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Limitations of solutions of non-linear parabolic equations
in unbounded domains

by P. BesALA (Gdansk)

Introduction. J. Szarski [11], [12] has established certain limi-
tations of the difference between two solutions of Fourier’s problems for
systems of equations of the form

0% 0zy 0% t=1,..,n
(0-1) ot F'(t’ o z’_’ ey B o’ Bm,-amk) (j, Ek=1,..,m|’

T = (Tyy ooy &m) .

Those limitations are given by solutions of ordinary differential equations.
The author has assumed that the solutions are defined in domains whose
intersections with planes ¢ = const. are bounded. This paper is concerned
with similar theorems under stronger assumptions regarding the right-hand
members of (0.1) but in unbounded domains. We also give some limi-
tations of the solutions themselves of (0.1), which constitute generali-
zations of theorems proved by M. Krzyzanski [6], (7] for a linear equation
and which are similar to those given by W. Mlak (8] for bounded domains.

The methods applied by J. Szarski and by W. Mlak are based on
properties of ordinary differential inequalities. We derive some limitations
from differential inequalities of parabolic type, which are included here
without proofs (Theorems 1 and 8), in a slightly more general form than
in papers [1], [2]. Other limitations are proved by using methods similar
to those applied in the proofs of Theorem II of [1] and Theorem II of [2].

We make use of a very general notion introduced by J. Szarski and
concerning the definition of parabolic equations and the so called parabolic
solution.

Part I

§ 1. Let D be an open unbounded domain of the space (t, 2,, ..., Zm)
contained in the zone 0 <t < T (T < + oo). The parts of the boundary
of D lyirg on planes t = 0, ¢t = T will be denoted by S° and 87, respec-
tively, and the part contained in the zone 0 <t < T will be denoted
by 2.
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Let Fs(t,®. Yyys Yn, P, P) (0 =1, ...yn;j,k =1, ..., m) be functions
defined for (¢, z) ¢ D and arbitrary ys, pj, p (s =1, ..., n;j,k =1, ..., m).
We will say that the function Fy(t, z, y,, ..., Yn, Ps, Psx) Salisfies the con-
dition (£) if the following Lipschitz condition is satisfied:

\F(t, @y Yy vy Yny D1y Pix) —Filt, @, Y1y ooy Yny Dy D)

. < L, Z[pﬂc—pﬂcl-i- Ly|z|+ L,) 2|PJ'—P1|

7,k=1 j=

: m 1/2
Lo, L,, L, being positive constants, |x| = ( > a:ff) .
P

If there exist positive constants L;, L, such that for every y;, 7
(8=1, ..,n), ps, pix (j, k¥ =1, ..., m) the inequality

[Fl(t’ Ty Y1y ooy Yny P1y pjk) _Fi(t7 r, 371& seey 371” Pi p:lk)]sgn(yi'_yi)

n
L@ +L) ) |9e— 7l
8m=]1
is fulfilled, then we say that the function F; satisfies the condition (£,).
The function F; is called elliptic (in the sense of J. Szarski) with
respect to a sequence z(t, z),...,2x(f, z) of functions of class C! if

for every pu, Pnx (j,k=1,..,m), Pw= Prs, Pm = Prs, such that

Z (pix — Djk) AjAx < 0 for each real vector (i, ..., i), We have
7.k=1

ozy(t
F,(t,m,zl(t,w), ey Za(l, 2) - ‘( 2 ):Pﬂc) -

~

ozlt, ) _
_Ff(t,a:,zl(t,w), ...,zn(t,w),——’w; ),pj,,) <0

for (¢, ) e D.

The- solution of (0.1) is called parabolic if every function F is elliptic
with respect to this solution.

Let us consider a system of functions xy,(¥y, ..., ¥ns &)y ey 201y .
«ey Yn,y &); & being a sequence of variables different from %, ..., y». The
function y¢ is said to satisfy the condition W([y,, ..., ys] if for ys <%
(s =1, ...,n), ¥y: = ¥y, the inequality '

Xt(Yry ooos Yny &) < xe(Yry ooey Yny &)

holds. It is said to satisfy the condition A[y,, ..., ya] if there exists a positive
constant L such that for every ¥,, 7 (s =1,...,7n), we have

(21 e Yny €)= 2Ty ooy Ty E)Isg(y—F0) <L D195 — Tl -
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A function z(¢, ) will be called regular if it is continuous in the set
D+ 8°+ 2 and if it possesses the derivative ¢z/¢t and the continuous
derivatives oz/ox;, o*joxoxe (j, k=1, ..., m) In D.

By E,(M(t), K) (EM(t), K)) or shortly E, (B, respectively) we
denote the class of functions ¢(t, z), defined in D, for which there
exist a positive function M (t), bounded on every interval 0 < t < {,,
t, < T, and a positive constant A such that

p(t,x) < M(t)exp(K [x|?) (¢(t, x) > —M(t)exp(K |x[?) respectively)

in D. The class of functions belonging to E,(M(t), K) and E,(M(t), K)
simultaneously will be denoted by E,(M(t), K) or E,.

§ 2. Now we formulate Theorem 1, whose proof is an easy modifi-
cation of the proof of Theorem II included in [1] (%).

THEOREM 1. If
1° wuy(t, x), vilt,®) are regular, u;e E,, v ek, (i=1,..,n), and
atisfy the systems of inequalities

oy ou;  Q*uy
(2.1) 2 éFﬁl)(t, Ly Uy ooy Un, 2y’ ija.’vk) )
_ (1=1,..,n)
8’01 8’D¢ azvi
(2.2) 8—t>1’1§2)(t;w,”17---5'vm ox;’ omyoxy)’
respectively,

2 for each i (i=1,...,n) the function F (t, 2,4y, ..., Yn, Dy, Psi)
is elliptic with respect to the sequence {us(t,z)} or the function
FO@, @, Yy, oer Yns D1, Pix) 18 elliptic with respect to {vs(t, )} (s =1, ..., n),

3° for every fized i at least one fumction F’, F® satisfies the con-
dition (€), at least one of them satisfies the condition (C,), and at least
one satisfies the condition W[y, ..., Ya),

4° ﬂl)(t’wa Y1,y -~-73/1th.'p}k) < Fy)(t’wy Y1y -y ynapi’p:ﬂt) (7' = 1’ ey 'n)
in the domain of existence of these functions,

5° ui(0, 2) < v40,2) (6=1,...,n) for ze8°,
6° wit, x) <vilt,x) 2 =1,..,n) for ({,x) e 2,
then the inequalilies

(2.3) uilt, z) <volt,z) (¢=1,..,n)
hold true everywhere in D.

