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Bounded solutions of systems
of differential equations with impulses

by S. G. Hristova and D. D. Bainov (Plovdiv)

Abstract. Bounded solutions of systems of differential equations with impulses are investi-

gated. A special class of partially continuous functions of Lyapunov type has been introduced by
means of which some sufficient as well as necessary and sufficient conditions for the existence of
bounded solutions of the system considered have been obtained.

1. Introduction. Systems with impulses describe evolutional processes
which in certain moments of their evolution rapidly change their state. By
the mathematical modelling of such processes it is convenient to neglect the
duration of this rapid change and to assume that the process changes its
state by jumps.

Mathematical theory of systems of differential equations with impulses
marks the beginning of its development by the works of Mil'man and
Myshkis [3], [4]. In spite of the great possibilities of application, this theory
develops with comparatively slow paces. This is due to the great difficulties
of theoretical and technical nature caused by phenomena such as “beating”
of the solutions, merging of the solutions, bifurcations, loss of the property of
being autonomous, etc.

In the present paper by means of partially continuous functions of
Lyapunov type bounded solutions of differential equations with impulses are
investigated. We shall note that such an approach to the investigation of
solutions of ordinary differential equations has been used by Yoshizawa
[61-[8).

The use of continuous functions of Lyapunov by the investigation of the
solutions of differential equations with impulses whose solutions are partially
continuous functions considerably decreases the possibilities of application of
the direct method of Lyapunov (cf. [1]).

2. Basic definitions and notations. Consider the system with impulses
x=f(,x) for t#t(x),

Axll=1,-(x) = Ii (X),

()
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where xeR", f: [0, 0)xR"—R" I, R"—>R" (i=1,2,..), t;: R"— [0, 00),
Axl,= o = x(e+0)—x(e—0).
Define the sets

o; = {(t, x)e[0, w0) xR": t = t;(x)},
G, = |(t, x)e[0, ) xR™ t;_,(x) <t <t;(x)},
D; = {(t, x)€[0, o) xR" t;_,(x) <t <t;(x)}, i=1.

We shall say that conditions (A) are satisfied if the following conditions
hold:

Al. The functions ¢; are continuous and

O0<t;(x) <t(x) <...<t(x)<... for xeR",
inf{t;(x)—t;_ (x): j =2, xeR"} >0, to(x)=0.

A2. Uniformly on xe R" exists the limit lim¢;(x) = co.

i—w

A3. The integral curves of system (1) meet each hypersurface ¢, at most
once.

We shall note that sufficient conditions for the fulfilment of condition
A3 have been given in [2].

Let xeR" By ||x|| we shall note any norm in R".

Introduce the following sets:

Co(x) is the set of all continuous functions f: [0, c0) x R® — R" which
are locally Lipschitz on their second argument;

M, is the set of all continuous functions I;: R" — R";

K, is the set of all monotonely increasing continuous functions
¢: [0, o) =0, 00),

B, = {xeR": |Ix|| <a},
S, = {(t, %): (t, x) €[0, o0) xB, for (t, x)e U G,
i=1
(t, x+ 1, (x) €[0, o) x B, for (¢, x) €0, ).

The solution of system (1) with initial condition x(t,) = x, will be
denoted by x(t,-tg, Xo) and the maximal interval on the right of t, in which
this solution exists — by J(to, Xo) < [to, ).

We shall give the definitions of the basic types of boundedness of the
solutions of the system with impulses (1) which are analogues to the
definitions introduced in [6] for the solutions of ordinary differential equa-
tions.
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Derintrion 1. The solution x(t; to, Xo) of system (1) is called bounded if
(3B(to, x0) > 0) (Vt = 1to) I1x(t; to, xo)”l < B(to, Xo)-
DEeriNiTION 2. The solutions of system (1) are called equi-bounded if

