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Dedicated to the memory of Jacek Szarski

In paper [6] S. Fuéik considered the boundary value problem u' -+
+h(u) = f(t), u(0) = u(x) = 0, where h is a continuous function such
that
h h
lim 2 s g B
u—so0o U U—>—00

He called a function A with this property jumping. In the mentioned
paper he solved a number of problems with jumping non-linearities using
the concept of the Leray—Schauder degree of a mapping. The problems
have also been attacked in the book [7]; they can be handled in the frame-
work of the so-called Fredholm alternative for non-linear operators [5];
for other results see paper [9] by J. Neéas. In [6] S. Fuéik formulated
many open problems both for ordinary and partial differential (d.) equa-
tions. L. Aguinaldo and K. Schmitt [1] solved one of the listed problems
using the famous Mawhin continuation theorem.

In this paper the problem of jumping non-linearities is generalized
to the case where h depends not only on % and the existence of limits at
oo and — oo is not necessary. The method of solving problems is elementary,
but it goes to the core of the problem. Although the statement of the
results resembles the Fredholm alternative for non-linear operators,
no abstract theory is given.

Let » > 1 be an integer, a > 0 and p € ([0, =]). Write 2~ = max{—u=,
0} and consider the boundary value problem

1) g +ale = ar”Fpt) (0<t<w),
(2) z2(0) = 0 = 2(x).

First we show that the method of lower and upper solutions of (1), (2), as
given in Theorem 4, [10], p. 528, is not applicable. Recall that a function
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322 V. Seda

feC*([0, «]) is a lower (upper) solution of (1) in the interval ¢ = [0, w]
it f"+2*f=af  +p@) (f"+9°f< af " +p(t)) in 4. It is known that any
solution of (1) can be extended to the whole interval [0, =] and it is
uniquely determined by the initial conditions.

LEMMA 1. Suppose that x is a lower and y an upper solution of (1) on
[a,b] = [0, ] such that x(1) < y(1) and x(l) & y(t) in [a,b]. Then b—a
< ©/n and, in the case of b—a = =n[n, x and y satisfy (1) in [a,b], z(a)
= y(a), (b) = y(b) and x(t) > 0, y(t) = 0 in [a, b].

Proof. « (resp. y) fulfils the d. equation '’ +n*2x = ax™ 4 p, (t) (resp.
Y’ +7'Y = ay” +Pp(t) in [a, b] with p,(1) = p(t) = p.(?) in {a, b]. Thus
u(t) = y(t) —@(t) satisfies w"’'4n?u = a(y~ (1) —2~ (1)) +p(t) —p,(t) in
[a, b] and the variation of parameters formula yields

¢
.
@ w = o0+ [ oy ()~ ) 4 pal6)— 2] ds

(a<t<b),
where v is the solution of v"' 4 n%v = 0 determined by v(a) = y(a) —x(a)
= 0 and 2'(a) = y'(a) —a’(a). Suppose that b—a > n/n. As y—(f) —2~(1)
< 0 in [a, b], (3) implies that

(4) o<u)<<o@®) in [a,a+x/n].

Two cases may occur. If v(a) > 0, then there is a t,, a < ¢, < a4« /n,
such that »(¢) > 0 in [a,?,), v(¢;) = 0 and v(}) < 0 in (t,,%,+¢) for e > 0
sufficiently small. This contradicts (4) and hence b—a < w/n.

If v(a) = 0, then v() = Asinn(t—a) fcr an 4 > 0, v(a+=/n) = 0,
and by (4) 4'(a) =0, 4'(a+=/n) < 0. (3) yields

0 < u(a+mn/n)

a+min
f sinn(a-+=/n—s)
@

" [a{y™ () —2™ (8)) + po(s) —p1(s)] ds < O

and thus p,(t) = p(f) = p.(?) In [a, a+ =/n], which shows that x and y are
two solutions of (1) in [a,a-+=n/n]. At the same time #(a-=/n) = 0.
If w'(a+=x/n) =0 and b—a > =n/n, then we obtain (4) on [a+ =/n, ¢}
with ¢ = min(a+2=/n, b), but the initial conditions for » at a+=/n
imply v(t) = 0 in [a+ =/n, ¢] and thus %(f) = 0. Proceeding in this way
we arrive at the conclusion that z and y are identical on [a, b], which
contradicts the assumption. Hence b —a < n/n. If 4'(a+=/n) < 0, we get
b—a = w/n.

