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Dilations of Banach space operator valued functions

by W. MLAK (Krakéw) and A. WERON (Wroclaw)

Abstract. The paper deals with existence and uniqueness theorems concerning
dilations of positive definite functions with values in the space of all antilinear bounded
operators from a complex Banach space to its dual. These dilations are representations
of semigroups. Basio results concern the case of non-unital semi-groups.

1. Let E be a complex Banach space. By L(E) we denote the space
of all bounded antilinear operators from E to the dual E* of E. L(E, F)
stands for the space of all linear bounded operators from the Banach space
E into the Banach space F. We write L(E) = L(E, E). Let Z be a set.

DEFINITION ([9], [10], se also [2]). We say that the function B(-, ‘):
Z x Z—~L(E) is positive definite and write then B > 0, if for every =,
every n-tuples 2,...2, € Z, f,...f, € E the inequality

n

N Bz, 2)f) (f = 0

i1

holds true.
We have (see [10], Theorem 4.6, also [2]) the following
ProPOSITION 1. Suppose that the function B(-,'): Z x Z—L(E) is

positive definite. Then there is a Hilbert space K and an operator function
X(): Z—~L(E, K) such that

(1) B(u,v) = X(v)*X(u) for u,veZ.
Notice that if K in the above proposition is minimal, i.e.
(2) K =V X(2)E,
zeZ

then K and X () are unique up to unitary equivalence. This mecans that if
K,, K, are Hilbert spaces and X;(-): E—~K, as well

K =VX@E (i=1,2)

and
X, (0)* X, (u) = X,(v)* X, (u) for u,veZ,
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then there is an unitary map U: K,—~K, such that UX,(u) = X,(u)
forueZ.

If (2) holds true, then expresion (1) of B through X (-) is called cano-
nical.

Let § be a multiplicative semi-group and K a Hilbert space. The
opecrator-valued function zn(-): §—L(K) is called a representation if m(uv)
= n(u)x(v) for w, v € 8. If § is unital, that is, § has a unit, say e, then =
is called unital if n(e) = I, = identity operator in K.

It is plain that if E is a complex Banach space, K is a Hilbert space,
ReL(E,K) and n(-): S—>L(K) is a representation of the semi-group 8,
then the L (F) valued function B defined as

(3) B(u,9) = R*n(v)*n(w)R (u,vefl)

is positive definite.
If (3) holds true, then we say that =(-) is an R-dilation of B. More-
over, (3) implies that there is a finite function g: S—R™* such that

(4) D) (B(suy, swi)fy)) (f) < e(8) D) (B, w)f) (£i)
k=1 k=1

for all »,u,...u, €8, f,...f, € E. One takes simply o(s) = |ln(s)]%

We say that B > 0 satisfies the boundedness condition if (4) holds
true form some ¢(-), all » and all u,...u,, f;...f,.

Suppose B > 0 and B satisfies the boundedness condition. Let B(«, v)
= X (v)* X(u) be the canonical expression of B. Following [10] (the case
where 8 is a group) and [2] (case of general semi-group) we define for s € §
using (4) the operator 7 (s) Z‘X (w)f; = ZX (8%;)f; (finite sums) on a dense

linear manifold of K = \/ X (8)E. Oondltlon (4) implies that n(s) extends

in a unique way to n(s) € L(K). We then have |n(s)2<< o(8) (s€8).
Since n(8,8,) X (u)f = X (8,8,%)f = =(s;) (X (8.0)f) = =(8,) (“(32)X(“)f) for
8,85, €8, feE, thus n(-) is a representation of 8§ into L(K). More-
over,

(5) B(su, rv) = X (0)" z(r)" 7 (8) X (w)

for s, r, u, v € 8. Now if 8 has the unit ¢ we put R = X (¢) in (5) and derive
therefore the following, probably the proper, formulation of a basic result
of [2], which reads as follows.