(Vo > 0)(V1t, = 0)(3B (o, a) > 0)(Vxo: (£o, Xo)€ S)(VE = 1o)
lIx(2; to, xolll < B(to, a).
DeriniTION 3. The solutions of system (1) are called uniform-bounded if
(Va > 0) (3B (@) > 0){V (tg, xo) €S,) (Ve = o) |Ix (25 to, Xo)ll < B(a).
DeriniTiON 4. The solutions of system (1) are called ultimately bounded if
@B > 0)(V(to, Xo) €[0, c0) x R)(IT (1o, xo) > 0)(Vt > to+ T(to, Xo))

lIx(e; to, xoll < B.
DeriNiTION 5. The solutions of systems (1) are called equiultimately
bounded for bound B if

(Vo > 0)(Vto = 03T (20, a) > 0)(VXo: (to, Xo)€S,) (Ve = to+ T(to, a))
l1x(¢, “to, xo)ll < B.
DerinimioN 6. The solutions of system (1) are called uniform-ultimately
bounded for bound B if
(Va > 0)(Vto = 0)(3T (@) > 0)(V(to, X0)€ Ss)(Vt = to+ T(a))
|x(t; to, Xolll < B.
We shall say that the function V: Q — [0, o), < [0, o©) x R" belongs
to the class W if the following conditions hold:

1. The function V(t, x) is continuous for (t, x)eG;nQ, i=1, 2, .
2. For (o, y)€o;, nQ2, i 2 1 the limits

lim V(t’ x) = V(Q_Os y)v lim V(ta X) = V(Q+07 .V)

,x) ~(e,y) @t,x) ~(e,y)
(1,x)eG; (t,x)eGj 4+

exist and are finite and the following equality holds:

3. The function V(t, x) is locally Lipschitz on its second argument for

t, x)e U G Q.
i=1

Further on we shall use the following notations:

Bm - (V(i+h, x+h(t, 0)=V(E, ),

1(1 x) =
M h-o+h

1
V'(t, x(2; to, Xo)) = ,.li?+71 {V(t+h, x(t+h; to, x0))—V(t, x(¢; to, Xo))}.
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. From condition 3 it follows that if Ve W, then the equality Vi (e, x)
= V'(t, x(¢; to, X)) holds for x = x(¢; to, Xo).
If the function Ve W satisfies the conditions

Vi, (6, x) <0 for (¢, x)e U G;n Q2
i=1

and

V(+0, x+L(x) < V(%) for (t, Yea, i=1,2,...,
and x(t; ty, xg) 1s a solution of system (1), then

V(ty, x(ty; to, X)) < V(t2, X(t3; to, Xo)) for 1o <t, <ty

We shall note that partially continuous functions of Lyapunov type have
been used in [5] for the investigation of stability of the solutions of
differential equations with impulses.

3. Main results. We shall find out some relations between the various
types of boundedness of the solutions of system (1).

LEMMA 1. Let the following conditions be satisfied:

1. Conditions (A) hold.

2. The functions I;: R"—> R" (i=1, 2,..)) are of the class M,.

3. The function f: [0, c0) x R" — R" is of the class Cy(x).

4. The solution x(t; ty, xo) of system (1) is defined for t€[ty, T), where
(o, Xo)€[0, 0) x R" is a fixed point, T = const > 0.

Then for each number a > 0 there exists a number B(ty, a) > 0 such that
for (to, Xo)€ S, the inequality ||x(t; to, Xo)ll < B holds for te[to, T].

Proof. Assume that the solution x(t; ¢y, x,) of system (1) for te[t,, T]

meets the hypersurfaces g;, i = 1, p respectively in the points ¢, <g, <..
< ¢,. By condition A2 we have p < co. From the continuity of the solution
x(t; ty, Xo) In the interval [f,, 0,] it follows that there exists a constant
Blto, ®) > 0 such that ||x(t;to, Xo)i| < for t€[ty, 0,]. From condition 2
of Lemma 1 it follows that there exists a constant K,(f) > 0 such that
for ||x|| <p the inequality 11, (I < K4 holds. Hence ||x(g,+0)|| =

flx(e)+1;, (el < B+K, and there exists a constant B(to, @) such that

lIx(t; to, Xl = ”x(t; 01+0, x(¢, +0; ¢, xo))” <pB for te(ey, 02].
Applying the above arguments consecutively to each interval

(6i, 0i+1), i=1, p—1, we obtain the assertion of Lemma 1.

