j} + \frac{\pi}{\sqrt{n^2 + a}})$ $(j = 0, 1, ..., k-1 \text{ or } k)$

according to whether x'(0) > 0 or x'(0) < 0. Therefore the problem (7), (2) has only the trivial solution iff one of the following three cases occurs:

$$(11) 0 < \beta < \frac{\pi}{\sqrt{n^2 + a}},$$

$$\frac{\pi}{\sqrt{n^2+a}} < \beta < \frac{\pi}{n},$$

$$\frac{\pi}{n} < \beta < \frac{\pi}{n} + \frac{\pi}{\sqrt{n^2 + a}}.$$

Define a mapping $F: R \to R$ by: F(c) = d iff the solution x of (7), (9) (in $[0, \pi]$) with x'(0) = c is such that $x(\pi) = d$. The d. equation (7) has the property that kx is its solution for any $k \ge 0$ if x is. This implies that F(k) = kF(1) and F(-k) = kF(-1) for any $k \ge 0$. A short computation shows that if β satisfies (11) then F(1) > 0 and F(-1) < 0, if β satisfies (12) then both F(1), F(-1) are positive and, finally, for β satisfying (13) we obtain F(1) < 0 and F(-1) > 0.

According to (8), β can also satisfy one of the relations:

$$\beta=0,$$

$$\beta = \frac{\pi}{\sqrt{n^2 + a}},$$

and

$$\beta = \frac{\pi}{n}.$$

If (14) holds, then F(1) = F(-1) = 0. In the case (15) we have F(1) > 0 and F(-1) = 0, and in the case (16) we have F(-1) > 0 and F(1) = 0. The behaviour of F gives existence statements for the boundary value problem (7),

(17)
$$x(0) = 0, \quad x(\pi) = d.$$

Consider the problem (1), (17). For equation (1) the function F_p can be defined just as F was defined for equation (7), F_p is continuous on R and by Theorem 2.1, [3], pp. 8, 19, which is also valid for vector \mathbf{d} . equations, there exists an M > 0 depending only on p, n, a such that $|F_p(c) - F(c)| \leq M$ ($c \in R$). The properties of F imply the following lemma.

LEMMA 4. The problem (7), (2) has only the trivial solution iff β satisfies one of the relations (11)-(13). If β satisfies (11) or (13), then the boundary value problem (1), (17) has a solution for each $d \in R$. In the case (12) there exists a $d_0 \in R$ such that (1), (17) has a solution for each $d \geqslant d_0$ and no solution for $d < d_0$. If β fulfils (14), then two cases may occur: Either the problem (1), (17) has a solution exactly for one d or there are $d_1 < d_2$ in R such that (1), (17) has a solution for each d, $d_1 < d < d_2$, and no solution for $d < d_1$ and $d > d_2$. If β satisfies (15) or (16), there is a $d_0 \in R$ such that (1), (17) has a solution for each $d > d_0$ and no solution for $d < d_0$.

Remarks. 1. Lemma 4 shows that if β satisfies (12), then the problem (1), (2) need not have a solution, although the corresponding homogeneous problem (7), (2) has only the trivial solution. In the case (11) and (13) the problem does have a solution.

2. The uniqueness of solution to (1), (2) may fail in the case where there exists a non-negative solution of (1), (2), as the following example shows.

EXAMPLE. The problem (1), (2) with $p(t) = (n^2 - 1)\sin t$ ($0 \le t \le \pi$) has as solutions a non-negative function $x(t) = \sin t$ and infinitely many perturbations of that solution $y(t) = \sin t + k \sin nt$ (for all k > 0 sufficiently small) which are, of course, also non-negative.

3. We know that (n being fixed) for each a > 0 there exists a unique natural k = k(a) such that (8) holds. The same is true for a = 0. The function k defined in this way is non-decreasing, piecewise constant and continuous from the right in $[0, \infty)$. When n = 2m, then k(0) = m and 0 < a < 8m + 4 is a sufficient condition for (11) to be true. In the case of n = 2m + 1, we again have k(0) = m and the condition $0 < a < 8m + 12 + 6/m + 1/m^2$ implies (13).

Lemma 4 guarantees the existence of a solution to (1), (2). Under the assumption of the lemma an estimate for solutions of that problem can be given; this is the contents of the next lemma. To formulate it we denote the sup-norm in $C([0, \pi])$ by $\|\cdot\|$ and we define the norm in $C_1([0, \pi])$ by $\|x\|_1 = \|x\| + \|x'\|$ $(x \in C_1([0, \pi]))$.