PROPOSITION 2. Let 8 be a unital semi-group and B(-, -): 8 xS—~L(E)
a positive definite operator function. If B satisfies the boundedness condition
(4), then B has an R-dilation, which is a unital representation = of S. The
minimality condition K = V (s) RE determines K and n up to unitary
equivalence.
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Proof. Only uniquencss requires the proof. So, suppose that z;

(¢ = 1,2) is unital representation of § and K; =\ =, (s)R; E, where
ceS

R;: E~K, (i =1,2)and B} m;(v)" 7w, (w) R, — B(w,v)fors = 1,2,u,veSf.

Sinee for any n, u,...4, e 8 and f,...f, e £

HZ%(’“‘:)le-il 21'\’1 = Z (B, w)fi) (fi) = ” Eﬂ2(ui)R2fi‘2
P ik i

K,?
the map

; 77y (U;) lfz”'Z n2(u1)R2ft

extends to the unitary operator U: K,—K,. Since S has an unit, we have
UR, = R, and obviously U=z, (s) = 7=,(s) U for s e 8.

COROLLARY 1. Notice that since S has the unit e, we have n(u)Rf
m(u)X(e)f = X(w)f for weS,feE, which implies that \/ n(s)RE

\VV X(8)E = K in this case. seS
seS

COROLLARY 2. If § ts a %-semi-group (scc [8], where such semi-groups
have been introduced) and B(u,v) = B(v*u) (v—v* is the involution in
S), then Proposition 2 reduces to the extension of the Sz.-Nagy theorem [8]
proved in [1]. In this case n(-) becomes a x-representation, i.e. it is a repre-
sentalion and n(u*) = n(u)* for u € 8. For dilations of this type for Hilbert
space case we refer also to [3], [4] and [6], [7], where the question of unitization
as well the boundedness condition for non-unital S is discussed.

Now we give some example of positive definite function which satisfy
the boundedness condition (4). These examples are related to the probabil-
ity theory. We consider only a complex valued functions, but we remark
that the operator-valued function arise in the same way when one studies
multivariate stochastic processes, see [10].

ExAMPLE. Let (2, #,P) be a probability space. By L} (2, 4, P)
we denote the linear space of (equivalence classes of) complex-valued
random variables & defined on the probability space for which E& = 0
and E|&° < oo, where E denotes the mathematical expectation (the
integral with respect to P).

By second order process we mean a mapping z: R—L} (2, 8, P).
It is well know that the correlation function

H

I

r(8,1) = Ew(s)m

is positive definite. If we consider stationary stochastic processes, i.e.
r(s,t) =r(s—t, 0) for each s, r € R, then r(s, t) satisfies the boundedness
condition with ¢(8) = 1.

Now we consider a class of second order stochastic processes z for
which there exists a finite function M: R—R* such that for all », ¢,...1,
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€ R and a,...a,€C
() I s+t |< M| N i),
k=1 k=1

where ||| denotes the norm in L (£, 4, P). This class consists, in general,
of non-stationary processes. If M (s) = const, this class coincides with
the so-called uniformly bounded linearly stationary stochastic processes
which were ivestigated from the application oriented point of view
in [5]. It was shown that every continuous such process z(¢) has a spectral
reprcsentation
+ oo
z(l) = f e*du(s), teR,

where u is bounded stochastic measure.
Let us notice that the correlation function of stochastic processes from
the class («) satisfies the boundedness condition with g(s) = M?*(s).
Clearly, for all n,t,...t,,s € Rand a,...a,€ C
n n
2 P81y, 8+ u) 8B = Y a,8, Ex(s+u)w(s+ u,)
k=1 k=1

In the example we have a case: the semi-group § = R, the Banach space
E = C, and the function B =17.

2. Suppose that the operator-valued function B(:,:): 8§ x8—L(E)
is positive definite and 8 is a semi-group. If B satisfies the boundedness
condition (4), then formula (5) holds true and =(-) is a representation

of 8, namely n(-): S—L(K), where K = \/ X(s)E. The space K may
seS
be replaced by a smaller one and (5) will be still valid with suitably redefined

factors. To see this we will briefly recall some facts related to von Neumann
algebras.