THEOREM 1. Let the following conditions be satisfied:
1. Conditions 1,2 and 3 of Lemma 1 hold.
2. The solutions of system (1) are equiultimately bounded for bound B.
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Then the following assertions are true:

(o) The solutions of system (1) are equi-bounded.

(B) For any two numbers a >0 and o >0 there exists a number
T(6,) >0 such that for (to, xo)€Sqs, t2to+T(o,a) the inequality
|x(t; to, Xo)ll < B holds.

Proof. Proof of assertion (a). Let « > 0 be a fixed number. Choose
a point (fy, Xo)€S,. By condition 2 of Theorem 1 there exists a number
T(ty, @) > O such that for t > to+ T the inequality ||x(t; to, Xo)il < B holds.
From Lemma 1 it follows that there exists a number B(to, @) > 0 such that
[1x(t; to, xo)l| < B(to, @) for te[ty, to+ T]. Introduce the notation y(tg, o)
= max (B, B(ty, ®)). Then for t > t, the inequality ||x(¢; to, xoll < y(to, @) is
satisfied.

Proof of assertion (). Let «a >0 and ¢ > 0 be fixed numbers and
toe[0, ¢]. From condition 3 of Theorem 1 it follows that there exists a
number T, (o, a) > 0 such that

x(t; to, Xl = ||x(t; &, x(0;t0, A)fj < B
for t >0+ T,, where (19, xo) €S,. Introduce the notation T(o, o) =6+
+ T, (0, a). Then for t > to+ T(0, ), (to, Xo) €S, the inequality |[x(t; tq, Xo)l|
< B is satisfied.
This completes the proof of Theorem 1.

We shall investigate the boundedness of the solutions of the system with
impulses (1) by means of functions of the class W.
In the further considerations we shall use the following lemma.

LEMMA 2. Let the following conditions be fulfilled:

1. Conditions Al and A2 hold.

2. The function V: [0, «0) x R" — [0, o©) is of the class W.

Then for any number a > 0 and for tye[0, o) there exists a number
K (to, a) > 0 such that for ||x|| < a the following inequality is satisfied

V(to, x) < K (to, @)

Proof. Suppose that the claim is not true, i.e., that there exists a
number a > 0 and points x,e R" such that x, # x, for n#k, ||x,|| <a (n
=1,2,..) and

2) V(tg, X)) =2n, n=1,2,...

The sequence {x,}{° is bounded, hence there exists a convergent subse-
quence whose indices we again denote by n. Introduce the notation f
= hm x,.

n—a
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Case 1. Assume that there exists a positive integer k such that

(to, P EGy, ie., ty_1(B) <ty <t,(B). The continuity of the functions ¢, _(x)
and t,(x) implies that

im t,_y(x,) = -1 (f) and lim g (x,) = 4, (B).
From the last two equalities and the inclusion (ty, f)€ G, it follows that for
sufficiently large values of n the inclusion (to, x,)e G, holds. Then the
following equality lim V (tq, x,) = V(to, B) is satisfied which contradicts in-

n—=ao

equality (2).
Case 2. Assume that there exists a positive integer k such that

(to, B)eay, ie, t,(B) = to. The continuity of the functions ¢;(x) (j > 1) implies
the relations

lim £, (x,) = t(B) = to,

hm £y 44 (X5) = e+ 1 (B) > 4 (B) = 1o,
ﬁfn ty—1(xn) =ty (B) <1o.

Hence there exist infinitely many members x, of the sequence {x,}{
satisfying one of the following two assertions:

l. X,eG, for n=1, 2, ...
or

2. X,€G, ., for n=1,2,...

Then we have

V([O—O, ﬁ) fOI’ inEGkv n=1,2,...,
V(t0+0, B) fOr fHEGk'i-l’ n=1,2,...

Inequality (2) and equality (3) contradict the condition that the limits
V(to—0, ) and V(t,+0, ) are finite.
Lemma 2 is proved.