(*) In Theorem II of [1] instead of the inequalities (2.1), (2.2) the corresponding
equations have been dealt with and it has been assumed that for each i the function
F{® or the function ¥}’ ratisfies the three conditions: (£), (£,) and Wly,, ..., ¥l
simultaneously (cf. assumption 3° of Theorem 1 of this paper).



28 P. Besala

§ 3. Take a system of functions ot, ¥, ..., ¥a) (¢ =1, ..., n) defined
for 0<t<T. —oc0o<ys<+ 00 (8=1,...,m). Let ys = &(t, gy, ..., )
(¢ =1, ..., n) be an arbitrary right-hand solution of the system of ordinary
differential equations

d .
(3.1) -0%‘ — ot Yy, ey Yn) (=1, ..., m)

such that w0, %y, ..., 7a) = n¢, 7 being arbitrary constants, and assume
that the solution exists in the interval 0 <t < T.

§ 4. The proofs of the following Theorems 2-5 will be based on
Theorem 1.
THEOREM 2. If

1° there exist regular solucions {ui(l, x)}, {vi(t, x)} of the systems of
equations

- ® ous  Puy
(4.1) _at_.z s t, (I/‘, u’l,"'?un’awj ’m ’ .

a P - (t=1,..,m)
(4'2) at =J; (t, m’ QJI, veny ‘Un, am’_’ 3.'L'jawk ’

respectively, where the functions f°,f> are defined for (t,z) e D, the re-
maining variables being arbitrary, :

2° uie B, (ui e B,), vie By (vi € E, respectively) (i =1, ..., n),
3° all the functions f(t, x, 4y, ..., Yn, P;, Pix) are elliplic with respect
to the solution {us(t,x)} (s=1,...,n) and saiisfy the conditions (L), (L,) and
WYsy ooy ¥n] or all 12, 2, Yy, ooy Yn, Pi, Pix) are elliptic with respect to
{ve(2, (t, ©)} and satisfy the conditions (L), (£5), W[yyy «--s Ynl,
4° ?)(ty T,y yl: vy Yny D1y pfk)_f:'z)(ty Z, ?U:"?:/"’ P, ka) )
< o"‘(ta ?1—%, ey gﬂ_yn) (2= 1, ey ")
(ﬁ])(ta Zy Yry -y Yny iy _’ij)—fi‘-)(t, T, ?/1’_"" Yny Piy 13_.1’6)
= ot, Yo — Y1y ooy Yn—Yn) respeclively),
5° us(0, ) — (0, 2) < (£ =1,...,7m) for xeS°,
(u:(0, ) —v4(0, x) = 51 respectively),
6° uilt, ) — vilt, @) < wilt, My ooy M) (E=1,...,m) for ({,2) e
(ui(t, ) —vilt, ) = wilt, 15yy .., Nn) respectively) (the funciions
ity Yyy ooy Yn) and wi(t, 1y, ...y ma) (2 =1, ..., mn) being defined as in § 3),
then we have

wi(t, ) —vi(l, ) < w0ty Ny ooy ) (E=1,..m)
(ui(t, x) —vi(t, ) = ©ilt, nyy ..., Nn) respectively)
i the domain D.

(4.3)
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Proof. We shall restrict ourselves to the case where the first member
of alternative 3° holds true. In the second case the proof is similar. We
shall begin by proving the first inequality of (4.3).

Adding the respective equations of (3.1) and (4.2) we have

o (vs+ wy)

(14) ——= i-’(t T, V5, e,

» oV N,
") oz’ dwyoxy

)+ ai(t, 0y oy W) .

It follows from assumption 4° that

- ov v
(4.3) ﬁ”(t, Ty V14 0y veny Vn+ @n, : ‘ )

E?—CBJ ’ 3.’1); OTk

o ~9
(2) (eOF] o“V¢

— 1, Xy Vg ey Vpg—y ———— ) < a4lt, 0y .., @g) .
i (1 ? Y1y ==y ”’8w;’8m;8mk < 0dlty oy, ...y @)

By (4.4), (4.5) and the identities

]

oT . Py
4, — 0 =
(4.6) o ’ oxy0x

il

(t=1,..,n; j,k=1,..,m)
we get

(ve+ wi) Hvi+ wi)

o(vi+ (Ui)
g7y AT
(4.7) > cx; W oxjox

ct

(1)(t .’B QJI—I-‘LOI ey ’E‘n—}'wn’

(¢ =1, ...,n). {ut, ¥)} is the solution of (4.1), therefore, the functions u;,
v¢+ w; fulfil the systems of inequalities of the form (2.1), (2.2), respectively,
with F?) = F?) = ?).

Evidently, u; and v+ w¢ (i = 1, ..., n) belong to classes E, and E,,
respectively. It is easy to verify that the remaining assumptions of Theo-
rem 1 with o; replaced by v;+ i are satisfied, whence u; << v¢i+ wy
(¢=1,..,n) in D.

In order to show that u;—v; > ws we add the respective equations
of (3.1) and (4.2), we make use of the second part of assumption 4° and

(4.6), and we obtain

o(vi+ wt) 2 : o(vi+ wi) (Vi wi)
T S by @ O Oy ey Unt Ony ox; 1 ow;omy
(¢ =1,..,n). As before, from Theorem 1 it follows that v+ w: < w4
(¢=1,...,n), and Theorem 2 is thus proved.