Suppose, namely, that K is a Hilbert space and let # < L(K). Define
M ={heK: Ah = 0, A*h = 0 for all A € #} and lct @ be the orthogonal
projection on KX © M. Then

(6) AQ =QA = A for all A e#F.
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Moreover,

(7) @ belongs to the von Neumann algebra gencrated by £ (i.c.,
Q is in the strong operator closure of sclfadjoint algebra gencrated
by #).

Now, if (5) holds true and if we take & = {#(u): u € 8}, then by (6)
(8) B(su,rv) = X(0)*Q*n(r)*n(s)Q X (u) for s,r,u,vesl.
Let Ky =QK (K =\ X(s)E) and define Y(-): S—>L(FE, K,) as Y(s)f

seS
=QX(s)f (s€ 8, feE). By (6), K, reduces all operators z(s). We define

p(8) = m(s)| K, e L(K,) and are then able to rewrite (8) as follows
(9) B(su,rv) = Y(o)*¢(r)*e(s)Y (u); r,s,u,vel.

Certainly ¢(-): 8—L(K,) is a representation of §.
We introduce now the following condition:

(A)  There is a net e, € S such that
(10) sup [|B (e, €,)] < + 0,

(11)  lim(B(ue, v)f)(g) = (B(u, v)f)(g) for u,veS;f, g€k,

(12) liam (B(eq, v)f) (g) cxists for every v € § and every f,g € K.

Since

X (e)fII* = (B(€ay €a)f) (f) < IB(€qs ea)fll- IIf | < 1B (€qy €a)ll- N2,
condition (10) yields that
(13) sup [|X (¢4)|| < +oo.

We write R, = QX(e,).
Next by (11), since n(u) = n(u)Q = Qn(u),

(14) (B(ueay 0)f) (9) = (X (ue,)f, X (v)g) = (m(u) X (e,)f, X (v)g)
= (p(uw)R.f, X(v)g) = (R.f, p(w)* X (v)g)
(X (w)f, X(v)g).

Notice now that the set of vectors {p(u)Y(s)g, 9(v)* Y()f; u,v€eS;
Jy g9 € E} is linearly dense in K,. Indeed, if he K, and & 1 o(u) XY (s)g
= Qn(u)X (s)g, then, for s€ 8, g€ E, n(u)*'Qh 1L X (s)g, i.e., n(u)*Qh 1 K

= \/ X (s)E which implies that z(u)*Qh = 0. By similar token the relation
seS

hle@)*Y(t)f (te8,feE) implies 7(v)Qh = 0. Hence h =Qhe M | K,
which proves that &# = 0, q.e.d.
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It follows from (12) that
(15) lim (R f, ¢(u) ¥ (5)g) = lim (B(e,)f, X (us)g)

= lim (B(eqy us)f)(g9) exists.

We conclude that lim (B, f, &) exists for A running over a dense lincar
manifold of K,. Since sup|R,| <sup|X(e)ll < +oo by (13), {R,} is 2

bounded net, which satisfies the Cauchy condition for the weak convergence,
Henee lim R, £ R exists and is a bounded lincar operator from F into X .
a

It follows from (11) that
(p(w)Bf, p(v) R, g) = lim (¢ () Ryf, ¢ (v) R, g) = 1i511 (B (uep, ve,)f) (g)
= (B(’U/, 'vea)f) (g)'

On the other hand, since (B(s, ¢)f)(g) = (B(t, 8)g)(f) for s,1 e Sand f,ge E,
we get from (11) once again that

lim (B(u, ve,) ) (g) = (B(u, v)f)(9)
and conclude finally that
(p(u) Ef, p(v) Rg) = lim (B(u, ve,)f)(g) = (B(x, 0)f)(g)-
Since u, v, f, g are arbitrary, we have
B(u,v) = R*'¢(v)*p(u)R, wu,veSf.

Summing up we proved the following theorem:
THEOREM 1. Let 8 be a semi-group and B(-,-): 8 x8—L(E) a pos-
itive definite operator function which satisfies the boundedness condition.

Assume also that B satisfies condition (A). Then B has an R-dilation which
28 a representation of S.