LEMMA 5. Let (11) or (12) or (13) be true. Then there exists a K = K(n, a) > 0 such that for any solution x of the problem (1), (2) we have

$$||x||_1 \leqslant K ||p||.$$

Proof. Denote by y the solution of the initial value problem $y'' + n^2y = ay^-$, y(0) = x(0) = 0, y'(0) = x'(0) = c. By Theorem 2.1 [3], pp. 8, 19, we have the estimate

$$(19) |x(t)-y(t)|+|x'(t)-y'(t)| \leq \frac{||p||}{n^2+a} \left(e^{(n^2+a)t}-1\right) (0 \leq t \leq \pi),$$

which implies that

(20)
$$|y(\pi)| \leqslant \frac{||p||}{n^2 + a} \left(e^{(n^2 + a)\pi} - 1\right).$$

Let F have the same meaning as before; then (20) gives an estimate for |cF(1)| or for |cF(-1)|, according to whether $c \ge 0$ or c < 0. Hence, denoting min (|F(1)|, |F(-1)|) = m and

$$\frac{1}{m} \cdot \frac{1}{n^2 + \alpha} \left(e^{(n^2 + \alpha)\pi} - 1 \right) = k,$$

we get

$$|x'(0)| = |c| \leqslant k ||p||.$$

Clearly, k depends only on n, a.

Now we multiply the equality for x resulting from equation (1) by 2x' and integrate in $[0, t] \subset [0, \pi]$. We obtain

$$x'^2(t) + n^2 x^2(t) = x'^2(0) + a \int_0^t 2x^-(s)x'(s)ds +$$
 $+ \int_0^t 2p(s)x'(s)ds \quad (0 \leqslant t \leqslant \pi)$

and thus

$$\begin{aligned} x'^{2}(t) + n^{2}x^{2}(t) & \leq \left(x'^{2}(0) + \int_{0}^{\pi} p^{2}(s) ds\right) + a \int_{0}^{t} x^{2}(s) ds + (a+1) \int_{0}^{t} x'^{2}(s) ds \\ & \leq \left(x'^{2}(0) + \int_{0}^{t} p^{2}(s) ds\right) + (a+1) \int_{0}^{t} \left[x'^{2}(s) + n^{2}x^{2}(s)\right] ds \,. \end{aligned}$$

The Gronwall lemma then gives the estimate

(22)
$$x'^{2}(t) + n^{2}x^{2}(t) \leqslant \left(x'^{2}(0) + \int_{0}^{\pi} p^{2}(s) ds\right) e^{(a+1)\pi} \quad (0 \leqslant t \leqslant \pi).$$

(22) and (21) imply (18) with

$$K = \frac{n+1}{n} \exp(\frac{1}{2}(\alpha+1)\pi)(k^2+\pi)^{1/2}.$$

The next lemma follows from a modification of the Kneser theorem (see Lemma 2.1.1 in [2], p. 95).

LEMMA 6. Let $f: [0, \pi] \times \mathbb{R}^2 \to \mathbb{R}$ be continuous and assume that all solutions of

(23)
$$x'' + n^2 x = ax^- + f(t, x, x')$$

can be extended to $[0, \pi]$. Let [a, b] be a compact interval. Then the set $G = \{x(\pi): x \text{ is a solution of (23) which satisfies}\}$

$$(24) x(0) = 0, x'(0) = c$$

and $c \in [a, b]$ is a compact interval or a one-point set.

Now we generalize Lemma 4 as follows:

THEOREM 1. Let $f: [0, \pi] \times R^2 \to R$ be continuous and such that

(25)
$$\lim_{|x|+|y|\to\infty} \frac{|f(t,x,y)|}{|x|+|y|} = 0$$

uniformly in $t \in [0, \pi]$. Let β be determined by (8). Then the following statements are true:

If β satisfies (11) or (13), then the boundary value problem (23), (17) has a solution for every $d \in R$. If β satisfies (12), then there exists a $d_0 \in R$ such that (23), (17) has a solution for all $d \geqslant d_0$ and no solution for $d < d_0$. If β fulfils (14), then two cases may occur: Either the problem (23), (17) has a solution exactly for one $d \in R$ or there are d_1 , d_2 ($-\infty \leqslant d_1 \leqslant d_2 \leqslant \infty$) such that (23), (17) has a solution for each d, $d_1 < d < d_2$ and no solution for $d < d_1$ (if $d > d_2$ (if $d > d_2$). In the cases (15) and (16) there is a d_1 , d_2 , $d_3 > d_3 > d_3$, such that (23), (17) has a solution for all $d > d_3$ and no solution for $d < d_3$ (if $d > d_3$).

