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Existence of differentiable solutions of a system of
functional equations of first order

by Z. KRZESZOWIAK-DYBIEC (Krakéw)

Abstract. A theorem on the existence of a differentiable solution of the system
of funetional equations

o(f(x) =g(=, o),

where ¢ < R xRV is the unknown function, is given under the hypothesis that the
symetric difference of the sets ;) and I'; (definition, Section 3) is of N-dimensional
Lebesgue measure zero. - .

1. In the present note we are concerned with the system of functional
equations

@) o(f(@) = g(z, o(@),

where ¢ = R x RY is the unknown function, and the functions ¢ < RV +' x RY
and f = R x R are given. This note is connected with author’s paper [3]
dealing with the problem of the existence of solutions of system (1) which
are of class C” in an open interval (a, b), in the case where the symmetric
difference of the sets I', and £, (see the definition below in Section 3)
is at most countable.

In the note we assume that this symmetric difference is of N-dimen-
sional Lebesgue measure zero.

In the case I -, =@ the theory of solution of equation (1)
is known (cf. for example [1], [2], [4], p. 67-105).

2. The investigation of C"-solutions of system (1) is based on a cer-
tain theorem which we are going to prove with the aid of the Sard the-
orem [6], [5]. To this end we make the following assumptions:

(i) The functions u,: F, - R, n = 1,..., are defined in sets F,
contained in <0, 1) x R?"!, where q < N.
(ii) w, € C1(F,) for every n =1,2,...(Y). .

(*) In the whole of this paper we understand the O"-class of a function in the
global sense. '
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(iii) There exists a sphere S(0, ¢) in RY such that
u,(¥,) =« 8(0,p) for everyn =1,2,...

We shall prove the following

TeroREM .1." If hypotheses (i)-(iii) are fulfilled, then for every fized
positive integer r > 0, and for every two elements a, € §(0, o), a, € (0, o)
such that a, ¢ u,[({0} x R ") F,], @, ¢u, ({1} xR")NF,], for every
n=1,2,..., and for any eR, ¥eRN, k =1,...,7, there exists
a function u such that '

u: 0,1>>RY, weC({0,1)), u(0)=a, u(l)=a,
ub(0) =01, uwPA)=¥¥, k=1,...,7,
u({0,1)) = §(9, o),

u(z) #u,(z,t) for every (z,8)e¥,, n =1,2,...

Proof. Let us take a function v: ¢(0,1> - RY, v € ({0, 1)), such
that: ©(0) = @&, ®(1) =a,, vM(0) =¥ vP1) =¥ [P@)I<e =
max(|ay|, |@,]), for every ze (0,1), and a function 1: {0, 1) - R,
A€ (C"(<0,1)) such that: 1(0) = A(1) =0, A¥(0) =A¥(1) =0,k =1,...
ey 7y 0 < A(@) < (06— 00)/0 for every x € (0,1).

For any t € 8(0, o) let u, denote the function u,: <0,1) — R¥ given
by: u,(z) = v(z)+ A(2)t. Denote by E the family of all functions u,,
t € 8(0, p). Then each u, € F has all the properties asserted on u in the
theorem except the last one.

The set £ endowed with the usual supremum metric

d(uy, ug) = sup A(z)|t—1|
ze(0,1>
is a metric space homeomorphic with the sphere §(0, ¢). The homeo-
morphism % is given by S(0,¢)3 ¢+ u,cE.
We put

1 1
Fn,s=an<_8'v1_;'>X.Rq_l, n=1,..., 8 =3,...

and define the sets:
E,, = {u, € E: there exists (v, y) ¢ F,, such that u,(z) = u,(z, y)}.

-~

We shall prove that the set
oo 00
E, = U UEn.a
8=3 n=1 .

has no interior in the space E. It suffices to show that the set
oo a0
Z = U Uzn,a!

=3 n=1
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/

where
Zn,a = h_l(En,a) = {t € §(0, 0): u, € En,s}
has no interior in the sphere S(0, o).
Writing
u,(z, y)—v(x)
A(z) '

Tne(®) Y) = (z,y)eF,

we observe that
(*) Zn,s < an,a(Fn.s)'

The function y, , is of class C'in the set F,, c R% ¢ < N, hence on ac-
count of the theorem of Sard, we have

my (7n.a (Fn.s)) =0 ’

where m, denotes the N-dimensional Lebesgue measure.

Because of (+) we have also my(Z,,) = 0 for every n> 1 and s > 3;
thus my(Z) = 0, and the set Z has no interior in §(0, ¢). Consequently E,
has no interior in the space E, so there exists a function u € ENE,. The
function u has all the desired properties because it belongs to F and does
not possess common values with any of the functions u, (according to the
definition of ¥,). This completes the proof.

