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Abstract. Let D be a bounded symmetric domain in O¥ (¥ > 1) with Bergman—
Silov boundary b and HP (p > 0) the Hardy space of functions on D. If fe H? (p > 1),
a Fourier series expansion is obtained for f which gives Cauchy and Poisson integral

formulas for f. H? (p>> 1) can be identified with the class fe L?(b) whose Cauchy

and Poisson integrals are the cqual. H? can be identified with the elass fe I% (b) whose
Fourier coefficients aj, = 0 for £ < 0. Several properties of weak convergence in HP
are proved. In partigular, if o bounded sequence converges pointwise on D, then
it converges weakly. D. J. Newman's result on pseudo-uniform convexity of HI
for the disc is extended to D.

1. Introduction. Let D be a bounded symmetric domain in the.
complex vector space OV (¥ > 1), 0¢ D, with Bergman-Silov boundary b,
I" the group of holomorphic automorphisms of D and I', its isotropy
group. It is known that D is civcular and star-shaped with respect to.
0 and that b is circular. The group [ is transitive on b and b has a unique
normalized I'y-invariant measure V~'ds,, V the euclidean volume of b
and ds, euclidean volume element at te b. See [11], [17].

The Hardy space HP = H?(D), 0 < p < oo, is the set of holomorphic

functions on D with
1 1/p
{—V— / If(rt)l‘”dSz} < oo.

Iflp = sup
o<r<1 b

<r<

For p > 1 H? is a Banach space and for 0 < p < 1 a complete linear
Hausdorff space [6].

In Section 2 we derive a Fourier series representation for any holo-
morphic function in D. If fe H? (p = 1) a better representation is obtained
which gives Cauchy and Poisson integral formulas for f. The space H®
can be identified with the class of functions f ¢ L?(b) whose Cauchy and
Poisson integrals are the equal (Theorem 2). Theorem 3 gives another
characterization of H*®. Theorem 4 proves that if a bounded sequence
in H? (p > 1) converges pointwise on D, then it converges weakly; thus

* This research was partially supported by NSF GP-11167.



90 K. T. Hahn and J. Mitchell

generalizing a result of Rudin for the unit disc [13]. Theorem 5 extends
D. J. Newman’s result on the pseudo-uniform convexity of H' [12] to
all bounded symmetric domains, using a method of proof due to L. D.
Hoffman [8] for the polydise in CV.

Remarks.

1. The Bergman-Silov boundary b is the smallest closed set = D
on which functions holomorphic on D take their maximum [3], p. 215.
The real dimension of bis > N. If N = 2 any Dounded symmetric domain
is biholomorphically equivalent to the bidisc {|z;| < 1, |2,] < 1} or to the
ball {|z;]2+ |#,|* < 1}. Their Bergman-Silov boundaries are {|z;| =1,
|2s) = 1} of real dimension 2 and {[2;|2+ ]2,|* =1} of real dimension 3,
respectively. If ¥ =3 an example of a bounded symmetric domain
Desides the polydisc and ball is {|2,|2+ |2.)% < 1, || < 1} with Bergman-
Silovy boundery {|2;|2+ |22 = 1, |es] = 1} of real dimension 4 [5], p. 313.

2. Bergman and Weil have generalized Cauchy’s integral formula
for functions holomorphic on closed analytic polyhedra [2], [15].

2. Cauchy and Poisson formulas for functions of class H” (p > 1).
Let Z;, denote the monomial 2i'...2% (k =wn+...4+9y, k =0,1,2,...,
B (N+k—-1))

- I

v=1,...,my . From the set {Z,,} Hua constructed by group

representation theory a system &, = {¢,,} of homogeneous polynomials,
complete and orthogonal on. D and orthonormal on b [9]. For each %

the sets {¢;,} and {Z,,} are in 1-1 correspondence so that to a set of con-
my.

stants {a,} corresponds a set {4} with 2%% = Z‘A,WZ,W and con-

versely. Let f be holomorphic on D. Then fe, deflned by Jo(?) = f(02),
0 < ¢ < 1, is holomorphic on D and has the series expansions

@ fole) = Zak,(f,)qak,(z) = ZA,W(J;)ZM

oo mk
(Z‘ > ), both series converging uniformly to f, on compact subsets
kv k=0v=1
of D. Term by term differentiation in (1) glves

0" o*f

— .k
A, (f)) = vl gl 021 62"NN(0) = 0" 4., (f)
8o that
(2) fo(2) = Ze o (F) P10, (2)

To find ‘a;,(f) set 2 = o t(te b, 0 < ¢’ < 1) in (2), multiply by ¢;,(t) and
integrate over b. This gives

(3) () = [FOt)py, () ds, = (f,, 9y,)
b
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(r = po'). Replacing pz by 2 in (2) gives
LEMMA. Any holomorphic function f on D has a Fourier series expansion

(4) () = Z a0 (Npa(e)s & (f) =lm(f,, g),

which converges uniformly on compact subsets of D.