THEOREM 3. Suppose that »
1° {us(t, x)}, {vi(t,2)} (¢ =1, ..., n) are two regular solutions of the
system .
. 024 0zy 0%y .
(4.8) ‘§=fi(t’wvzn---,zn;a—%am) (t=1,..,m),

2° ug e B, (us € Ey), vie By (vs € B, respectively) (i =1, ..., n),
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3° each function fi(t, @, Y1y ...y Yn, Pj, Pix) 8 elliptic with respect to
the sequence {us(t,x)} or {vs(t,®)} (s =1,...,m) and satisfies the condi-
tions (L), (o) and Wy, ..., Ya),

4° for (t, x) € D and for arbitrary ys, pj, p(s=1,...,n;5, k=1, ..., m)

(4.9) [ty z, Y+ 6yy ooy Yut 0n, D, D)
gfi(hw’ Yiy ooy yn’php.‘ik) (i=17-"7n)
(4.10)  (fut, z, ?/1+"517 vy Yn+ Ony Djy Pix)

. 2 [ty Ty Y1y ooy Yn, Pj, D) respectively),
01 being constants,

5° w0, ) —0y0,2) < & (i=1,..,n), veS°
(u4(0, ) —v4(0, ) = & respectively),

6° wy(t,z)—vilt, ) < (t=1,..,m) (t,2)e X
(us(t, x) —vi(t, ) = & respectively).

Under these assumptions the inequalities

(4.11) wit, z)—vlt, 2) < 6 (1 =1, ..., n)
(us(t, z) —vi(t, &) > 6¢ respectively)
are fulfilled in D.

Remark. When 6; >0 (s =1, ..., »n) then assumption (4.9) together
with the condition W[y,, ..., ¥»] require that the decrement of function f;,
if y4 increases to the value y¢+ d¢, be equal to or greater than the summary
increment of this function if the variables %, ..., ¥i—1y ¥i+1, ..., Yn IDCTEASE
to the values ¥, 4+ &y, ...y ¥i—1+ im1y Yit1 + i1, oovy Yn+ 6n. Inequalities (4.9)
are fulfilled for example when for every fixed 7 there exist non-neg-
ative constants A,,..., 4;.1, 4441, ..., An, By, ..., Bi_1, Biy1, ..., By and
non-positive constants A;, B; such that

Z"’A,a, <0, 5]385, <0
s=1 §=1

and

filts @y Gyy eons Yny Dis D) — filly B3 Yy oovs Yy Pjy Pik)
n

< 2 (As|@|> +Bs) (Fs — §s)

a=1

for s =>9s (s =1, .., n).
If the function fit, x, y,, ..., ¥a, Pj, Px) has continuous derivatives
ofsjoys (s =1, ...,n) and the inequalities

3;:<As|w] +Bs; Ae,Baz=0 (s=1,..,i—1,i+1..,n),
f:

By S < Agz)P+Bi; 44, Bi <0,
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and

are fulfilled, then (4.9) is satisfied. This follows from the mean value
theorem.
In case of one equation

oz — (s Rz o2
a 7 ox;’ ows0x

inequality (4.9)is satisfied if the function f(¢,,y, p;, px) is non-increas-
ing in y.

If all 6, are negative, then (4.9) holds for instance for the function f;
non-decreasing in ;.

The meaning of condition (4.10) is similar.

Proof of Theorem 3. Note that in Theorem 2 instead of the first
part of assumption 4° the weaker condition (4.5) may be assumed. If we
do that, then the first part of Theorem 3 follows from the first part of
Theorem 2. For this purpose we should set o; = 0, ' = &, &= P = f
(¢=1,...,n). The validity of the second part may be shown similarly.

THEOREM 4. Suppose that

1° {uy(t, )} (i =1,..,m) is a regqular parabolic solution of class E,
(Ey) of system (4.8), |

2° for (t, x) e D and arbitrary ys, pj, P (8 =1,...,0; j,k=1,..,m)
we have

fi(t, =, Y1y ooy Yny Dy Pik)
<Ly D) 1ol + (Lola| +L) D) 1psl 4 oult, 41y vy 4n) ()
k=1 j=1

(flty @, Y1y o5 Yny Psy D)
[I’ Z Pk + L1|w|+Lz Jp;l]Jrai (y Y1y vy Yn)

respectively) (¢ = 1, ..., n), Ly, Ly, L, being positive constants,
3° for every fixed i at least one function fi, a: satisfies the condition
AlYy,y -y Y] and at least one of them satisfies the condition Wiy,, ..., Ya),

() If the function f; satisfies condition (£), then this inequality is equivalent
to the following one:

i, @, yys ves Y2, 0, 0) < 6ilt, Yyy ooy Yn) «
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4° uy(0, x) < ¢ (u4(0, @) > ne respectively) (4 =1, ...,n), T €S°,
5° uilt, @) < willy Nyy vy ) (E=1,...ym), (¢, 2) € Z,

(u(t, ) = wilt, 11y ..., 7a) respectively).
Under these assumpiions we have, for (t, x) e D,

ui(ly, x) < 0ty Ny ooy ym) (1=1, ..., 1)

(4.12) .
(ui(t, @) = wi(t, ny, ..., nn) respectively) .

Proof. To get the first part of the theorem observe that the
oty 1y, ...y 7o) satisfy the system
2wy

6(0; Z
a:v,-a:v

i =1 i=1

)3

m
V| Qg

6w‘

+o4(t, wyy ..y 0g).

Thus our theorem follows immediately from Theorem 1.

THEOREM 5. Suppose hypothesis 1° of Theorem 4 to be true and the
functions f¢ (¢ = 1, ..., n) to satisfy the conditions (L), (£,) and W[y, ..., ¥al.
Let @it) (1 =1,..,n) be functions possessing the derivative @i(t) in the
interval <0, T'). Suppose furthermore that

(4.13) us(0, z) < @i(0)  (ue(0, x) > @i(0) respectively) (¢=1,...,n)
for x e S°,
(4.14)  wylt, o) < q@elt) (i, x) > @i(t) respectively) (i=1,...,n)
for (t,x) e X,
filt, 2, @u(2), ..., @a(t), 0,0) < @it) (i=1,..,n), (t,x)eD,
(folt, @, i(1), ..oy @ull), 0, 0) = @i(t) respectively) .

These hypotheses imply that inequalities
(4.15) wui(t, z) < @i(t) (wilt, x) = @i(t) respectively) (¢ =1,...,n)

are fulfilled for (t,z) e D.

Proof. The first part of our theorem results from Theorem 1 by
the substitution o =¢, F{'=FP =f (i=1,..,n). To obtain the
second part we should set in Theorem 1 %y = ¢¢, v¢ = %4 and FP =FP = {,.