By inspecting the proof we see that b —a = = /n implies that x and y
are two different solutions of (1) in [a, b] and z(a) = y(a), z(b) = y(b),
as well as () = 0, y(t) > 0 in [a, b].
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Now consider two different solutions «, ¥ of (1) in [0, =]. By Lemma 1
their graphs have at least one point of intersection in each interval [a, b]
< [0, n] with b—a > n/n. On account of the uniqueness of initial value
problems for (1) the total number of points of intersection is finite. Call
the {-coordinate of any point of intersection a knot of the pair of solutions
x, y. We can order the set of all knots of the pair #; y into a finite increasing
sequence 0 <, < f, < ... < t, <, where m > n.

The estimation from below of the distance of two consecutive knots
is given by the following lemma.

LEMMA 2. Let x and y be two solutions of (1) on [a, b] = [0, =] such
that z(a) = y(a), z(b) = y(b), z(t) < y(t) in (a,b). Then b—a > n)Vn?+a
and if b—a = n[Vn?+a, then 2(3) <0, y(1) <0 in [a, b].

Proof. Write ¢+ = max{¢, 0}. Then ¢ = ¢+ —¢~ and the difference

u(t) = y()—x(t) (a<t<b) satisfies w4+ (n2+a)u = a(y*(f)—a™(1)).
_Thus

sinVn?+ a(t —s)

Vnita

?
5 w) =win+ [ aly* (s)—a* (s)]ds
a
(a<t<b)
where w is the solution of w'' 4 (n2-+ a)w = 0 determined by w(a) = y(a) —
—z(a) = 0and w'(a) = y'(a) —2'(a) > 0. Hence w(t) = Asi.nl/'nz—-l-a(t—a)
with 4 > 0. Suppose that b—a< m/Vn?+a. Then (5) implies that
u(t) = AsinVa?+a(t—a) (e <t<b), which contradicts the assumption
u(b) = 0. Therefore b —a > n/Vn*+a. If b—a = n/Vn*+a, then y* (1) —
—z*(t) = 0 in [a, b], which in view of () < y(t) in (a, b) is equivalent
to y(1) < 0, 2(t) < 0 in [a, b].
The next lemma gives a sufficient condition for three solutions of
(1) to have the same consecutive knots.

LEMMA 3. Let x, y and z be three solutions of (1) in [a,d] = [0, =]
such that z(a) = y(a), x(b) =y(b), z) < x(t)<y() in (a,db). Then
z(a) = x(a) = y(a), 2(b) = x(b) = y(b).

Proof. For the differences ¥ — 2, ¥y —2 we have in [a, b] the equalities

(y(1) =2 (@) +n2(y (1) —2(t)) = aly~ (1) —2~(?)],
(y(t) —2(®)" +n2(y(t) —2(2)) = aly~ () —2 ()]

Multiplying the first equality in [a, ] by y(¢) —2(?) and the second one
by —(y(?)—z(?)) and adding the resulting equalities, we get

([y@) —2z®)" (y @) —2@) — (y (&) —2(@®)) (v () —=(8))"’
= a[(y~ () —a~ (@) (¥ (1) —2 () — (¥~ (®) —2~ (1)) [y (1) — 2 (®))] -
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In view of y(b) = z(b), y(a) = z(a), integration over [a, b] yields
(6) (v (d)—a' (b)) (y(b) —2(b)) — (¥’ (a) —2'(a))(y(a) —2(a))

b
=a [ [y~ () —a~ @) (y(t) —2 () — (v~ () —=~ (1)) [y (1) —=2(2))] &s.

Since the integrand on the right-hand side of (6) is non-negative and the
left-hand side is non-positive, the two sides must be equal to 0 and thus
y(b) —2(b) = 0, y(a)—2(a) = 0, which was to be proved.

Now consider the homogeneous equation
(7) '+ n'e = ar™.

To this equation there corresponds a unique natural k¥ such that

®) |
= T — _ —_—
Vn*ta n Vn2+a
If z, y are two different solutions of the problem (7),
(9) z(0) = 0,

then we get the following relations for their knots:

T e .
1y =J( +m) (J=0,1,...,k),

while the odd knots satisfy the inequalities

T ki3 .

(10) t°1+‘/n <t25+1<t2j+-’; (j=0,1,...,k—1 or k).

