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On Ruscheweyh derivatives

by HassooN 8. AL-AMIRI* (Bowling Green, Ohio)

Abstract. Let K, be the classes of regular functions f(z2) = 2+ a,2%4 ..., defined
in the unit disc E and satisfying

Re————]()>——1 zeE, n=0,1,2
Dﬂf() 2’ H ’ ’ 9 sy
where
Lf(z) f(Z)* ’
(1—2)" 1

and (x) is the Hadamard convolution.
(i) The author deterinines certain real values @ and § such that whenever

+1 4 +4-2 z B
e(m fie) l) (D" f&) 1) - o,

"Dfe) 2 \Dv¥if) 2
zeK, n=0,1,2,..., then fe K,.
. D" f(2) .
(ii) Let h,(2) = Dig) The author determines the set of real values ¢ and §
gz

such that whenever f and ¢ belong to K,
Rek(2)hE 1 (2) > 0

holds for e F and » = 0,1, 2, ...

1. Introduction. Let A denote the class of functions f(z) regular in
the unit dise ¥ = {z: |2/ < 1} and normalized by f(0) =0, f'(0) = 1.

By {K,} we mean the subclasses of A satisfying for every fe K,
the inequality

(£ ()" (n+2)

(1) Re (zn—lf(z))(u) = 9 !

where n e Ny, N, =0,1,2, ..., and z¢ E.

* The author acknowledges partial sumer support from the IFaculty Research
Committee at Bowling Green 8tate University.
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S. Ruscheweyh [6] introduced the classes K, and showed the basic
property
K, <K, mnelN,.

Thus elements of K, are univalent and starlike of order § (K, = 8},).
Let
(2) D"f(z) = z(2""'f(2))™/n!, meN,.
We shall refer to D"f as the nth order Ruscheweyh derivative of f. Note
that D°f = f, Df(2) = 2f'(#).
Ruscheweyh cleverly observed that

2
(3) D*f(z) = W*f(z),
where the operation (*) is the usual Hadamald product of series (i.e., if

g(2) —2 a,z", f(2) 2 b,z", then fxg _2 a,b,z"). This lead him to an

n-n

equlva,lent but more practlcal definition for K,, namely fe K, if and
only if fe A and
D*if(z)y 1
(4) Re—l)”—f(_z)——>5’ ’)’LE.NO,
1s satisfied for z e E.
Now we introduce the following classes:
DEFINITION. We say that fe §,(a, ), n € Ny, if fe 4 and
D" f(z)  1\* (D" f(z) 1\f
(5) P,(f(2); a, B) = (—f - T) (—,;1— _ —) ,
D™f(2) 2/ \D""f(z) 2
where a, f are real numbers, then
ReP,(f(2);a,B) >0, neN, zek.

The powers appearing in (5) are meant as principal values. For every
n € Ny, 8,(a, f) contains many interesting classes of univalent functions;
8,1,0)=K,, 8,(0,1) =K,,,, and S,(a,0) is contained in class of
strongly starlike [1] when |a| > 1.

In section 3 we will determine a set of values of real numbers a and
for which 8,(a,pf) < K,,, » € N,. Similar problem was treated in [5].

Next, let
D*f(2)
Dg(2)’
In section 4 we will determine the set of the non-negative recal numbers a
and g2 such that

Rehi(2)h5, ,(2) >0, neN, zeh,

whenever f, g e K, . Special cases of this section reduces to results in [2],
Theorems 1 and 2.

h,(2) = frged, neN,.
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2. Preliminaries. We need the following results.

LEMMA 1. Let we A with w(z) %0, 2 £ 0. If 2, = 7,6, 0 < 7, < 1

and max |w(z)] = |w(z,)|, then
lzl<ry
(7) Zow'(2o) = mw(z,), m>1.

Lemma 1 may be found in [3].

LEMMA 2. Let p(z) be regular in E with p(0) =1 and Rep(z) > 1/2
in E. Then
r

p(2)— <{

1—12

Lemma 2 can be deduced from the geometrical properties of ¢(z)
where q(z) = 2p(2)—1.
LemMA 3. If fe K,, n € N,, then

k
( arg D i(z)

(8) <(k+1)sin”'r, O0<Ek<n+1.