COROLLARY 1. From Theorem 5 one can easily obtain certain theorems
concerning the asymptotic behaviour of the solutions. Suppose, for the sake
of simplicity, the equations of system (4.8) to be linear with respect to the
unknown functions. Namely, let

fity @y Y1y oois Yny 0, 0) = Zcu(t,m)yg,
s=1
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where the coefficients ci(t, x) satisfy the inequalites
0 < oeylt,z) < AlzP+B (s =1,..,i—-1,i+1,..,m; ¢ =1,...,70),

Zc“(t, r) < —¢& (t=1,..,n),

s=1
A, B, ¢ being positive constants. If, furthermore, the functions
Filt, @, Yoy oees Yny Piy P2x) (2 =1, ..., m) fulfil the condition (L), then every
regqular parabolic solution of (4.8) belonging to E, in D and satlisfying the
inequalities
(4.16) ludt, )| < Moexp(—et) on S°+ 2,

satisfies (4.16) tn D. Hence ui(t, x) >0 as t— oo.

The above assertion results immediately from Theorem 5 if we put
pi(t) = Myexp(—et) (pi(t) = — Moexp(—et) respectively).

Moreover observe that the inequalities of M. Krzyzanski (Theorems 1
and 2 of [6]) for one linear equation result from Theorem 5 by the substi-
tution ¢q(t) = M = const > 0.

§ 5. Now let oilt, 41y ..., ¥n) (4 =1, ..., ») be functions defined and
non-negativefor 0 <t < T, ys>0 (s=1,...,n), and let y; = wi(t, 9y ..., 7n)
(¢ =1, ..., ») be an arbitrary right-hand solution of the system of ordinary
differential equations

- d .

(5.1) dlt‘ = oil, Yyy oy Yn) (E=1,..,m)

such that w0, %, ..., 7a) = i, wWhere »; are non-negative constants.
We assume that the solution exists in the interval 0 <t < T.

§ 6. THEOREM 6. If
1° én class E, there exist regular solutions {us(t,z)}, {vs(t, x)}

(¢ =1, ...,n) of the systems (4.1), (4.2), respectively,

2° the functions f%l)(t, Xy Yyy ey Yny D1y Dik)y ﬁm(t’ Zy Y1y eeey Yny Dgy D)

(t =1, ..., n) are defined for (t,x) e D, y,, ..., Pmm arbitrary, and for every
fized © (1 < i < n) the function 0 is elliptic with regard to {us(t, x)} or the
function § is elliptic with regard to {vs(t, x)},

3° for every i the function [ or the function 1 satisfies condition (£)
(see §1), |

4° for every i at least one function among i, 1, o; satisfies the condi-
tion A[Yy, ..., Yn] and at least one of them satisfies the condition Wly,, ..., ¥al,

5° for (t,x)eD and for arbitrary Y, Ys,Pj, P (8§ =1, .., n;
1,k =1, .., m) we have

O, @, Yuy ey Yny Diy D) —FLE Ty Gay wovy Gy Py Do)
S ailty Yo —Tly oy [Yn—70]) (E=1,..,n),

Annales Polonici Mathematici XVII 3
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6° [ui(0, ) —vi(0, 7)) < (4 =1, ...,m) for x ¢8°,
T Jug(ty ) —oilt, 2)| < 04ty yy oy m) (E=1,...,m) for (t,7)eZ,

where the functions ai(l, Yy, ..., Yn) and wi(t, 71y ..y mn) (=1, ..,0) ave
defined as in § 5,

then the inequalities
(6.1) [udty &) —vi(t, )] < wilty 91y ooy mn) (=1, ..,m)
hold for (t, x) e D.

Proof. It follows from our assumption that the functions
(6.2) wi(t, ‘17)g |ui(t, ) —vi(t, @)] — wi(ty Ny, ooy M) (i=1,..,n)

belong to a class EZ(M (t), Ko). We shall make use of the properties of
the function

(6.3) H(t,x; K) = expl K |z

ll—u(K>t+”‘K”}

constructed by M. Krzyzanski (cf. [3]), with K > K, and

u(K) = 4AKLgm* + 4m (L, +L,) + K,

v(K) = 4(2KLgm + 2Km (L, +L,) +nL +1) .
Put

1
h = .
2u(K)

By D", X" we denote the parts of the sets D, X, respectively, con-
tained in the zone 0 <t < h and by 8" the part of boundary of D" lying
on the plane ¢t = A.

It is enough to prove the theorem for the domain D", since then
we can carry out the same argument step by step.

Put
§m' o*H é’% oH ¢H
= j=

As in [1] one can show, by a simple computation, that function (6.3)
fulfils the inequality

(6.5) FH(t,z; K) < —H(t,«x; K) in the domain D"

Let {R,} be an increasing sequence, R, > 0, R, >oco as a—>oco. Further,
denote by D}, I, 8%, 8% the parts of the sets D, XV, 82, 8% respectively,
lying inside the cylindrical surface €, with the equation |z| = R, and
by C* denote the part of C, which is contained in D".
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Introduce the transformations
(6.6) w=uH, vi=9H, wi=woH (i=1,..,n).
Putting w; = |#:— ?;] —w; we have
(6.7) wi=wH (1=1,..,n).

Let us consider the sequence

A, = max max wi(l,z) (a=1,2,..).
@ azept

The theorem will be proved if we show that 4, <0 for every a.
For this purpose notice that for any a there exist an index 4, and a point
(fa #a) € DI = (DI + 8%+ (854 ZM+ €* such that A, = @i (la, 7). We
shall show that the relation (i, «,) eDh+ St implies (., ¥,) < O.
Indeed, suppose on the contrary that s (t,, x,) > 0. This supposition
implies w;,(1,, ;) > 0. Since wy, > 0 and w;, > 0, by the definition of w;
and w; we have |u;(ly, T)—0i,(la, )| >0 as well as |@; (., Ta)—
—%i (ta, )| > 0. Hence it follows that the functions w(t, x), wy (¢, x)
possess the derivatives

8'w.;a owy, 82w4a . cwy, 0w, 8%—0%

68) = ox; ' oxjomy’ ot ' ox; ' oxsomy

(J,k=1,..,m)

at the point (Z,, z,).
Put
£¢={ 1, if Gt za) > Dilts, x) ,
-1, if it z) < Vi lte, 7).