3) lim V (1o, X,) = {

n—a

LEMMA 3. Let the following conditions be satisfied:

1. Conditions (A) hold.

2. The function f: [0, c0) x R"— R" is of the class Cy(x).

3. The functions I;: R®"—>R" (i=1, 2,...) are of the class M,.

4. The solution x(t; tg, xo) of system (1) is strictly bounded by a constant
B for teJ(ty, xp), where (ty, xo)€[0, ©) x R"

Then J(ty, xo) = [to, ), i.e., the solution x(t; to, x,) is defined for t > t,.

Proof. Assume that there exists a number a > 0 such that J(to, Xo)
= [to, a). From the fact that lim ¢;(x) = oo uniformly on xe R" it follows that

i—~aw
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for te[ty, a) the solution x(t; ty, xo) meets a finite number of hypersurfaces
Onys Onys --os Oy respectively in the points ¢, < g, <... <g,, @ El(to, a).
Consider the solution Xx(f) of the system without impulses x = f (¢, x) with
initial condition x(g,) = x(g,; to, xo)+1,,p (x(p; tos Xo)). In virtue of condition 4
the solution x(t; to, x,) is defined for t €[g,, a], i.e, X(a) < . The fact that
x(t; tg, xo) = X(t) for t€(p,, a) implies that we can put x(a;to, Xo)
= X(a) < w0, 1e, J(ty, xgo) = [tg, a] which contradicts the assumption that
J(to, xo) = [to, a).

This completes the proof of Lemma 3.

THEOREM 2. Let the following conditions be satisfied:

1. Conditions (A) hold.

2. The functions I;: R"—>R" (i=1, 2, ...) are of the class M,.

3. The function f: [0, c0) x R"— R" is of the class Cqy(x).

4. There exists a function V: [0, o) x R" = [0, o), VeW with the prop-
erties:

() a(Ix|) < V(, x) for (t, x)€[0, ) xR", where acK and a(r) > o
for r = oc:

(i) Vi (6, %) <0 for (t, e U G

(i) V(t+0, x+1;(x)) < V(t, x) for (t, X)eq;, j = L.
Then the solutions of system (1) are equi-bounded.

Proof. Let a > 0 be an arbitrary number and (¢, xo)€S,.

Case 1. Assume that (¢, xg)e U G;.
i=1
In virtue of Lemma 2 there exists a constant K(t,, a) > 0 such that
V(to, Xo) < K(to, a). Choose a number B > 0 such that a(f) > K (to, a).
Assume that there exists a number g eJ(t,, x,) such that ||x(g; o, xo)ll
> B. Then the following inequalities hold

a(ﬁ) < a(HX(Q, tO’ xO)”) < V(Qa X(Qv tO) xO))
< V(to» xO) < K(‘Oa a)'

The contradiction obtained shows that the assumption is not true.

Case 2. Assume that (to, xo) €0;. Then ||xo+ I, (xo)ll < « and V(t,+0,
Xo+ I, (xo)) < K(tg, ®). In a manner analogous to that in case 1 we get to
a contradiction.

Hence |[x(t; to, xoil < B for teJ(to, Xo). In virtue of Lemma 3 the
equality J(to, xo) = [to, 00) is fulfilled.
Theorem 2 is proved.
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THEOREM 3. Let the following conditions be satisfied:

1. Conditions (A) hold.

2. The function f: [0, 0) x R" — R" is of the class Cy(x).

3. The functions I;: R"—R" (i=1,2,..)) are of the class My and for
Ix]| < H the inequality ||x+I,(x)|<H (i=1,2,..) holds, where H =
const > 0.

4. There exists a function V: [0, o) x {x €R™: ||x|]| = H} = [0, c0) with
the properties VeW;

(@) a(lxl) < V(t, x) <b(Ixl) for (&, x)eQ = [0, o) x {x: [[(x)|| > H},
where a, be K and a(r) — o for r — o0;

(i) Vi (t, ) <O for (t, x)e U G;nQ;

=1

(i) V(e+0, x+1;(x)) < V(t, x) for (t, x)ea; N, j>1.
Then the solutions of system (1) are uniform-bounded.

Proof. Let t5 =0, (to, Xo)€ S,, where a > 0 is an arbitrary number. If
for teJ (tq, xo) the inequality ||x(t; to, xo)|| < H is fulfilled, then the assertion
of the theorem is true. Assume that H < ||xof <a.

