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Global solvability of the mixed problem for first order
functional partial differential equations

by JaN Turo (Gdansk)

Abstract. Global generalized solutions to the mixed (initial-boundary) problem for quasiline-
ar hyperbolic systems of functional PDE's of the first order in two independent variables are
investigated.

1. Introduction. Let a,, b, @ > 0 be given constants. Let us denote by
|ul, = max, <;<slu;| the norm of u in R". Write I, = {(x, y): 0 €< x < a,,
0 < y < b}.

We seek global generalized (in the sense almost everywhere) solutions of
hyperbolic systems of quasilinear functional partial differential equations in
diagonal form

(1)  D.zi(x, Y+ A(x, y, z(x, y), (V2)(x, y))D,z/(x, )
= fi{x, y, 2(x, ), (V) (x, y)), (x, el i=1,..,n,

with the initial conditions

) 2(0, y) = o(y), yel0,b],
and the boundary conditions

] z)(x, 0) = hyi(x), 1eJy={i: sgn4,(0,0,0,0) =1},

G) z)(x, b) = hy(x), ieJ, ={i: sgni(0, b, 0,0) = —1}, x€[0, a,],

where  z(x, y) = (z,(x, J), ..., z,(x, ¥)), @) = (0,(), .-, 0,(0), D, = d/ox,
D, = 0/dy.

The global solvability (with a different definition of generalized solution) of
hyperbolic systems of partial differential equations of the first order has been
investigated by various authors: the mixed problem for quasilinear equations
by Filimonov [3], the mixed problem for semilinear equations by Abolinia and
Myshkis [1], the Cauchy problem for quasilinear equations by Myshkis and
Filimonov [§], the mixed problem for two equations in a very special form by
Doktor [2], and the Cauchy problem by Johnson and Smoller [4].
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In the present paper, the global solvability of problem (1)-(3) is ensured by
the monotonic behavior of given functions and a growth restriction on the
right-hand side. The functional operator V includes retarded arguments and
Volterra hereditary operators.

2. Basic assumptions.

AssumpPTiON H,. (i) The functions sgni,(-,0,-, "), sgnd (-, b, ,):
G,,=[0,a,]x32xQ-R,i=1,..,n, are constant in G,, where Q
=[-92,Q]"ck

@) A4(-, y,u,0): [0,a,]>R,i=1,...,n, are measurable for every
(y, u, )eG =10, b]x 2 x Q.

(i) A(x,*): GoR, i=1,...,n, are continuous for ae. xe[0, a,].

(iv) There are a constant A4 > 0 and integrable functions /;: [0, a,]—R,
= [0, + ), j=1, 2, 3, such that for all (y, u, v), (J, @, 7)€ G, a.e. in [0, a,],
we have

H‘t(xt y’ ul '))I g A,
Ai(x, y, u, )= 4i(x, ¥, @, D) < 1y )|y — Jl +1,(x) ju—~ |, + 13 (x) jv —7,,,

i=1,..,n

(v) There are constants g,€(0, b) and A, > 0, such that A,(x, y, u, v)
> Ay for ieJy, ye(0, &l, (x,u,1)eG,,, and —A(x, y, u, v) 2 A, for ieJ,,
ye[b—e,, b], (x, u, v)eG,,.

AssuMpPTION H,. (1) Assumptions (ii), (iii) of H, are satisfied by the
functions f: [0, a)]xG—R, i=1,...,n.

(i) There are a constant F>O0 and integrable functions

k;: [0, a,]—=R,, j=1,2,3, such that assumption (iv) of H, is satisfied by f;
with A replaced by F and [, by k,.

AssumMPTION H,. (i) There is a constant H >0 such that for all
x, X€[0, a,] we have
tho(X)—hoi(®)| < Hix—x|, ieJy, |hp(X)—hu(X) < Hx—%|, ieJ,.
(i) The compatibility conditions
hOl'(O) = (pl(o)'! iEJO) hbl(o) = (P‘(b), iEth
are satisfied.
(iii) There is a constant ® > 0 such that for all y, ye[0, b] we have

(M-, < Ply—j| and max|e(y), = P, < Q.
[0,b]

We denote by B(a) the set of all continuous furictions z: I,— R" such that
z(x, y)l, < Q, (x, y)el,.
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We write B(a, Q) for the set of all functions ze B(a) satisfying
@ lz(x, y)—z(x, P, € Qly—-7l, 200, y) = o(y),
for all (x, y), (x, y)el,.
AssumpTION H,. (i) V: B(a,, Q)— B(a,).