At (f,, x,) we have, by (4.1), (4.2) and (5.1),

Cui (1) cug 82u£
u_ [}‘ (a,ma,ul,...,un,%-;,m_

@) 3'”1‘0 32’04
—Fillay Xay Vyy vees Vny —— L) — o1 (tey Wy ey @
fza(vn ay V1 y Vny axj ’317,-393)5 t,,( ay W1 ? n),

which, by identities (4.6), may be written in the form

owy &8 CUy 2y
6.9 g = F by gy Upy ey Upyg —y ——| —
(6.9) Y, eial: ta\for ar Wus eees Yoo Tr ) Bws0ay
(v, + € wi) (v, + e1,04,)
() 4 KT 4 4
(fa, wag ’D” sesy ,v’nt -a—f‘:l:f"’ ’ Bwjaw’: “ —afa(ta’ wl, seey wn) .

3#
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Let us introduce the following notation:

ou oH
6.10) T’(u)za_w—;H_{_uE’
. o2 S 2
e, v) = % At ov 6H  ¢v oH o*H

OX ;0T 3_:13_; oxy = Oxg 0% v 00Xy )

Substituting (6.6) and (6.7) into (6.9) we get

ow _ ©oH _ - - - -
(6.11) ;‘;‘, H+ Wi, ot = &, lj'g,)(tar Loy U H ..., U H, Ti(U1,) Tyl Ut ula)) -
_-ﬁ'i)(tay %oy B, H, ..., 7H, 71(5&. + Eiaa’fa)i Tjk(ﬁta + Eiaa‘aﬂ v, + Eiaaia))] -

- aiu(ta, (T)IH, vy anH) .

The funetion w(t,x) reaches a maximum at the point (1,, x,) e D! —|—SZ,
whence

OWi (lay T,)

(6.12) >0,
ows (te, X, .
(6.13) i"‘—;};’—) =0 (j=1,..,m)
and
S 2w (tﬂ, iL‘a)
. = ety Tal <0.
(6.14) ,-; s M < 0

Let ¢ (1 <qg<n) denote the number of those functions among
Wy, <., Wy Which admit a positive value at point (f,,x,). Without loss
of generality we may assume that these are the functions u,, ..., w,
(therefore i, < q). We may also assume that the first part of the alternative
of assumption 2° holds true, i.e. that the function f{ is elliptic (with
respect to {us(¢, z)}) since in the contrary case we may change the role
of systems (4.1), (4.2).

Our theorem will be proved in the following two cases, defined by
assumptions 3° and 4°.

Case I. The function fﬁ;’ satisfies the condition A[y,, ..., ¥}, the
function ¢ satisfies the condition (L), and the function g, satisfies the
condition Wy, ..., ¥a].

Case II. The function f satisfies the condition (£) and the fune-

g

tion oy, satisfies the conditions A[y,, ..., ¥.] and Wy, ..., ya).

In the remaining cases the proof is similar.



Solutions of non-linear parabolic equalions 37

Let us consider case I. By the definition of an elliptic function we
have

(6.15) e [fi(tey Ty GH, ..., GnH , Thil,), Talilay, W) —

— [ tas Tar W H , ..y TonH , To(ih1,) , TVt + Eta®tay Bta))] < O
since
E1a( Uty — Vig — E1,04,) = |Uig — Dty — w1, = Wy,
- ~ - _ 2w
et T(igy Uiy) — Tkl P, + £4,01,, Us,)] = H 3%—3;;
and (6.14) holds. Making use of the condition Afy,, ..., y,] we obtain

(6.16) 81!;[ i:.)(ta; Tay Uy ooy UnH , Ti(l,), TlTi, + £1,004,, ﬁ"a)) o
- :'la)(tay Ta s (§1+5151)H1 srey (77q+eqaa)H7 ﬁﬂHH’

seey ﬁnH Tj(@Z{ ) Tjk(ij‘a_i_ Biaa‘—"a’ a‘a))]
q
Z —egws|H = L 2 wsH < Lqw, H < Inmw; H .
s=1

From assumption 5° it follows that

(6.17) & [fu)(ta, Zay (0 + 810 Hy ..., (Vg+ gqg) H , g1 H .
ey UnH , T5(%3,) y Tik(Di, + &5,04,,%1, )) —
—[iMtay Tay B H y ooy TuH, Ti(h1,) , Ty + E0,01,, Tit,))]
< oifltey 0 H, ooy wgH , [lgr1 — Vgi1|H,y oovy |Un— | H)
< oy (ta, 0, H, ..., 0, H) .

The last inequality has been obtained by virtue of the condition
Wy, ..., ¥»] imposed on the function oy,.

According to condition (£) and relation (6.13) we get
(6.18) &4, fi(tas @y BH , ..., BuH , Ty{ihs,), T Tty + €1, ha)) —

@) ~ _ _ _ _
—fig\bas @ay OLH 5 ooy DnH, Ty{T, + €1,04,) , Tl V1, + €4,01,, Vi, + 1,04,

_ \_7} 2H oH
< wiu[ 1—J 1012 8;0 [ + Ll'rl — law,-_ )
7=

Adding the relations (6.15), (6.16), (6.17), and (6.18) we derive
from (6.11) the inequality

(6.19) e H < w,5H,

FH being defined by (6.4). Hence, in view of (6.5) and (6.12), and of
Wi,(la, T,) > 0 we obtain a contradiction.
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In case II the relations (6.15) and (6.18) hold true. Furthermore,
we have, by assumption 5°

(6.20) e [fi(tay Tay T H , ..., i H, Ty(hs,), TilTr, + e, ) —
— ,gi)(ta, Toy 0 H,y ooy H, ‘tj(’ﬁ(a), TV, + E;aaia, 'ﬁiu))]
< U‘a(t07 I'ﬁl —EIIH’ cony lan ‘_EnIH) .

According to the condition Afy,, ..., Y]
(6.21) o4, (ta, |4, —0,|H, ..., |n —0a|H) —

—ig(tay oy Hy ..y 0a H |Ugir —Dgia|H , ..., |l —n|H)

=

<L wsH g LnH?T,-a .

s=1
Using the condition W([y,, ..., yz] we obtain

(6.22) Oigllay oy Hy ...y wg H y {lg i1 —Vg1[H y ..oy |Un —0n|H)
g Uia(tuy (T)IH, cess C_UqH, 6q+1H, veny E')uH) .