THEOREM 1. Let fe H? (p = 1) with boundary values f* on b. Then §
has a Cauchy integral representation

(5) flo) = f Sz, Bff(t)ds, = (f*, 8,) (e D)
and a Poisson integral representation
(6) f(z)=bf Pz, Of*()ds, = (f,P,) (2¢D).

Proof. By a theorem of Bochner on circular sets [3] if fe H? (p > 0)
there exists f*e L”(b) such that lim||f,—f*|, = 0. Since ¢,, is bounded
r—>1 '

independently of r on b, Holder’s inequality for p > 1 and (4) give
(7) ap(f) = linll(fri Prv) = (f* Pre) -
T—

This also holds for » = 1. (5) follows from (4) and (7) and the fact that
the series Z,qpk,(z ) @i, () for 8(2,1) converges uniformly for # on compact

subsets of D and te b [9]. (6) follows by writing (5) for the funetion ge HP

defined by g(C = f(8)8 (L, 2)/8(#, ), {eD.
By (8) if f* is real, then f is real on D, and a real holomorphic function
is a constant. Thus -

COROLLARY. If f* is real on b and fe H? (p > 1), then [ is constant on D.
3. Characterization. of H?(D) (p > 1). Set

82(b) = {fe I?(b): (F,8,) = (f, P,)}-
Then

THEEOREM 2. For p =1 S8?(b) is a closed subspace of L¥(b) which is
isometrically isomorphic to HP (D) wnder the correspondence f — f given
by f(z) = ( f, P,), f e 8P (b). Also if * is the boundary value of f, then f* =}
a.e. on b.

Proof. From Theorem 1, fe H?(D) implies f*e §7(b). Conversely let
fe S?(b) and set f(2) = ( £, 8,). Then f is holomorphic on D. Since P(z, 1) > 0
and [P(z,t)ds, =1, from f(z) = (f, P,) follows by Holder’s inequality

b

forp>1
(1) \f (&)l = I(f, Pl < (If1F, P)'?,
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where |f|”c L(b). (1) also holds for p = 1. Now h(z) = (|f|’°, P)e H(Dy
and fe }fp(D) ([6], p. 521) and by Theorem 3 of [6] fe H?(D). Thus 8?(b)
and H?(D) are in 1-1 correspondence. For f e 8%(b) set f(z) = (P,, f ).
By [10], Proposition 2.5; |)f,,—||5’||p -0 as r -1 if p = 1. By [3] there
exists f*e L?(b) such that ||f,—f*[l, — 0 as r — 1. Hence f = f* a.e. on b.
Clearly |fll, = If*lly = Ifll, so that S?(b) is isometrically isomorphic to
H?(D). Since H?(D) is complete, §?(b) is a closed subspace of LP(b).

A second characterization of H*(D) follows easily from Hilbert space
theory. By Weyl [16] the orthonormal system &, can be extended to
a complete orthonormal system of continuous functions on b: @ = {¢,,,
k=0, 41, £2,...;1<v<mifk >0, » =0 if k¥ < 0}, where the addi-
tional terms have been indexed by negative indices.

Set ; 3

T* () = {fe L*(0): an(f) = (f, pu) = 0 for k< 0}.
Then
THEOREM 3. T?(b) is a closed subspace of L*(b) which is isometrically

isomorphic to HE(D). If f* is the boundary value of f, then f* = f a.e. on b.
Proof. If fe H(D), then f — fe T*(b) by (2.4) and (2.7). Conversely
let feT*(b) and set

(2) f@) = D an(Honle)  (T=0).
k,»

From the Schwarz inequality and Bessel’s inequality follow that the
series in (2) converges absolutely and uniformly on compact subsets of .D.
Henece f is holomorphic on D. By a calculation

IFE = D lai (FFE < Y |y, ()P
kv kv

so that fe H*(D). Also |fll, = ||f~|]2. The rest of Theorem 3 follows as in
the proof of Theorem 2.

Schmid obtained an analogous characterization of H*(D) when D
is anon-compact hermitian symmetric space by using Lie group theory [14].

4. Convergence in H”. The following properties of weak convergence .
are known or are easy to prove:

If f, = %f in H®, then f, —f uniformly on compact subsets of D for
every p > 0 ([6], Theorem 9). If f,, — f strongly in H” (p > 0), then f, —*f
in HP,

This follows from the inequality |y () — ¥ (/) < Iyl lfa —Fllp (v « (H?)).