Choose a number B(x) such that b(x) < a(f). Assume that there exists a
number teJ(tg, xo) such that |[x(t;to, Xo)]| = B. Condition 3 implies the
existence of points g, neJ(ty, Xo) such that the inequalities

H < ||x(¢; to, xolll S @,  [Ix(n; to, Xo)ll = B,

(1, x(n; to, Xo))€ _&Jl G, and ||x(t; to, xo)ll = H
hold for te{eo, n]. Condition 4 of Theorem 3 implies the inequality

a(B) < V(n, x(n; to, xo)) < Vo, x(5 to, Xo)) < b(a)
which contradicts the choice of the number f.
Hence for teJ (ty, xo) the inequality ||x(t; tg, Xo)ll < B holds. Then
Lemma 3 implies the equality J(zq, xo) = [2o, ).
This completes the proof of Theorem 3.

THEOREM 4. Let the following conditions be satisfied:

1. Conditions 1, 2 and 3 of Theorem 3 hold.

2. There exists a function V: [0, o) x {x: ||x|| = H} — [0, o) with the
properties Ve W,

@) a(lxi) < Ve, ) <b(Ix) for (¢, )2 =[O0, o0) x {x: |IxI| > H},
where a, be K and a(r) — c for r — ;

(i) Vg, (t, x) < —c(lIxll) for (t, x)e U G, nQ, where c(r)>0 is a con-

i=1

tinuous function;
(i) V(e+0, x+1;(x)) < V(t, x) for (t, x)eo;nQ, j> 1.
Then the solutions of system (1) are uniform-ultimately bounded.
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Proof. Let a > 0 be an arbitrary number and (¢, xo)€S,. In virtue of
Theorem 3 the solutions of system (1) are uniform-bounded, i.e., there exists
a number B(a) > O such that ||x(t; to, Xo)ll < B for t = t,. Moreover, > a
> H. From the uniform boundedness of the solutions of system (1) it follows
that there exists a number B > 0 such that for (zy, y)eSy and t >ty the
inequality ||x(t; to, Y)I| < B is satisfied. Assume that for t > t, the inequality
lix(t; to, xo)ll > H holds. From properties (ii) and (iii) of the function V(t, x)
it follows that there exists a number y(a) > 0 such that for H < ||x|| < 8 the
inequality V (¢, x) < V(ty, xo)—p(@)(t —to), t =ty is satistied. From last in-
equality, property (i) and the assumption that ||x(¢; to, Xo)ll > H follows the
inequality
4) a(H) < V(t, x(£; to, Xo)) < V(to, Xo)—y(@)(t—1to)

<b@)~—y@(t—to).

If in inequality (4) we choose t > to+ T (a), where

b(a)—a(H)
Na)=——7"7"-",
(@)
this leads to a contradiction. Hence there exists a number ¢ such that

Ix(e; to, Xxo)ll < H. )
If (to+T, x(to+T; to, Xo))€ U Gi, then there exists a number te

i=1
[to, to+ T) such that for t > 7 the inequality ||x(t; to, Xo)|| < B is satisfied.
If (to+T, x(to+T;tg, Xo))€ 0y, then there exists -a sufficiently small
number ¢ > 0 such that |[x(to+ T;; to, Xo)|| < H where T, (¢) = T(a)+¢. Then
for t > to+ T, (a) the following inequality holds:

llx(£; to, Xo)ll < B.

This shows that the solutions of system (1) are uniform-ultimately
bounded.
Theorem 4 is proved.

By means of functions of the class W we shall obtain some necessary
and sufficient conditions for ultimate boundedness of the solutions of system

Q).

THEOREM 5. Let the following conditions be fulfilled:

1. Conditions (A) hold.

2. The function f: [0, o) xR"— R" is of the class Cy(x).

3. The functions I,;: R*"—R" (i=1, 2,..) are of the class M,.

Then necessary and sufficient condition for the solutions of system (1)

to be equi-ultimately bounded for a bound is the existence of a function
V: [0, c0) x R* =[0, cc), V€W with the properties:.
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(i} a(Ixl) < V(t, x) for (t, x)e[0, o) x {x: ||x]| > B}, where acK for r
=B and a(r)— o« for r — ©;

(it) Vm(t, x) € —cV(t, x) for (t, x)e | G;, where ¢ = const > 0;

i=1

(i) V(t+0, x+1;(x)) < V(t, x) for (t, x)eoj, j = 1.