(ii) There are integrable functions c, d: [0, a,] - R, , such that for every
z€B(agy, Q) we have

[(Va)(x, )] < c()[z(x, )] +d(x), ae. in [0, a,],
where

[2(x, )] = sup D=2 I

».9el0,b] ly—y
y¥y

(iii) There is an integrable function m: [0, a,] —+ R, such that for all
z, Z€ B(a,, Q) we have

WVz—Vzll, < m(x)liz— 2],
where |lz|l; = 8UPu.yer. [2(8 Yl I = [0, x] % [0, b].

Remark 1. In particular, from assumption (iii) of H, it follows that V is
an operator of Volterra type.

3. Preliminary lemmas. We consider, for ze B(a, (), the problem

D,g(t; x, y) = A(t, g(t; x, y), 2(t, 9(t; x, y)), (V2)(t, 9(t: x, y)))
(5) for ae. te[0, x], (x,y)el,,i=1,...,n,
glx; x, y)=y.

From assumptions (ii)—(iv) of H,, (i) of H, and from zeB(a, Q) we
conclude that the right-hand sides of system (5) satisfy the Carathéodory
conditions. Thus, for every z € B(a, Q), there is a unique solution g; = gi(; x, y)
of problem (5).

We denote by 7;(x, y, z) the smallest value of ¢ for which this solution is
defined. Then (r,-(x, ¥, 2), gi(ri(x, ¥, 2); x, y)) belongs to the boundary of I,.

Let us introduce the following notations:

I:zl = {(x- y) (X, y)EIav ti(xs Y Z) = O}s
5 = {(x, ): (x, Yel,, 1(x, y, 2) > 0, gi(t,(x, y, 2); x, y) = 0},
I = {(x, y): (x, el,, 1(x,y, 2) >0, gi(x(x, y, 2); x, y) = b}.

Consider the ball B(a, Q, r) = {z: zeB(a, Q), max,_lz(x, Y)— oW, < 1},
where 0 <r < Q-—@&,. Obviously, for zeB(a, Q,r) we have |z(x, y),
< r+®, < Q. Hence, for ze B(a, Q, r), the point (x, y, z(x, y), (Vz)(x, y)) with
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(x, y)eI, belongs to I, x 2 x Q. Thus, for every ze B(a, Q, r) the corresponding
family of characteristics is defined.
We shall need the following

Lemma 1. If assumptions (ii)—(iv) of H, and H, are satisfied, then for all
(xt }’), (x’ j;)EIa' u' UeB(ﬂ, Qs r)l

lgi(t; x, y)=gi(t; x, PI < Ly(ly—y|+Llu—vll), i=1,...,n,

where

Ly =Lia)= CXP(E{ll(t)"'lz(t)Q'l'la(t)[c(t)Q +d(t)]}dt),

Ly = L@ = {[O+LEm©ld  and |z = sup z(x, y).
0 Ia

The proof follows, as in [6], from the previous inequalities and Gronwall’s
Lemma.
Now we consider in B(a, Q, r) the operatgr S defined by

(SZ)I-(X, y) = (Rz)l(x, y)

+ | A aits x, 9), 2(t,-9,(5 %, ¥), (V2)(e, gi(t; x, y)de,

t(x,y,2)

i=1,...,n, where

@i(9.005 x, y)),  (x, y)elg,
(R2)y(x, y) = ho.’(":i(xs Y, Z)), (x, y)e Iy,
hbl(Ti(x’ y, Z)): (xs y)eli,.
Put

K, =K,(@) = [ {k, () +k,()Q+k;(t)[c()Q+d ()]} dt,

K, = Ky(a) = I [y )+ ks (Om(H]dt,

Q@ =L,(K,+max{P, Ag*(H+F)}), p=L,L(P+A; (H+F)+K,}+K,.
Similarly to [6] we can prove the following

LEMMA 2. Let Assumptions H,-H, be satisfied, and let ae(0, a,] be so small
that

6) a<r(H+®A+F) ', a<eA™", a<b(24)™}, 05<Q, u< 1.