Proof. Write

$$\max_{\substack{0\leqslant t\leqslant \pi\\|x|+|y|\leqslant r}}|f(t,x,y)|=\gamma(r)\quad \ (0\leqslant r<\infty).$$

By (25), to any $\varepsilon > 0$ there corresponds an $r_0 = r_0(\varepsilon) > 0$ such that for $r > r_0$ we have $\gamma(r) \leq \gamma(r_0) + \varepsilon r$, and this implies

$$\lim_{r\to\infty}\frac{\gamma(r)}{r}=0.$$

Let $c \in R$ be given. Consider a solution x of the initial value problem (23), (24) and the solution y of the problem (7), (24). As

$$y(t) = \frac{c \sin nt}{n} + \int_{0}^{t} \frac{\sin n(t-s)}{n} ay^{-}(s) ds \quad (0 \leqslant t \leqslant \pi),$$

we get the estimates

(27)
$$|y(t)| \le |c|M$$
, $|y'(t)| \le |c|(1 + aM\pi)$ $(0 \le t \le \pi)$

with $M = \frac{1}{n} \exp\left(\frac{\alpha}{n}\pi\right)$. By (19) it follows that there exists a constant L > 0 (independent of c) such that

$$(28) |x(t) - y(t)| + |x'(t) - y'(t)| \leqslant L \max_{0 \leqslant t \leqslant \pi} |f[t, x(t), x'(t)]| \quad (0 \leqslant t \leqslant \pi).$$

Inequalities (27) and (28) yield

(29)
$$|x(t)| + |x'(t)| \le |c|(1 + M + \alpha M\pi) + L \max_{0 \le t \le \pi} |f[t, x(t), x'(t)]| \quad (0 \le t \le \pi).$$

Let $\max_{0 \le t \le \pi} (|x(t)| + |x'(t)|) = r$. Then $|c| \le r$; by means of (29) we obtain $|c| \le r \le |c|(1 + M + aM\pi) + L\gamma(r)$ and in view of (26), for all sufficiently great |c| we have

$$|c| \leqslant r \leqslant |c|P$$

with a P > 0. (28) implies $|x(\pi) - y(\pi)| \le L\gamma(r)$; on account of (30) and (26) we get

(31)
$$\lim_{|c|\to\infty}\frac{|x(\pi)-y(\pi)|}{|c|}=0.$$

If F is the function defined as before then $y(\pi) = cF(1)$ $(c \ge 0)$ and $y(\pi) = |c|F(-1)$ (c < 0). Thus (31) implies that

$$\lim_{c\to\infty}\frac{x(\pi)}{c}=F(1),\quad \lim_{c\to-\infty}\frac{x(\pi)}{|c|}=F(-1).$$

Hence, if β satisfies (11), then $\lim_{c\to\infty} x(\pi) = \infty$, $\lim_{c\to-\infty} x(\pi) = -\infty$ and Lemma 6 completes the proof. The use of this lemma is justified by the fact that under condition (25) all solutions of (23) can be extended to the whole interval $[0, \pi]$. The other cases can be dealt with in a similar way.

Remark. Theorem 1 gives an affirmative answer to the question of the existence of a solution to (23), (2) when β satisfies (11) or (13). Now we consider the case (12). The main tool in the proof of the existence of a solution to (23), (2) will be the Leray-Schauder theorem ([4], p. 189).

First we notice that problem (23), (2) is equivalent to the integro-differential equation

(32)
$$x(t) = \int_{0}^{\pi} G(t, s) \left[-n^{2}x(s) + ax^{-}(s) + f(s, x(s), x'(s)) \right] ds$$
 $(0 \le t \le \pi)$

where G is the Green function of the problem x'' = 0, (2). We shall show that under condition (25) equation (32) has a solution $x \in C_1([0, \pi])$. To that aim consider the system of operators $T(\cdot, k)$ ($0 \le k \le 1$) defined by

$$T(x, k)(t) = \int_{0}^{\pi} G(t, s) [-n^{2}x(s) + ax^{-}(s) + kf(s, x(s), x'(s))] ds$$

$$(0 \leqslant t \leqslant \pi, x \in C_{1}([0, \pi])).$$

This system has the following properties:

a. $T(\cdot, k)$ maps $C_1([0, \pi])$ into itself for every $k \in [0, 1]$. Write

$$c_0 = \max_{0 \leqslant t \leqslant \pi} \int\limits_0^\pi |G(t,s)| \, ds, \quad c_1 = \max_{0 \leqslant t \leqslant \pi} \int\limits_0^\pi \left| rac{\partial G(t,s)}{\partial t}
ight| \, ds \, .$$

Let $x \in C_1([0, \pi])$. By the uniform continuity of f on compact subsets of $[0, \pi] \times R^2$, to an arbitrary $\varepsilon > 0$ there corresponds a $\delta > 0$, $\delta \leqslant \varepsilon$,

such that for any $y \in C_1([0, \pi])$ with $||x-y|| < \delta$, $||x'-y'|| < \delta$, we have

$$|f[t, y(t), y'(t)] - f[t, x(t), x'(t)]| < \varepsilon \quad (0 \le t \le \pi)$$

and thus

$$||T(y, k) - T(x, k)||_{1} = ||T(y, k) - T(x, k)|| + ||T(y, k)' - T(x, k)'||$$

$$\leq (c_{0} + c_{1}) \lceil (n^{2} + \alpha) \delta + k\varepsilon \rceil \leq (c_{0} + c_{1}) (n^{2} + \alpha + k) \varepsilon;$$

this, in turn, implies the property

b. $T(\cdot, k)$ is continuous in $C_1([0, \pi])$ for every $k, 0 \leq k \leq 1$.