Now, adding the relations (6.15), (6.20), (6.21), (6.22), (6.18), and
taking advantage of (6.11), we derive (6.19), which contradicts (6.5)
and (6.12). Thus we have proved that if ({,, x,) € Dﬁ—i—SL‘, then w; (1., T4)
< 0 and therefore A, < 0. Further, if (I, z,) e So+Z*, then (by our
assumption) w;(t,, ) < 0 and finally if ({,, x,) € OL', then we have

Aq — wi (ta, ma) g M(td)exp(KO'R;) -

¢ KE; |

exp i —#ta+ vta[

From the previous considerations it follows that the last inequality
always holds. On the other hand, the sequence {4,} is non-decreasing.
Hence we conclude that for every a, 4, < 0, which completes the proof.

COROLLARY 2. Let {us(t, )} be a regular parabolic solution of class E,
of system (4.8). If the functions f; satisfy the conditions (£) and A[yy, ..., Ya),
then the solution {us(t, x)} depends continuously on the initial and boundary
data and on the right-hand members of (4.8).

For the proof it is sufficient to put in Theorem 6 f° =/, and

066 =LY Ys+n9, 76>0 (i=1, ...,7n) and to take 5;—0 (i =0,1, ..., n).
8=0

A certain theorem concerning the stability problem in unbounded
domains, similar to that established by W. Mlak (Theorem 3 of [10])
for bounded domains, may also be obtained from Theorem 6.
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§ 7. Let ailt, y1, ..., ¥n) and oi(t, ny, ..., 7,) be functions defined as
in § 3.
THEOREM 7. If
1° {us(t, ¢)} (s =1, ...,n) 8 a reqular parabolic solution of class E,
of system (4,8),
m m
2° [flty @, Yrs ooy Yny Psy D)l < Loj gllpﬂcl + (LliwI+L2>]_Zl’ |psl +

+ ou(t, |y1E7 ey 1Ynl) (2=1, ..., m),
3° for every fixed i at least one function fi(t,x, Yy, ..., Yn, Piy Pik),

oi(ty Y1y ...y Yn) Satisfies the condition Aly,, ..., yn] and at least one of them
satisfies the condition Wy, ..., ¥nl,

12 |ug(0, 2} < (1 =1, ...,0) for eSO
5% |uy(t, )| < ity Ny ooy ) (E=1, ..., m) for (¢, 2) e, then

(7.1) luilt, 2)| < oty gy ey ) (=1, ...,m)
for (t,x) e D.

Proof. As before, it is enough to prove the theorem for the domain
D" defined as in the proof of Theorem 6.

We retain the meaning of symbols {R,}, D!, =¥ 8, S8, C* intro-
duced in the proof of Theorem 6.

Put

(7.2) w; = ]ud — .

There exist a function M (¢) >0 and K, >0 such that

(V.3) |wi| < M(t)exp(K,lxzj2) for (t,x)eD.
Introduce the transformations

(7.4) g = uH, wi=wtH (1=1,..,n).

where H = H(t, z; K), K > K,, is defined by (6.3).
Writing

(7.5) Wi = || —wy

we have

(7.6) wi = Wi H .
Put

A, = max max wil, x).
@ &
(t,x)eDa
From (7.4), (7.5) and (7.6) it follows that in order to prove theorem
{7.1) in the domain D" it is sufficient to show that A, < 0 for every a.
For every fixed a there exist an index i, and a point (f,, ;) € D}
such that A, = w;,(t., Za).



40 P. Besala

We shall show that if (., z,) e D! +8%, then Wi (tay T,) < 0. In fact,
suppose that w;(l,, ;) > 0. Therefore w;,(f,, x.) > 0. By (7.5) we obtain
Mi,(tay Ta)] > 0 and |#%;,(fa, Za)] > 0. Therefore, the functions w; (¢, ),
w; (¢, ) have the derivatives (6.8) at point (f,, ,). Putting

_= 1 if  dt., 2) >0,
Tl it @) <0
we get, by virtue of (4.8), (5.1) and (4.6), at (i, =),
(7 7) 3w,-a 3(%,'., — &g w,-a) 32(’u,'a—£,'a w,-a) N
) ot oxy ’ 040k

= eiafia(ta! Las Upy o0y Un,y

—Uiu(tu, W1y veey (Dn) .
Applying the transformations (7.4), (7.6) and the notation (6.10)
we may write relation (7.7) in the form

ow, ,,  _ OH

(7.8) : H+ Wi, a—t

= &igfiallay Tay T H s ooy tin H y (@i — i, 01,) y Tkl iy, — €1, By Thig — Eiq B1,)) —
- G’ia(ta7 EIH’ eeey C—Un_H) .

It may be assumed that the first ¢ (1 < ¢ < n) funections, among
Wy, ..., Wy, have a positive value at point (f,, z,).

We shall prove our theorem in the case where the function ¢;, ful-
fils the conditions A[y, ..., ¥.] and W[y, ..., y»]- In the other cases
defined by assumption 3° the proof is similar.

The function ;,(f, #) has a maximum at (f,, %) e D!+ 8!, and so
the relations (6.12), (6.13) and (6.14) hold. Therefore, by the definition
of the elliptic function, we find

(7.9) fialfia(ta yTay Uy H, ..., dnHa:T.’l('aia—Efaa—’ia)y T.’ik('ﬁia_efua—)iaa diaﬁsiaafa)) -
_fia(taa Loy Uy Hy ooy Un H y 75l — €1,01,), Tl 0, Uy, —Sia-ﬂ_’ia))] <0
According to assumption 2°, we obtain, on account of (6.13),

(7.10) Eiaf'ia( tas Xay Uy H ooy B H , vy, — &,05,) , Tig(0, %s, — £4,04,))

aw,F.r i+ Kyl +Ly) Zlaw

Taking advantage of the condition A[y,, ..., ¥»] We obtain

(711) O'ia(ta,’ Idlle seey ldﬂIH) _Gia(ta’(;lH? sy EQH, laq+1[H7 very l’ﬂn|H)

<m-a[ ]+a..a toy |y H .., liin| H) .

q
<L ))|wlH < InHw,
s=1
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and the condition W[y, ..., ¥x] yields the inequality

(7.12) Oig(lay 0 H , ...y wgHy [tg:s|H, ..., |n| H)

< Oigltay 01 Hy ..y wgH, wg1 H, ..., 0, H) .