Proof. Sufficiency. Choose a number a > 0 and a point (ty, Xo)€S,. By
Lemma 2 there exists a number K (tq, a) > 0 such that V(t,, xo) < K(to, ).
We choose a number

1 K(to, a)
= -1 .

T =T(ty, @) > c n a(B)

From properties (ii) and (ii)) of the function V(t, x) it follows that for

teJ(ty, xo) the following inequality holds:

V(t, X(t; to, Xo)) < Vito, xo)e " '? < a(B).

From property (i) of the function V(t, x) and the above inequality it
follows that

(5) a(|lx(t; to, Xo)ll) < V (1, x(t; to, X0)) < a(B).
Inequality (5) shows that ||x(t; to, xo)l] < B for t 2 to+ T, teJ(to, Xo).
Then by Lemma 3 the relation J(tq, xo) = [£o, o) holds.

Necessity. Assume that the solutions of system (1) are equi-ultimately
bounded for bound B’. Choose a number ¢ > 0. Introduce the notation
Q,, =85,n.[0,0] xR"). By assertion (o) of Theorem 1 the solutions of
system (1) are equi-bounded, i.e., there exists a constant f(o, «) such that.
[I1x(t; to, xo)ll < B for t > ty, (to, Xo) €2, .. From assertion (B) of Theorem 1
it follows that there exists a constant T(o, a) > 0 such that ||x(t; 14, xo)l| < B’
for t 214+ T(o, a), (tg, Xo) ER24q-

Define the function G: [0, o) — [0, o©) by the equality

u—B for u=>PHB,
0 for 0O<u<BhB.

G(u)={

Let (t, x)e Q2,, be an arbitraty point and (¢, x)e D;. Define the functions
Vi(t, x) =sup {G (lIx(t+7; t, X)) e (t+7, x(t+71;¢, x))e D;},
=20

Viex(t, x) = sup {G (IIx(¢+ 15, X)) 2 (t+7, x(2+7; ¢, X))eD;., .},

20 itk

Vi, x) = sup Ki(t, x).

k2i

The function V(tz, x) satisfies the estimate

Vi(t, x) 2 Vi(t, x) > G(||x]).
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Moreover, the function G(u) > 0 for r > B i1s a continuous increasing func-
tion and G(u) —» oo for u — oo. Hence the function V(t, x) has property (i).
Let (t, X) €Q, 4, (t', X)€Q, ., t <1, (t, x), (', xX)€G,;, t'—t <inf |t;,, (x)—
—tj(x): j=1, xeR".
From the condition ||x(z; ¢, x)j| < B’ for 7 = t+ T(0o, a) it follows that
G(llx(z; ¢, x)|f) =0 for Tt =1+ T(s, @) and

Vi, x)y= max W, x), V({',x)= max V(' x),

i<k<i+p isk<i+p

where (t+ T, x(t+T; t, x))eD;,, ..
Introduce the notation

F*(o,2) =1+  max ILf (e, X
(t.x)e[0,0+ T) xBg

and the set
M, ={t, x): te[0, o+ T(@)], Ixll < B(®)}.

The condition f(t, x)e Co(x) implies the existence of a constant
L(o, a) > 0 such that

ILf (&, x)—f(t, Il < Lo, a)llx—yll for (¢, x), (¢, y)e M,.
Let V(t, x)=V(t, x). If V.(t, x) =G(x(t+e;t, x)|[)e®, where t+p
=t (x(t+g; 1, ), ' +0 =t (x('+¢; ', x")) then the following relations hold
Vi, x)=V(t', x) < Vi (t, x) =V (t', x)
<lix(+e5t, x)—x(t'+o; ', X[ e
<e?lllx(t+est, )—x(t'+es t, x|+
+Hx(+o; t, )—x(t'+o; t', I +x (' +o;t', x)—x("+e; ¢, X}
< ecT(a.a) {N(O’, a)lt—t'l +eL(o,a)T(a.¢)(1 + M(a))v(a) IIX—x'll},
where