Proof. Since fe K, implies fe K;, 0 <j< n, then

D*f(2) : . ~
W = p;(#), with Rep;(2)>1/2, zeF, 0<j<n
Lemma 2 yields
_D.'f+lf(z) | )
(9) a:rgW < 0<J<’n, |Z|=T<1.

2
Moreover, f € K, = f € 8}, < f(f(Tz)) dz € K, and for F € K we have [4]
that |argF'(2)] < 2sin™'v, |2| =7 < 1 Consequently, fe K, implies
(10) Iarg 1(2) ’ < sin~ 7,
i Z |
Applying (9) and (10) to the identity

D) f(2) ﬁD"‘”‘f(z)_
z oz Dif(z) ’

j=0
1< k< n+1, we arrive at (8).

3. The classes 8, (a, f). Let
G = {(a, f)} (a+28<4k+3)N(atp>
G, ={(a, )] (a+p<4k+3)N(a+28>4k+1), B

Gs = {(a, 0)| lal = 1}U{(0, B)| I8l =1},
G =G,VGE,ua,,

4k-+1), f=0,kel),
<0

(1) y kel},
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where I is the set of integers and a, § being real numbers. In this section
we show that for (a, ) €eG and fe S,(a, ), then fe K,. The region ¢
is independent of n.
We shall use the technique of Miller {5] to prove the following
THEOREM 1. 8,(a,p) < K, if (a,f) €@, neN,.

Proof. The case where (a, ) e Gy is trivial. Suppose fe §,(a, f)
and
Dn'Hf(z) 1
D*fz)  1-w(z)’
where 2z € E. Then w(2) is regular in £ with w(0) = 0, w(?) # +1. To
complete the proof we need to show that Rel/(l—w(z)) >1/2, ze B
and (a, 8) e G. To this end, 1t is sufficient to show |w(?)] <1, ze F and

(a, B) €G.
Differentiating (12) and using an easy to verify identity

2(D¥f(2))" = (k+1)D**'f(2) —kD*f(2), ke N,,

(12)

one gets

D) < 2RI

1—w(2) (1 —w(2))
(fn+2)D"+2f(z) ""I Dn+1f
_ (n+1)D" ' f(z) —nD"f(2) = 2w’ (2) D"f(2)

D?Lf(z) )

1—w(2) T 1—w(e)
Thus
D" f(2) 1 n+1 2w’ (2)
it e~ wiE Tt T )

Substituting (12) and (13) in (5) we have

1
14)  P,(f(2); o ) = C (+w§§)(1+(n+1)

where ¢ =27 ?(n+2)"#> 0.
Now suppose to the contrary that there is z,e E such that

max |w(z)] = [w(z,)| =1, w(z,) #* +1. Then Lemma 1 shows
12| < zg)

1+w(z) 22w’ (2) )"
1—w(?) 1—w(2)

Zw' (o) /(1 — 'w(zo)) = ’m’w(zo)/(l '—w(zo)) .

Let w(z,) = €', Then

1+w(z0) . sin§,
1—w(z,)  2(1—cosb,) b
w(z,) cosf,—1 sin 6,

1 = - — =17 _11221.
1-w(z) 2(1—cosb,y) + 2(1—cosfy) . 3[—-1+4]
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Consequently (14) becomes
(18) P, (f(20); ay B) = C(28)* (1 —m + (1 +m +n) 1)’
= C|2°((L —m)* + (1 4+ m +n)*)**cos (ab, + BB,),

where 6, = argli, 6, = arg(1—m+ (1+m+n)5).

Case 1. A>0, 6, = =x/2, and since 1 —m <0, n/2 < 0, < =.

(i) ¥ (a, B) € G,, then

(4k+1)7/2 < (a+B)=/2 < aby + O, < (a+28)=/2 < (4k+3) = /2.
Hence cos(af,+f#6;) <0. This shows that Re(f(2);a, ) <0 which

contradicts fe S, (a, ﬂ).
(ii) Similarly if (a, f) € @G,, then

(4k+1)7/2 < (e+28)7/2 < @b, + 0, < (a4 B)7/2 < (4k+3) = /2

which leads to same contradiction.

Case 2. A< 0. Let 6, — argi, 6, = arg(l—m+(1+m-+n)2i). Then
0 = —0, = —=/2,0, = —0,, cos(ab,+ f0,) = cos(ab,+ p0,) <0, con-
tradiction.