Adding the relations (7.12), (7.11), (7.10), (7.9), and (7.8) we deduce
that inequality (6.19) holds, and thus, by (6.12) and (6.5), we come to
a contradiction. Consequently if (%,,a,) € DE+82, then i (t,, a,) <O.
Further if (t,,2,) € S0+ 2., then, by our assumption, @;(f., ) < O.
Finally if (4,, ,) € C¥, then we have

a — wia(tay a) =

_ M(t,) exp (K, RZ)
< 2

KR,
expi 1, + vta’

-0 as a— oo.

From the preceding remark it follows that the last inequality al-
ways holds. But the sequence {A4,} is non-decreasing, whence we deduce
that 4, <0 for any e, which completes the proof.

Part 11

§ 8. Denote by 4 a bounded and closed domain of the space
(myy ..., *m) and by S its complementary domain. The boundary F4 of A
is supposed to be represented by the equation I'(z) = 0, © = (xy, ..., Tn),
where I'(x) is a function with continuous and bounded derivatives of
the second order in 8, of class (! in the closure S and satisfies the con-
dition
(8.1) |gradl'(z)] > I, = const > 0.

In part II of this paper by D is meant the topological product of §
with the interval (0, 7), ie. D= 8 x(0,T). Similarly, we define
2 =FAx(0,T). The part of the boundary of D lying on the plane
t =0 will be denoted by S8°.

For every (f,x) e X and every ¢ (¢ =1,...,7n) let I; be a straight
half-line entering the interior of D (at point (¢, z)) and parallel to the
plane #= 0. Suppose there exists y, >0 such that cos(li, ny) = v,
(¢=1,..,n) for ({,x)e X, n, being the normal to 2 directed to the
interior of D.

Let G, @, ¥y, ooy Yn)y GO, 2y Yyy ey Yn) (3 = 1, ..., n) be functions
defined for ({, ) e 2’ and arbitrary ¥, ..., ¥a.

§ 9. The following Theorem 8 may be proved by an easy modifi-
cation of the proof of Theorem II included in [2].
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THEOREM 8. If the assumplions 1°-5° of Theorem 1 hold true and if

dug dv;
aty’ dls
points of X, and satisfy the boundary inequalities

6° uit,x), vi(t, ) possess the derivatives t=1,...1n) at

dm
dal;

(9.1) du‘ﬁ—Gukt Ty Uyy ey Ug) > o

+ @tz 0y, 0y vh) (=1, ...,0),
7 for every fized i at least ome function G(t,x, Yy, ..., Yn),
GO, @, Yy, ..., Yo) satisfies the condition A[y, ..., y.] and at least one of
them satisfies the condition Wy, ..., ¥ul,
8° G§l)(t, Ly Yyyoeey Yn) < Gg'm(t’ Ly Yy ey Ya) (2 =1, ..., nm) for (1, x) €2,
— 00 < ¥s < + 09,
then inequalities (2.3) are fulfilled in D.

§ 10. The following Theorems 9-12 may be derived from Theorem 8. -

THEOREM 9. Suppose that the assumptions 1°-3° of Theorem 2 are
fulfilled and that, for (1, x) € 2, we have the boundary inequalities

n
d(us—v A
_—;l_i——i)-—l_% 'P-s(t z) (s — s) SZIV’st ) ws(ty My -0ey )

d(us—r; ® .
( ( :u‘ )+21/ %Us(t x) —Vg) <Z1pst ) wg( Ly Nuy oeey 1) 7‘88pectwely)

(i =1, ...,m), where the functions vi(t,x) are assumed to be defined on X
and 1o satisfy the conditions

V’i(t;x)>07 8 F# 1, Wi(tym)<0 (8,2 =1,..,n),

C being an arbitrary positive constant.
Under these assumptions the limitation (4.3) holds true in D.

Proof. In the same manner as in the proof of Theorem 2 it can be
shown that the funections v;+ w; satisfy inequalities (4.7) and the func-
tions u; satisfy, by our assumptions, the system (4.1). Note that
dwi/dl; =0 (¢ =1, ..., n). Putting

n
GO, @, Yy, ooy Yn) = GO, 0y 1y ooy Un) = D, ¥k, @)y (G=1, .., 0)
=1

and applying Theorem 8 we obtain u; < v:+ w;. The second part of the
Theorem may be obtained similarly.

The wvalidity of the following Theorems 10-12 can be proved in
a Similar way.
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THEOREM 10. Let the assumptions 1°-3° of Theorem 3 be satisfied
and assume additionally that both solutions {us(t,x)} and {vs(t, x)} are
parabolic. Suppose furthermore that, for (t, ) e X,

a(us—v ‘ ‘ .
(u:u i)+gi(t; Ly Uy, -..,un)_gi(tgw,@1+ 61, veey Un+ an)ZO (Z=1,...,-n)
d (g —04) , s 50 <0 ool

dz_+gi(t By tyyeeey Un) —Gi(t, 2, U+ 01y ony Vn+0a) <O respectively |,

where the functions got, x, Yi, ..., Ya) are assumed to salisfy the conditions
A[Yyy eoes Yn] and W[y, ..., Yu]. These assumptions imply the inequalities
(4.11) in D.
THEOREM 11. If the assumptions 1°-4° of Theorem 4 hold true and if for
(t, z) e 2 we have
dug .
‘f‘gi(t Ly Uyy eeey Un) 2= Gilt, Ty 01,y ooy On) (t=1,..,n)

(du’ ity Ty Uy eeey Un) < Gill, Ty 0ry vy On) respectively),
gilt, €, Yiy ..., Yn) being functions satisfying the conditions A{yy, ..., Yn]
and Wy, ..., Ynl, then the limitation (4.12) is true in D.