N(o, @) = F*(o, a) {1 +eleaTeary 4 M(a)]"")},
y(@) = supi(t, t+ T(0, 1)) <o, M (x) = sup M; (a),

20
i(t, o) is the number of the points t;e(t, o),

)= LN < My(@)llx—x||  for x, x"e By.
If V(t, x) = G(lIx(¢t+e;t, x)i)e, where

(t+o: x(t+o;t, x)eD;, ('+e;x(t'+e;t, x)) €Dy,
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then the following relations hold

V(t, )=V (', x) = Ve(t, )= Visr (¢, X) <
<llx(t+est, )—x(t'+o: ', x|

< €7@ IN(a, 0) |t — 1]+ e4o0TED (1 + M ()@ || x— x| ).
Analogously we can prove that
V(t, x)=V(t', x) = —eT@ (N (o, a)|t —t'| + “=2TCD (1 + M ()@ llx—xI}.

)
Hence for (¢, x)e U G; the function V(t, x) is continuous on both
i=1

arguments and Lipschitz on its second argument.

We shall show that ¥V (t, x) has property (i1). In fact, for (¢, x)e |J G; and

i=1

h > 0 the following inequality holds

Vi(t+h, x(t+h; 1, x)) =sup {G(||x(t+h+7; 1, x)|| e

20
(t+h+7, x(t+h+15t, x))eD;, |
=sup {G(llx(t+7; t, x)|| e e

t2h
(¢+7, x(e+7;8, x))eD,-h}
< Ve, x)e <k,

The above inequality implies that

— 1
lim - [V (t+h, x(t+h; t, 0)= Kt 0} < —chilt, ).
h—=0+

Hence the function V(t, x) has property (ii).

Finally we shall show that the function V (¢, x) has property (iii). In fact,
for (t, x)e o}, the following inequality holds

Vit, x) =sup V(t, x) = sup V(t, x) = V(t+0, x+1;(x)).

k2j kZj+1
This completes the proof of Theorem 5.

THEOREM 6. Let the following conditions be fulfilled:

1. Conditions 1, 2 and 3 of Theorem 3 hold.

2. The solutions of system (1) are at the same time uniform-bounded and
uniform-ultimately bounded for bound B.

Then there exists a function V: [0, o) x {x: ||x|| = H} — [0, ), Ve W,
with the properties
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() a(lxi) < Ve, x) < b(lxl) for (t, x) €2 = [0, o) x{x: ||x|]| > H],
where a, beK and a(r) = o for r = ©;
(i) V5, (¢, x) < =cV(t, x) for (t, x)e U G; " Q, where c = const > 0;
i=1
(ii)) V(t+0, x+1;(x)) < V(t, x) for (t, x)€a;nQ, j> 1.

Proof. Let 6 >1 be an arbitrary number and the point (z, x)€
[0, o) x R" be such that ||x|[ > B, (t, x) eD;. Define the functions

1+6t
1+1

Vi(t, x) = sup {IIX(tH;t, X

t20

D+, x4t x))eD,-},

1461
1+t

Visx(t, x) = sup {JIX(I +1; ¢, )|

20

e+, x(t 4158, x))EDfi+k}’

V(t9 X) = Sup Vk(t’ X),

k=i
where H = 6B.
The function V(t, x) satisfies the estimate

(6) Vi, x) 2 Vi(t, x) > ||x]|.

From the condition that the solutions of system (1) are uniform-bounded
it follows that for any number « > O there exists a number f(a) such that for
(to, Xo)€S, and t >ty the inequality ||x(z; to, Xo)l| < B holds. Moreover, we
can assume that the function f(«) is continuous, monotonely increasing and
B(a) » oo for a — co. From the definition of the function V(t, x) it follows
that
(N Ve, x) < B(Ix])-

Inequalities (6) and (7) show that the function V(t, x) has property (i).