1y, 18 the last knot iff 0 < < rr/l/n2+a Otherwise #,,,, is the last one.
Especially, if z is a non-trivial and 2z a trivial solution of the problem

(7), (9), then instead of (10) we have

T

i =t2j+—?;‘ (2,+1 tyy+—=) (j=0,1,...,k—1 or k)

l/n2+a

according to whether « (0) > 0 or #'(0) < 0. Therefore the problem (7), (2)
has only the trivial solution iff one of the following three cases occurs:

() <ﬂ<l/n2+a
e T
(13) ——<ﬁ + =

l/nz-l-a )
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Define a mapping F: R — R by: F(c¢) = d iff the solution # of (7),
(9) (in [0, =]) with #'(0) = ¢ is such that z(x) = d. The d. equation (7)
has the property that %z is its solution for any % > 0 if » is. This implies
that F(k) = kF(1) and F(—%k) = kF(—1) for any k> 0. A short com-
putation shows that if g satisfies (11) then ¥ (1) >0 and F(—1)< 0, if
p satisfies (12) then both F(1), F'( —1) are positive and, finally, for g
satisfying (13) we obtain F(1) < 0 and F(—1) > 0.

According to (8), f can also satisfy one of the relations:

(14) g =0,

K
15 S —
(15) B Vita
and

T
(16) =

If (14) holds, then F(1) = F(—1) = 0. In the case (15) we have
F(1)> 0 and F(—1) = 0, and in the case (16) we have F(—1) > 0 and
F(1) = 0. The behaviour of ¥ gives existence statements for the boundary
value problem (7),

17) z(0) =0, a(x)=d.

Consider the problem (1), (17). For equation (1) the function F,
can be defined just as ¥ was defined for equation (7), ¥, is continuous on
R and by Theorem 2.1, {3], pp. 8, 19, which is also valid for vector d.
equations, there exists an M > 0 depending only on p, #, a such that
|F,(c) —F(¢)| < M (c € R). The properties of F imply the following lemma.

LEMMA 4. The problem (7), (2) has only the trivial solution iff B satisfies
one of the relations (11)—(13). If B satisfies (11) or (13), then the boundary
value problem (1), (17) has a solution for each d € R. In the case (12) there
exists a d, € R such that (1), (17) has a solution for each d > d, and mo sol-
ution for d << dy. If B fulfils (14), then two cases may occur: Either the problem
(1), (17) has a solution exactly for one d or there are d, < d, in R such that (1),
(17) has a solution for each d, d, < d < d,, and no solution for d < d, and
d > d,. If B satisfies (15) or (16), there is a d, € R such that (1), (17) has a sol-
ution for each d > dy and no solution for d << d,.

Remarks. 1. Lemma 4 shows that if g satisfies (12), then the problem
(1), (2) need not have a solution, although the corresponding homogeneous
problem (7), (2) has only the trivial solution. In the case (11) and (13) the
problem does have a solution.

2. The uniqueness of solution to (1), (2) may fail in the case where

there exists a non-negative solution of (1), (2), as the following example
shows.
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ExAMPLE. The problem (1), (2) with p(?) = (n2—1)sint (0 <t < )
has as solutions a non-negative function () = sin? and infinitely many
perturbations of that solution ¥(?) = sin{+ ksinnt (for all k¥ > 0 suffi-
ciently small) which are, of course, also non-negative.

3. We know that (n being fixed) for each a > 0 there exists a unique
natural k¥ = k(a) such that (8) holds. The same i3 true for a = 0. The
function % defined in this way is non-decreasing, piecewise constant and
continuous from the right in [0, o0). When # = 2m, then k(0) = m
and 0 < a<< 8m-}4 is a sufficient condition for (11) to be true. In the
case of n = 2m+1, we again have k(0) = m and the condition 0 < a
< 8m+12+6/m-+1/m? implies (13).

Lemma 4 guarantees the existence of a solution to (1), (2). Under
the assumption of the lemma an estimate for solutions of that problem
can be given; this is the contents of the next lemma. To formulate it we
denote the sup-norm in C ([0, =]) by ||I-]| and we define the norm in C, ([0, =])
by lzlly = |lzll+ l='ll (2 € C1([0, =]).

LeMMA 5. Let (11) or (12) or (13) be true. Then there exisis a K =
K (n, a) > 0 such that for any solution x of the problem (1), (2) we have

(18) Izl < K ||pil.

Proof. Denote by y the solution of the initial value problem y'’ 4
40y = ey, y(0) = #(0) = 0, y'(0) = 2'(0) = ¢. By Theorem 2.1 [3],
PP- 8, 19, we have the estimate

(19) OO+ )~y (O < B (@1 <1<,
which implies that

||P|| (n2+n)n _
(20) y(ml < 55 (@ 1).

Let F have the same meaning as before; then (20) gives an estimate
for |¢F'(1)| or for [eF'(— )|, accordmg to whether ¢ > 0 or ¢ < 0. Hence,

denoting min ([F(1)[, |F(—1)|) = m and
1 1 2
- (n“talw _ 1y = &
m wta (e ) ’
we get
(21) 2 (0) = le] < Elipll.