THEOREM 12. If the assumptions of Theorem 5 are satisfied except
that the boundary condition (4.14) is replaced by the condition

du
A Tl Tyt ey ) Z gt 25 (1) e D)

d .
(7;;—: + gilt, @, Uy, ooy un) < Gi(t, 2, (1), ..ry @alt)) respectwely)

(t=1,..,n), (t,x) e X, where the git, T, Yy, ..., Yu) are assumed to fulfil
the conditions A[Y,, ..., Yn] and Wy1, ..., ya], then (4.15) holds for (i, x) € D.
§ 11. THEOREM 13. Let the hypotheses 1°-6° of Theorem 6 be fulfilled.

Furthermore, suppose that the functions wui(t, x), vi(t, x) satisfy the boundary

inequalities
n n

l'd — .1 .l
{11.1) (ujll, " 2 "/’:v(ta x) (us — vs)| < Z ‘P;(t’ x) ws, (¢, @) e 2,
s=1

s=1

(i =1, ..., n), where the functions yvi(t, x) are assumed to be defined on X
and to satisfy the following conditions

(11.2) —C <yilt, ®) <0, s #i,
Yo .

(11.3) Nyt 50 (=1, .m),
s=1

C being a positive constant.
Under these assumptions estimations (6.1) hold in D.
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Proof. It is sufficient to prove our theorem—just as Theorem 6—
for a part D™ of domain D contained in a strip 0 < ¢ < k,. Let =™ be
the part of X lying in the strip 0 < ¢ < h, and 8" the part of boundary
of D™ lying on the plane t = h,.

The functions

wi(t, &) = |udt, ) —v4(l, 2)| —wilt, Ny, oovy Nn) (¢ =1, ey M)

belong to a class EZ(M (t),Ko). We will make use of the auxiliary
function

—_ 2

Hyt, o K) = exp {K[F(cv) p(K)]

|
1—u(K)t + n(K)t, K > K,,

introduced by M. Krzyzanski {7], which has certain properties similar
to those of function (6.3). Namely, it has been shown in [2] that, the
constants u,(K), »(K) being suitably chosen, the relation

(11.4) FH(t, ; K) < —H,(t, z; K)

holds for (¢, z) e D™, where h, is sufficiently small and ¥ H, is defined
by (6.4). Moreover, if the constant p(K) is suitably chosen, then we have

aH,
al;

(11.5) +(n—-1)CH, < —H, for (t,z)eZ™.

The detailed computations concerning the last relation are just the same
as in proof of Theorem I of [2].
We may assume that

(11.6) I'liz) =|z| for |x|>R,,

R, being the radius of a sphere |z| = R, situated in the space (z, ..., Zm)
and containing the boundary FA in its interior.

Let {R,} be an increasing sequence, R, > K,, R,—>c0 as a->oo.
Denote by DM, 82, 8 the parts of the sets D™, §° 8™ respectively,
lying inside the cylindrical surface C, with the equation |z| = E,. By
(" we denote the part of C, contained in D™. Further we introduce
the transformations

(11.7) w =4 H,, vi=vH,, wi=wH (i=1,..,n).
If we write w; = |4; —7;] —w;, then

(11.8) wi =wH, (G=1,..,7n).
Consider the sequence with the terms

A, = max max wit,z) (ea=1,2,..).
py il
Y e
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We shall show that for every a, 4, < 0. For any a there exist an
index ¢, and a point (fy, Z.) e D" = (D" +8M)+ 80+ 2M 4+ €™ such that
A, = wy(t., x,). Since the function H,({,2; K) has the property ex-
pressed by (11.4), we may repeat the fragment of the proof of Theorem 6
for the case of (f,, #,) being the point of D'+ 8%, whence we obtain
(in this case) A, < 0. If (f;, x,) € 82, then, by our assumption, A, < 0.
Now we shall show that if (f,, x.) ¢ 2™ then 4, < 0. In fact, suppose
that (., z,) e Z™ and A4, > 0, i.e. W (t, @) > 0. Inequality (11.1) (for
1 =1q, t =1,z =2,) may be written in the form

s, —v;
(119) |He—tel_ 2 (1, T,) ) Us — qu"(f,,,fv,, ),

where & = sgn (ui(ta, %) —Velta, 2a)) -
We shall show that

n
B4 — Vig _siaZ Ytas To) esl s — 05| < 0.
dl;

a s+1

(11.10)

Indeed, assumption (11.2) yields

n n
Y .
(11.11) —e1y D, Ve e — 0] < — Oyl ug— w4,
8=1 s=1

and by (11.3) we have

n n

(11.12) —Zw‘;“lus—%l < — Zwﬁ“m.

§=1 8=1

In view of (11.11), (11.12) and of the equality dwi,/dli, = 0 we obtain

n
d|ut, — v, 2 ia dw, E iq
(11.13) d_lto— — &t Ys 83] Ug — Q73| < dha — Ys Ws o

By (11.8) we obtain

i aw,
(11.14) . Yo W = #Hﬁ- ’“T —2 Yg W

s=1

From the definition of wi(f,, #,) it follows that

(11.15) dd?:ﬂ <0
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and

(11.16) — Dl < — ) ylm, < (n—1) O,
s=1

s=1

By (11.14), (11.15), (11.16) and (11.5) we find

(11.17) -

8=1

Therefore, by (11.13), inequality (11.10) holds. Consequently, con-
dition (11.9) may be written as

d % n
Wy E ' g
= — €, 1/’30831 us"‘"«’s' = — Yo' Ws
dl,
s=1 §m=1

and hence, using (11.11) we have

d%‘iu - iq, ..

W, —g% ws =20,

which contradicts (11.17). Therefore we have proved that if (¢,, x,) € 2’“,
then A, <0. Finally if (t,, #,) € C*, we have, by (11.18),

M(t,)exp (K, R

exp| L ~2(KTF

A, < l—>
1__‘“1t~— +vltl

0 as a-—+oo.

Thus we have proved that the last inequality always holds. More-
over, the sequence {A4,} is non-decreasing, whence we find that for
every a, 4, <0, q.e.d.

The next theorem may be proved in a similar way.

THEOREM 14. If the assumptions 1°-4° of Theorem T hold and the
boundary inequalities

n
du ia
m{' —Zw.s (2, ) us
8=

are fulfilled, the functions yi(t, x) being the same as in Theorem 13, then
the limitation (7.1) remains true in the domain D.

n
< Dt @es  (i=1,..,m), (t,a)e X,
s=1
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