Then the operator S: B(a, Q, r)— B(a, Q, r) is a contraction.
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Remark 2. Note that if r,Q are fixed and a—O0* then
QS »max{®, A5 ' (H+ F)} and -0, since L, »0, L, -1, K,—0. Therefore,
for arbitrary re(0, Q—®,], if Q > max{®, A5 }(H+ F)}, then for sufficiently
small a€(0, a,], all inequalities of (6) are satisfied.

4. Local existence theorem.

THEOREM 1. Let Assumptions H,~H , hold. Then, for any re(0, Q—&,], and
any sufficiently large constant Q, there are ae(0, a,] and a function z: I,~R",
ze B(a, Q, r), which satisfies (1) a.e. in I, and (2), (3) everywhere in [0, b], [0, a],
respectively. Furthermore, z is unique in B(a, Q, r).

Proof. From Lemma 2, in view of the completeness of B(a, Q, r), it
follows that there exists z€ B(a, Q, r) such that Sz = z. Proceeding as in [6] we
can prove, using the group property of the characteristic lines and the chain
rule for differentiation, that the fixed point z of S satisfies (1) a.e. in I, and (2),
(3) everywhere in [0, b], [0, a], respectively. This concludes the proof.

5. Global existence theorems. Let D(a) = {z: z€ B(a), z is a nondecreasing
function of y}. We write D(a, Q) for the set of all functions z e D(a) satisfying
conditions (4).

AssuMPTION H;. (i) The function ¢: [0, b] — R”" is nondecreasing.

(i) The functions he;: [0,a,]— R, ieJ,, are nonincreasing, and
hy: [0, ag]— R, ieJ,, are nondecreasing.

(iti) A;: E,, = [0, @] x[0,b]xR"xR">R, i=1, ..., n, are nondecrea-
sing functions of y, u, v, and, for every fixed Q > 0, satisfy Assumption H; with
l{x)=const=P, j=1, 2, 3.

(iv) f;: E,,»R, i=1,...,n, are nondecreasing functions of y, u, v, for
every fixed > 0 satisfy Assumption H, with k/(x) =const=P, j=1,2, 3,
and

(N filx,y,u, )20, iel,, filx,y,u,v)<0, iel,, (x,y,u,v)eE,.

(v) There are an integrable function p: [0, a,]— R, and a continuous
nondecreasing function q: R, =R, q(0) > 0, [§ ®dt/g(t) = + c0, such that
for every zeD(a,, @), we have

(8) |filx, 3» 2(x, ), (V2)(x, ) < p(a(z(x, W), (x, Y)E L,

i=1,...,n
(vi) For every fixed Q > 0, the operator V: D(a,, Q)— D(a,) satisfies
Assumption H, with c¢(x) = d(x) = m(x) = const = s.

Remark 3. From assumptions (iii), (vi) of H; we deduce that in Lemma
1 we can put L, = 1, provided u = ve D(a, Q). This follows at once from the
fact that the absolute value of the difference of any two solutions of (5) is
a nondecreasing function of y.
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Remark 4. From assumption (iii) of Hj it may be concluded that
JonJ,=6.

THEOREM 2. Let Assumptions Hy, Hy hold. Then there exists a unique
generalized solution of problem (1)—(3) on the whole I,,.

Proof From Theorem 1 and the monotonicity of given functions it
follows that the operator S maps the ball D(a, Q,r) = {z: zeD(a, Q),
lz(x, y)— @ ()|, < r} into itself, provided conditions (6) are satisfied.

From assumption (v) of Hs we see that

j2(x, V), < max{H, &,) +};p(t)q(nzu,>dt,

where H = max {max{max ho;(x), maxhy(x)}}. Hence, by a theorem on
0<x<ag iedo ieJy
integral inequalities, we get |z(x, y)|, < w, where w is defined by

w ao

dt
— = x)dx.
mnz[£.01} q(t) g p( )
Therefore, if we take Q > w, then |z(x, y)|, < Q in an arbitrary existence
domain I, of a generalized solution.