Using Theorem 1, one casily formulates an analogon of an existence
theorem of [4] for Banach space valued operator functions in a case where
the non-unital 8 is a *-semi-group and B(u, v) = B(v*u).

3. Our ncxt topic concerns uniquencss of dilations. The uniqueness
is that one up to unitary isomorphism. Our result given below is modelled
after a uniqueness theorem of [3], [4].

To begin with we suppose that § is a semi-group, =;: S—L(K;)
(¢ =1,2). Assume that =,, @, correspond to the same function B(u, v)
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e L(E), that is,
anl(”)‘nx ()R, = B(u, v) = Ry 7m,(v) 7 (u) R,

for all #,v e 8. Then, since for any » and ,...u,€8,f,...f,beE

icl - 2 (B (1e5y ) fi) (fi)
ik

K=

I 3 ) Buf,
=1

= Hé‘: 7o (%) Ry f; ”i‘,z,

the minimality of &, and K, implies that there is a unitary map U:
K,—~K, such that U=xn,(u) = #,(v) U for v e 8. It follows that Um,(v)*
= m,(v)* U for veSd.

Let now ¢@;(u,) = m;(%,) or =;(u,)* the same choice being fixed for
both ¢ =1, 2. Then

U n'Pl('“k)le = n%("‘k) UR.f.
k=1

k=1
Consequently

m n m n
U (2 a; ”‘Pi(’“k,f))le = (2 a; ”‘Pz(“ic.f)) UR.f
=1 Kol i=1 k=1
for all m, n, u, ; € § and scalars a; and f € E. It follows that
(16) UAR,f = UAU'R,f

for every A in the self-adjoint algebra «f, generated by #, = {=;(u):
u € 8}.
We define the closed subspaces

M, ={heK; n;(u)h =0 = m;(v)*h for all u,ve 8}
and
N, ={heE;: m(u)*h = 0 for all u e S}

fori = 1, 2. Certainly M, c N, which implies that N ¢ M;.But N} = K,.
Indeed, if » € N;, then =,(u)*h = 0 for u € § which implies that

(e (u)*h, B;f) = (b, m(u)R;f) =0 for ueS and feE.
Since K; = \/ m;(8) R; B, we must have 2 = 0. q.e.d.
8eS
Let now C; be an orthogonal projection on M, and D; an orthogonal
projection on N;. Obviously, C; < D;, which implies that Iy, — D, < Ig,—
—~ = Q;. But D; = 0. It follows that Q; = I, (Ix stands as usually

for the identity operator in K). Notice now that I x,; 18 (by (7) of Section 2)
in the strong operator closure of the self-adjoint operator algebra «f;
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generated by #; = {n;(u): u € §}. Hence, for ¢ > 0 and f e E, there is
an A e o/, such that

IAR,f—R.fll = |UAR.f— UR,fll < }¢

and simultaneously
AU Ryf — UT'Ryfll = |UAU™'R,f — Ryff| < $e.

By (16) we have that UAR,f = UAU™'R,f. It follows now from the above
inequalities that

UR,f— R,fll < e.

Since f and ¢ are arbitrary, we conclude that UR, = R,.
Summing all up we proved the following theorem:

THEOREM 2. Let 8 be a semi-group and let =n;(-): S—L(K,) be a re-
presentation of 8 into L(K;), where K, is a Hilbert space. Let K be a Banach
gpace and R, e L(E, K;) (i =1, 2).

If K,, K, are minimal, i.e., K; = \/ 7;(s)R;E for i =1,2 and
seS

RIn,(0)* 7y (u) Ry = R} 7y (v)" 7, (u) R, Jor u,ve8,

then =, and 7, are unitary equivalent in the following sense: there is a unitary
map U: K,—~K, such that Uny(u) = 7,(u)U for ue S8 and UR, = R,.

Remark. If 8 is a #-semi-group and the things arc going on with
x-representations =, , 7z, of 8, then the above theorem, for Iilbert space E,
reduces to uniquencss theorem of [3], [4]. The point is that N; = M, in
this case.
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