This completes the proof of Theorem 1.

Remark 1. Since §8,(0,1) = K, ,,, Theorem 1 shows the basic
inclusion relationship of Ruscheweyh K, ., < K. Also S, (a, ) = 8,(1, 0),
(a, B) € G. We will generalize this latter relation in the next theorem. The
set G is given by (11).

THEOREM 2. 8,(a, f) = 8,((e—1)t+1, ft), 0<t<1 and (a, f) €G.

Proof. Let fe8,(a, ), and

D““f(z) 1\¢° Dn+2j(z) 1\8 B ‘
1o ( D" f(z) _*) D" f(2) _5) = Gl
Then Rep,(2) > 0, z € E, (a, f) e G. Also by Theorem 1,
Dt 1
(17) W{S) —5 =Pal®);

where Req, (2) > 0 for z € B, n € N,. It follows from (16) and (17) that

(D““f(z, 1)(u—-l)i+1( Dn+2f(z) 1

Bt
D) _E) = (Pn(2)' 7 (2. (2))' = p(2).

D"f(2) 2
Here p(0) =1 and
largp (2)| < (1 —1) |argp,(#)| +tlarg ¢, ()| < =/2,
which shows Rep(z) > 0. This completes the proof of Theorem 2.
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4. Ratios of Ruscheweyh derivatives. In [2] Burdick and Merkes
obtained sharp bounds on a > 0 and § > 0 such that

Re (i@—)a >0 and Re (i,(_z) )ﬁ >0
9(2) g'(2)

for z € E and f, g varies in the classes K and 8™ (starlike). In this section
certain generalizations and cxtensions of these results which involve
the Ruscheweyh derivatives will be obtained.

THEOREM 3. Let

(18) h, (%) =%§g—;, nekN,.

If f and g belong to K, , then
(19) Re{hy(2)hh . (2)} > 0,
zeE and a> 0, §> 0 satisfying
(20) 2m+1)a+2(n+2)g =1.
Here h3(0) = B2 ,(0) = 1. The result is sharp.
Proof. Using Lemma 3 and (15) we have, when a and f satisfying (20),
larg hy, (2) hf 11 (2)] < alarg D"f(2) —arg D"g(2)| +
+ Blarg D**'f(2) — arg D"*'g(2)|

— alarg 2@ D@ |
_Dn+l Dn+1
+ | arg zf(z) _arg zy(z)

< 2a(n-+1)sin~'r +28(n+2)sin"'r
= sin"'r < w/2.
From this inequality follows (19).
To show sharpness of results, let

2 2
1
1—2

f(2) =

—7n < t< n Using (3) we easily compute

2 ] o 2 " 2z

Aaf*1os o D90 = Grgmn

D*f(z) =

and hence

a 1 -}—zg'“ (n+1)a+(n+2)8
hu(z)hﬁﬂ(z) = ( ) .

1—=z
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1 -l-ze“

Now since maps the unit dise onto the half plane bounded

—2
by the line through the origin with angle of inclination = H—Tﬂ, any

choice of ¢> 0, >0, satisfying a(n+1)+8(n+2) > }, there exists
a choice of {, —w < ¢ < = for which

Re {h,(2) hfl-l-l (2)} <0,

for some z € E. Thus (20) cannot be improved.
COROLLARY. If f and g are convex in E, then

f(2) "(f’(z) )"
Re|[—| |—— 0
e(g(z)) 7@~
for a>= 0, B > 0 satisfying the relation
2a+48 =1.

Proof. Since K < 8}, the Corollary follows from Theorem 3 when
n =0.

Remark 2. Fora = 0, > 0, and g = 0, a > 0, our Corollary reduces
to [2], Theorem 1.

Since

arg rg——— +arg

R 7(2) 92

then we can easily show the following theorem.
THEOREM 4. If f and g are starlike in E, then

f(z))“(f'(z))ﬂ
R R
e(g(z) @) O

for ze E, a >0, > 0 and when

H

feo _ 4@ 4 f(Z))

4a+ 6 =1.

This result is sharp.
The sharpness can be established by

4 2
f(z)=7:z)§s g(z)=(1_—e“z)2 —_nm<ig< .

Remark 3. Fora =0,8> 0and 8 = 0,a > 0, Theorem 4 reduces to
(2], Theorem 2.
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