The global uniqueness in I,, of a generalized solution of problem (1)-(3)
can be proved by contradiction: if z and z are two solutions and z # Zin I, it
suffices to move the origin to inf{x: z(x, y) # z(x, y)}, and use the fact that S is
a contraction operator.

Now we prove global existence. Note that if [, (x) = const = P, then it is
easy to show that we can take ¢, = A, P~ 1.

We shall construct a solution in the whole I, step by step with respect to
x. Putting r = Q —w we apply Theorem 1, choosing suitable constants 0 = 0,
and a = a,. Hence, if a, < a, then by moving the initial point to x = a, (i.e. by
changing x to ¥ = x—a,) and using z(a,, y) for the initial data, we can apply
Theorem 1 again with the same Q and r. Let us denote the corresponding
constants O and @ by Q, and a,, respectively.

Further, if a, +a, < a, then by repeating this process we shall show that it
is possible to choose the constants Q,,a, (k=1,2,...) so that the whole
rectangle I, will be covered.

Indeed, if we define the values of @, and a, by suitable inequalities then we
can regard H, A, F,r, P, s as fixed. We can take Q,_, for the Lipschitz
constant of the initial function at the kth step (for k > 1). Thus, the inequalities
defining Q, and a, take the form (cf. Remark 3)

1 1

€

Pi+sy “*SPit90,

(H+Qx-1A+Fa, <r, Pl+8)(Qk-1+A¢ ' (H+F)+3)a, <1,
Ov-1+ A {H+F)+2 < Q,.

b
Aak S AoPﬁl, Aak < ‘2‘, ak S
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Let us introduce the following notations:

f4, b1 r .
oy = mm{ﬁ' 24" P(1+s)’ 2(H+F)' 2P(1+3)[A5 ' (H+F)+ 3]}’

) 1 -1
a, = mln{ﬂ, m}, oy = Ay '(H+F)+2.

Put Qo =&, Q= Qi-1+a3=P+kay, k=1, 2,... Take
oy = max{0, a,/a, —P—a,}.
It can be easily verified that if

L2

== 1. =QP+k ’ k=1: ’
% P, ke, Q) = &+ ke, 2

then all the necessary inequalities are satisfied. Since

-]

Y a=Y o=t

and a, is finite, we get the existence of a solution in the whole I,,.

Remark 5. Assumption H, can be “reversed” (¢, 4,, f;, z nonincreasing,
instead of nondecreasing, etc.). These monotonicity assumptions imply that the
solution has no discontinuities. For instance, in gas dynamics, if they are
violated a shock wave may occur, and global existence fails.

Now we consider system (1) in the semi-strip I, = {(x, y): 0 < x < + 00,
0 < y < b} with initial conditions (2) and boundary conditions (3) for xeR, .

AssuMPTION Hg. (i) The functions 4, f; E, =1, XR"XR"-R, i=1,
..., n, are measurable with respect to the first variable, locally bounded, locally
Lipschitzian with respect to the last three variables with constants [, = k, = P,
and nondecreasing with respect to the last three variables.

(i) The functions sgni,(-,0,-,"), sgnd(-,b, ) E,=R,xR" xR"

—R,i=1,..., n, are constant in £, and

liminf  4,(&, y, n, %) >0, ield,,

(C-y'"-u)"'(xco»u’”)

limsup A4,(&, y,n, %) <0, ield,.
(&.y.1.3) = (x,b,u,0)
(iii) The functions f;, i =1, ..., n, satisfy in E_ inequalities (7), (8) with
a locally integrable function p.
(iv) The functions hq;, hn: R, =R, ¢: [0, b]— R", are locally Lipschi-
tzian, satisfy the compatibility conditions (ii) of H,, and hy;, i€J,, are
nonincreasing and hy;, i€J,, are nondecreasing
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As a corollary of Theorem 2 we can formulate the following.

THEOREM 3. If Assumption H is satisfied, then there exists on I, a unique
generalized solution of problem (1)-(3).
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