Since H® (p > 1) is a Banach space, the norms of the elements of a weakly
convergent sequence are bounded. Let {f,} be a bounded sequence in H® (p > 0).
Then f, —f pointwise on D if and only if f, —f uniformly on compact
subsets of D; also fe HP.
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Proof. By Lemma 3 of [6], boundedness of {f,} in H? implies that
{fx} is uniformly bounded in compact subsets of D. Then by Lemma 4
-of [6] f, —f pointwise on D implies uniform convergence of {f,} to f
on compact subsets of D. The converse is trivial. Since {f,} is bounded
in H® and f, — f uniformly on b, = {rt: te b}, 0 <7 < 1, |f,|l, is bounded
independently of » so that fe H”.

The next theorem generalizes to bounded symmetric domains a result
of Rudin [13] for the dise.

THEOREM 4. Let {f,} be a bounded sequence in H? (p=1). If f, > f
pointwise in D, then f, —¥f in H® for p > 1 but not for p = 1.

Proof. See [13] for a counter-example when p = 1. Assume that
Ifzllp < 1 for all n. By Lemma 3 of [6] the boundedness of {||f,ll,} implies
that {f,(2)} is bounded independently of # and # on D, (0 < r < 1). Hence
by Vitali’s theorem [6] f, — f uniformly on ecompact subsets of D. Thus
fe H? and we may assume that f = 0. Show that f, -0 in H”.

foe H? has the series representation (2.4) with Fourier coefficients
a,(f,) given by (2.3). Since {f,, ,} converges uniformly to ¢ on the compact
set b, (2.3) gives lima,,(f,) =0 for all >0 and ». Hence by (2.7)

n

Lim(fy, ¢z,) =0 for k> 0. In (2.4) with f =, set z = rf, multiply by
n

P, (1) (k< 0) and integrate over b. By 01th0gonahty of D (frn,opy) =0
for all ¥ < 0 and ». Since g, ¢ C(b) as in (2.7) (fir, p,) = hm(f, wr Piy) = 0
for & < 0. Hence

lim (f5, P(®)) = 0,

n—o0

where P(®) is any linear combination of the ¢,.

Let ye (H?)*. Bince H? is a closed subspace of L”(b) by the Hahn-
Banach theorem every bounded linear functional on H? can be extended’
to LP(b). Then by a well-known representation theorem for p > 1 [7]
there exists a function ge L*(b), 1/p+1/¢ = 1, such that y(F) = (I, g)
for all Fe LP(b). In particular y(f,) = (fr, g). Now approximate g in
L%(b) by a continuous funection 4. By [16] & can be approximated on b
in the sup norm by a linear combination P(®) of ¢,,’s. These approxi-
mations along with Holder’s inequality and the equality ||f.ll, = llf2ll
give limy(f,) = 0, which proves the theorem.

n

5. Pseudo-uniform convexity of H'(D).

THEOREM 5. Let f, — f uniformly on compact subsets of D and ||f,|, —
— |If ||l @8 n — oo, where fr,, fe H*(D) (p = 1). Then ||f,—fl, = 0 as 5 — oo.

Proof. For p > 1 the result follows from Theorem 4 and the local
uniform convexity of H? ([7], p. 233). H'(D) is not locally uniformly
convex but a proof due to L. D. Hoffman [8] in case D is the unit polydisc
or ball in ¥ can be extended to all bounded symmetric domains in C¥.
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If fe H'(D), then the function f,, defined on A' = {z: |2| < 1} by f,(2)
= f(tz) for any teb, belongs to H'(A') for almost oll teb and

1 r
W =5 [ Uflhads,

where || |1y, i the H' norm on A
Proof. Since fe H'(D) and the rotation ¢ = t'¢” preserves b and the
measure ¥V 'ds,

2r
(1) Ifla 3 ol = @m)~* [ d0llfl, = V' [ds L.
0 b
by Fubini, where I,; = ||full,,; so that
1
@) sup - [ 1,48, Il
0<<r<1 b

(2) implies that I,, is bounded independently of  for 0 <7 < 1 and
almost all ¢e b. Since also f; is holomorphic on 4%, f;e H'(4*) for almost
all te b. Thus I,, is monotone in 7. Interchanging sup and [ on the left-

' b

hand side of (2) gives V' [||ffl,,1ds,. By the transformation in (1) the
b .

left-hand side of (2) equals ||f|l,. Similarly f,, has these properties.

It follows as in Hoffman’s paper by means of his lemma in integra-
tion theory and D. J. Newman’s theorem [12] for the case N = 1 that
Iifa—Fll. =0 as % — oo.

Professor Charles Chui independently obtained the same proof of
Theorem b,
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