We shall show that the function V(t, x) has property (ii). In fact, let
(t, x)€G; Q. Then for sufficiently small values of h >0 the inclusion
(r+h, x(t+h:t, x))eG,nQ holds and for k >i the following inequality is
satisfied

' . _ 1+6Q—5h'
Vit +h, x(t+h; t, x)) = ig}:{llx(t+g,t, x|l TTo—h "

(t+o, x(t+0;t, x))eDjk}
< (1-8h+h) V(1 x).
From the above inequality it follows that

V(b xR £ 0)~ (e, 0} S (=9 K, )
ie.,
Vi (6, %) < (1—8) V{2, %)

which shows that the function V(t, x) has property (ii).
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Let (t, x)€0; Q. Then the following equalities hold

(8) V(t, x) =sup¥(t, x), V(t+0, x+1I;(x)) =sup ¥, (t,).
k=i k2i

From equalities (8) and the definition of the function V(t, x) we obtain
the inequality :

V(e+0, x+1;(x)) < V(t, %)
which shows that the function V(t, x) has property (iii).
Let (t, x)€Q,,, (', X)EQ, 4, t <V, (t, ), (t', X)e Gy,
t'—t <inf{t;4,(x)—t;(x): xeR", j=1},
where Q,, = {[0, 6] xR"} xS8,.

From condition 2 of Theorem 6 it follows that there exists a number
T(a) > 0 such that ||x(z;t, x)j| < B for © > t+ T(a).
Hence for sufficiently large values of t the inequality

1+6t<

; < 0B,
Ie(e; £, 0 7

holds which shows that there exists a positive integer p such that

Vi, x)= sup (¢,,x) and V(',x)= sup W(, X).

i<k<i+p iSk<i+p

Analogously to the proof of the necessity in Theorem S we can prove
that the function V(t¢, x) is continuous on both arguments for (¢, x)
@®
€ |J G; 2 and Lipschitz on its second argument.

i=1
Theorem 6 is proved.

We shall apply some of the sufficient conditions obtained to the
investigation of concrete systems with impulse.

ExaMpLE 1. Consider the system with impulses

X=B({t)x+A()x for t 1,
Axlr=q = C;x(t;),

©)

where x €R", B(1) = diag (b, (1), b5 (1), ..., b (1)), be(t) <O for t€[0, o), A(2)
is an (n xn)-matrix which is symmetric, negatively definite and continuous
for tG[O, w), Ck=diag(clk""’ c"k)a -1 <cik<0’ 0<tl <t, <..

lim tl = Q0.
k—a

‘9
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The function V(t, x) = Z x? satisfies the conditions of Theorem 3. In
fact, i=1

n n
Vg (t, x) =2 Y bi(x?+2 Y a;x;x; for t #1,
i=1 ij=1
n

Vit,+0, x+Cyx) = Y [x(Cy+1)]* < Vb, x),

i=1

Il <V, x)<ylixll, »>1.

Then by Theorem 3 system (9) has uniform-bounded solutions.
Moreover, if there exist constants y; > 0 such that b;(t) < —y;, then by
Theorem 4 the solutions of system (9) are uniform-ultimately bounded.
In the special case when in system (9) n = 1, B(t) = b, A(t) =0, then any
of its solutions has the form
x(t) = Xxq P IT (1+c)

L) <li <t
and it is easy to check that these solutions are indeed uniform-bounded.

ExaMmpLE 2. Consider the system with impulses
x=a(t)y—b(t)x(x*+y?),
(10) y=—a)y+b)y(x*+y? for t #1,
A=y, = i x (), AYli=y, = diy (),

where a(t), b(t) are continuous functions for 1t >0, b(1) <0, —1 <¢, <0,
—1<d, <0, k=1,2,...,0<t, <t <..., lim¢ = 0.
k2o
The function V (¢, x, y) = x>+ y? satisfies the conditions of Theorem 3.
In fact,

Vao (t, x, ) =2b()(x*+y*) <0 for t #1,
V(t;+0, x+c;x, y+d,y) = x2(1+c,)} +y*(1+d)2 < V¢, x, ).

Then by Theorem 3 the solutions of system (10) are uniform-bounded.
Moreover, if there exists a constant y > 0 such that b(t) < —1y, then by
Theorem 4 the solutions of system (10) are uniform-uitimately bounded.
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