Clearly, k depends only on n, a.
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Now we multiply the cquality for « resulting from equation (1) by
22" and integrate in [0, t] c [0, =]. We obtain

[4
a2 (1) +n*a (1) = a(0)+a [ 207 (s)a' (s)ds +
0

}
[4
+ [ 2p(9)a(s)ds  (0<t<m)
0
and thus

T ¢ ¢
w'?(t)+w2m2(t)<(m'2(0)+fpz(s)ds) +a [ #(s)ds+(a+1) [ @”(s)ds
0 0 0

¢ ¢
<(m'2(0)+fp2(s)ds) +(a+1)f [2"2(8) +nta*(s)]ds.

The Gronwall lemma then gives the estimate

(22) . m’z(t)+n2w2(t)<(m'2(0)+ f p”(s)ds) dotie (0 <1< 7).

i

(22) and (21) imply (18) with

n-+1
n

K =

exp (H(a+1)w) (K> 4 =)',

The next lemma follows from a modification of the Kneser theorem
(see Lemma 2.1.1 in [2], p. 95).

LEMMA 6. Let f: [0, t] X R* —~ R be continuous and assume that all
solutions of

(23) '+t = ax~ +f(t, v, a)
can be extended to [0, n]. Let [a, b] be a compact interval. Then the set G
= {x(x): @ is a solution of (23) which satisfies

(24) 2(0) =0, 2'(0)=c¢

and c € [a, b1} is a compact interval or a one-point set.
Now we generalize Lemma 4 as follows:

THEOREM 1. Let f: [0, "] X R* -~ R be continuous and such that

(25) lim If(t, =, ¥)| _
[zl 4+l 2]+ Y]

uniformly in t € [0, =]. Let § be determined by (8). Then the following state-
ments are lrue:
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If B satisfies (11) or (13), then the boundary value problem (23), (17)
has a solution for every d € R. If B satisfies (12), then there exisis a d, € R such
that (23), (17) has a solution for all d = d, and no solution for d < d,. If B
Julfils (14), then two cases may occur: Either the problem (23), (17) has
a solution exactly for one d € R or there are d,, d; (—o0 < dy < dy < 00)
such that (23), (17) has a solution for each d, d, < d < dy and no solution for
d<d, (if —oo< d,) and d > d, (if oo > d,). In the cases (16) and (16)
there 18 a dy, d; > — oo, such that (23), (17) has a solution for all d > d,
and no solution for d < d; (if —oo < dy).

Proof. Write

max |f(t,z,y)] = p(r) (0<r < oo).
o<i<n
lzl+ [y|<r

By (25), to any £ > 0 there corresponds an r, = 74(¢) > 0 such that for
r > r, we have y(r) < y(ro) -+ er, and this implies

(26) im 2™ _ 0.

ro00 T

Let ¢ € R be given. Consider a solution # of the initial value problem
(23), (24) and the solution y of the problem (7), (24). As

y(t) =

. ¢ 3
osmnt | f_s_“L(t—i) ay~(s)ds (0<i< 7),

0
we get the estimates

(27) ly@OI<lelM, W @I<lld+edn) (O<t<m)

with M =% exp (% 71:). By (19) it follows that there exists a constant
L > 0 (independent of ¢) such that
(28) |x(®)—y@®)|+ ')~y () < Lmax [f[t, z(1), 2’ D] (0<i<m).

<i<rn

Inequalities (27) and (28) yield

(29)  |e(®)]+ 0" ()] < |el(1+M + aMw)+

+ L max |f[{, z(1), 2’ ()] (0 <Ei<< m).
I<i<p

Let max (lw(t)l—l—la;'(t)l) = r. Then |¢|<7; by means of (29) we
0<t<x
obtain |c|<r< |Je]Q1+M+aMr)+ Ly(r) and in view of (26), for all
sufficiently great |c| we have
(30) lel <7< |o|P
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with a P > 0. (28) implies |2(n) —y (=) < Ly(r); on account of (30) and
(26) we get

1) i JEm =9 (@) _
lel->c0 le|

If F is the function defined as before then y(x) = ¢F(1) (¢ = 0) and ¥ (=)

= l¢e|JF(—1) (¢ < 0). Thus (31) implies that

()

0’

z (=)

lim = F(1 lim —— = F(—1).
c»>o © @), cr—o0 €] ( )
Hence, if § satisfies (11), then limz(xn) = oo, lim #(n) = —oc and Lemma

c—>—00

Cc—>00
6 completes the proof. The use of this lemma is justified by the fact that
under condition (25) all solutions of (23) can be extended to the whole
interval [0, =]. The other cases can be dealt with in a similar way.