Further we have

c. For x in bounded sets of $C_1([0, \pi])$, $T(x, \cdot)$ is uniformly continuous in [0, 1].

In fact, for any bounded set $S \subset C_1([0, \pi])$ the boundedness of f on compact subsets of $[0, \pi] \times R^2$ implies

$$|f[t, x(t), x'(t)]| \leqslant M \quad (x \in S)$$

for an M>0. Then $||T(x, k_1)-T(x, k_2)||_1 \leq (c_0+c_1)M|k_1-k_2|$, which implies the statement c.

d. $T(\cdot, k)$ is compact for any $k \in [0, 1]$.

To prove this, consider a bounded set $S \subset C_1([0, \pi])$. By (33) we get $||T(x, k)||_1 \leq (c_0 + c_1)[(n^2 + a)||x|| + kM]$ $(x \in S)$, and hence T(S) is bounded, too. This proves the uniform boundedness of the functions T(x, k), T(x, k) as well as the equicontinuity of T(x, k). The relation

$$|T(x, k)'(t_1) - T(x, k)'(t_2)|$$

$$\leqslant \int_{0}^{\pi} \left| \frac{\partial G(t_{1}, s)}{\partial t} - \frac{\partial G(t_{2}, s)}{\partial t} \right| ds \cdot \left[(n^{2} + a) \|x\| + kM \right]$$

implies the equicontinuity of T(x, k). The Ascoli lemma then yields the statement d.

e. There exists an N > 0 such that every possible solution x of x = T(x, k) $(x \in C_1([0, \pi]), k \in [0, 1]), \text{ satisfies } ||x||_1 < N.$

In fact, any such solution satisfies $x'' + n^2x = ax^- + kf(t, x, x')$ and boundary conditions (2). Let $\max_{t \in [0, \pi]} (|x(t)| + |x'(t)|) = r$. Then by

Lemma 5 we get

$$r \leqslant ||x||_1 \leqslant Kk ||f[t, x(t), x'(t)]|| = Kk\gamma(r).$$

Here $\gamma(r)$ has the same meaning as in the proof of Theorem 1. Thus in the case of r > 0 we obtain $\gamma(r)/r \ge 1/Kk \ge 1/K$. In view of (26) this implies that there exists an $r_0 > 0$ such that $r < r_0$. Then $||x||_1 < N = 2r_0$, which was to be proved.

f. Finally, the equation x = T(x, 0), i.e. the problem (7), (2) has a unique solution in $C_1([0, \pi])$ (namely, the trivial one).

By the Leray-Schauder theorem there exists a solution x of x = T(x, 1). Hence the following theorem is true.

THEOREM 2. If the assumptions of Theorem 1 are fulfilled and β satisfies (12), then the boundary value problem (23), (2) has at least one solution and thus d_0 from Theorem 1 satisfies $d_0 \leq 0$.

References

- [1] L. Aguinaldo and K. Schmitt, On the boundary value problem $u'' + u = au^- + p(t)$, $u(0) = 0 = u(\pi)$, Proc. Amer. Math. Soc. 68 (1978), p. 64-68.
- [2] S. R. Bernfeld, V. Lakshmikantham, An introduction to nonlinear boundary value problems, Academic Press Inc., New York and London 1974.
- [3] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, Mc Graw-Hill Book Co., Inc., New York-Toronto-London 1955 (Russian transl., Izd. I. L., Moskva 1958).
- [4] A. Friedman, Partial differential equations of parabolic type, Prentice Hall, Inc. Englewood Cliffs, New York 1964 (Russian transl., Izd. Mir, Moskva 1968).
- [5] S. Fučík, Spectral analysis of nonlinear operators (in Russian), Čas. pest. mat. 100 (1975), p. 179-192.
- [6] -, Boundary value problems with jumping nonlinearities, ibidem 101 (1976), p. 69-87.
- [7] S. Fučík, A. Kufner, Nelineární diferenciální rovnice, SNTL, Praha 1978.
- [8] P. Hartman, Ordinary differential equations (Russian translation, Izd. Mir, Moskva 1970).
- [9] J. Nečas, Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type, Comment. Math. Univ. Carolinae 13 (1972), p. 109-120.
- [10] K. Schmitt, A nonlinear boundary value problem, J. Differential Equations 7 (1970), p. 527-537.

Reçu par la Rédaction le 23.02.1981