Remark. Theorem 1 gives an affirmative answer to the question
of the existence of a solution to (23), (2) when g satisfies (11) or (13).
Now we consider the case (12). The main tool in the proof of the existence
of a solution to (23), (2) will be the Leray-Schauder theorem ([4], p. 189).

First we notice that problem (23), (2) is equivalent to the integro-dif-
ferential equation

(32) x(l) = f G(t, s) [ —n’w(s)+ ax™ (8) +f(8, #(s), &' ())]ds
o<t

where G is the Green function of the problem 2’ = 0, (2). We shall show
that under condition (25) equation (32) has a solution 2 e C,([0, «]).
To that aim consider the system of operators T'(-, k) (0 < k < 1) defined by

k1

T(@, B)(t) = [ G(t, )] —n*w(s)+az™ (s)+kf (s, @(s), @’ (s))] ds

0
0t n, ©eCy ([0, x]).
This system has the fbllowing properties:
a. T'(-, k) maps Cy([0, =]) into itself for every k e[0,1].
Write

o<<i<n <i<n

Pl T
G (t
¢, = max f |G(t,s)|ds, ¢, = max f ‘ (a;, s) | ds.
|
0 0

Let x e ¢,([0, =]). By the uniform continuity of f on compact subsets
of [0, =] X R?, to an arbitrary &> 0 there corresponds a 6> 0, 6<¢,
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such that for any y € Cy([0, n]) with |z —y] < é, &' —¥y'||< 6, we have

IflE, 9@, v’ O]=F, 2(t), 2’ (D)]i<e (0<t<m)
and thus
WT'(y, k) —T (%, k), = I\ T(y, k) —T(z, B)i+ T (y, k) —T (@, k)|
< (ot ) [(n*+a) 0+ ks] < (6ot ¢1) (n*+ a+K)e;
this, in turn, implies the property
b. T'(-, k) i8 continuous in C,([0, =]) for every k, 0 < k< 1.
Further we have

¢. For x in bounded sets of C,([0, x]), T(x, -) is uniformly continuous
an [0,1].

In fact, for any bounded set 8 = C,([0, =]) the boundedness of f on
compact subsets of [0, =] x R® implies
(33) I, 2(®), 'O <M (zeR)
for an M > 0. Then |T(», k) —T(x, ky)il; < (¢o-+¢y) M |ky—Ek,|, which
implies the statement c.

d. T'(-, k) is compact for any k € [0, 1].

To prove this, consider a bounded set 8§ = C,([0, =]). By (33) we get
IT(z, k)|l < (€o+ 1) [(n%+ a) @]+ EM] (= € 8), and hence T'(S8) is bounded,

t00. This proves the uniform boundedness of the functions T'(z, k), T'(z, k)’
a8 well as the equicontinuity of T'(x, k). The relation

T (x, k) (2,) — T (2, kY (1)
T| 8G(ty, 8) G (1g, 3)
gof o

5 |48 (' +a) ol + kM]

implies the equicontinuity of T(z, k)’. The Ascoli lemma then yields the
statement d.

e. There exisis an N > 0 such that every possible solution v of v = T (v, k)
(@ € C,([0, =]), k € [0, 1]), satisfies |x|l, << N.

In fact, any such solution satisfies '+ n?x = ax™ +Ef(¢, 2, 2")
and boundary conditions (2). Let max (lw(t)l +_|w'(t)|) = r. Then by

‘E[otﬂl
Lemma b we get

r< el < Kk(f[2, 2(8), 2" ()]l = Kky(r).

‘Here y(r) has the same meaning as in the proof of Theorem 1. Thus in
the case of r > 0 we obtain y(r)/r >1/Kk > 1/K. In view of (26) this
implies that there exists an r, > 0 such that r < ry. Then ||, < N = 2r,,
. which was to be proved.



Fuélk problem 331

f. Finally, the equation x = T(xz,0), i.e. the problem (7), (2) has

a unique solution in C,([0, =]} (namely, the trivial one).

By the Leray—Schauder theorem there exists a solution z of z =

T(x,1). Hence the following theorem is true.

THEOREM 2. If the assumplions of Theorem 1 are fulfilled and § satisfies

(12), then the boundary value problem (23), (2) has at least one solution and
thus dg from Theorem 1 satisfies dy < 0.

{1]
{2]
{31
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16]
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