Remark. Since the set E\ E, is dense in the space E, there exist
infinitely many functions fulfilling the assertion of the theorem.

3. Now we are going to formulate a theorem on C’-solutions of system
(1). For this purpose we impose some hypotheses regarding the given
functions f and g.
Let
Q2 < R¥H

be some set, and suppose that we are given a function
g:' Q2->R".
For an arbitrary « we shall denote by £, the xz-section of the set £, i.e.
Q, ={y: (¢,y) € Q).
e assume that the interval (a, b> is contained in the set

{z: 2, # 9}
and we write

r,=—g@,9), I'= U {@xTI,.

zela,b)
Thus we have I, « R¥ and I' « RV*.,
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Let r be a fixed positive integer. We assume that:

(I f: La,b)—<a,b), f(a) =a, f(b) =0b, f(x) > for xec(a, bd),
feC ({a, b)) and f'(x) > 0 in {a, b).

(II) g eC'(RQ) (%), and for every z e (a, b) the function y - g(z, y)
is invertible.

(III) h e(C"(I'), where h denotes the function inverse to the function
y—gz,y).

(IV) Thereexistsets 4, < R*!, ¢=1,2,..., B; c R}, j=1,2,...
where ¢ < N, and functions

u;: {a,b>xA, >RV, wu,eC'(a,bpx4), i=1,2,...,
v;: (a,b)xB;>RY, w©,eC'({a,b>xB), j=1,2,...
such that

rz—nf(z) = H“i(a’, 4,), Qf(z)_rz =jq v;(z, By).
(V)  There exist a point (2,, #) € 2, x, € (a, b) such that 5y = g(z,, #)
and a g, > 0 such that
(Zoy f(@e)) X 8y € QUQUT,
-where 8, is the sphere:

{y € RN’ 1y — 91 < 0o}-

We introduce functions g, c (2 x R*N)x RV by the recurrent for-
mulae

og 0
9.0, 9, = 1 @1 | 2 (0, 9+ 22 (0, 911 |

(2)
0 0
G (@Y Yry oy Yry) = [ (@)]7! [ + - 3;?; Y+... + az: yk+1]’

@,y e,y;,eRY, i =1,...,k; k=1,...,r—1.

Similarly we define functions h; < (I'x R"N ) X RN by the relations

h,(z,y,y,) = ( s ) +f (@) ay(‘”!y)yn

ah,,

oh
b (@Y, Y1y oy Ypp)) = +f(x )[ oy Y+ .. +E:yk+|]’

(z,y)erl, y,-eRN, i=1,...,kk=1,...,r—1.

(?) Compare footnote () , p. 119.
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From assumptions (I) and (II) it follows that
g, cCHQXxRY), k=1,..,r.

Similarly, by assumptions (I) and (III) we have h, e C"™~*(I'x R*Y),
k=1,...,r.

It can easily be verified that if hypotheses (I), (II), and (III) are
fulfilled and ¢ is a C"-solution of system (1) or, equivalently, of the system

(3) o(2) = hz, p(f(2),

then the derivatives ¢! satisfy the equations (cf. [2]; also [4], p. 85)
4) P (f(@) = gilz, 0(2), ¢’ (@), ..., #M (@)}, Kk =1,...,7,

(4) oM (@) = hy(z, o(f(@)), ¢ (@), ..., 8P (f(@)), k=1,...,7.

We aim at proving the following

THEOREM 2. If hypotheses (I)-(V) are fulfilled, then for every o with
0 < o< gy and for every system of elements I¥ e RN, k = 1,...,r, there
exists a function ¢ with the following properties:

(5) ¢ € 0" ((a, b)),

(6) @ satisfies system (1) in (a,d),
(7) lp(@)—nl < e for every x e (mo, f(%)),
(8) (@) =8, k=1,...,7.

Proof. We denote z, = f(x,), #, being defined in hypothesis (V),
and we consider the interval {(z,, #,> = (a, b). We also fix a g, 0 < ¢ < g,,
and we denote

8S={yeR": ly—ni<e}, 8cb,.

With the aid of the given functions w,, v;, f and g occurring in hypo-
theses (I)~(IV) we now construct sequences {u, .} and {v;,.} of functions
(defined in some subsets of sets <{a, b) X 4; and <{a, b) X B;, respectively)
by the formulae

U (@, 8) = uy(f1 (@), ),
Uy i (@, B) = h(w, u; o (f(2), t)),
v (2, 1) = v,(f (), ¢),
O mii (@, 8) = g(f (@), vy (f (@), 1))
We shall examine the following sequences of sets:

(10) 4,,, = {(=,t) e {my, @) X A u, (2, E) exists

(9)

(9)

and belongs to SYlv:
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(10') B, = {(z, 1) € (%, 2> X B;: ©v;,, (v, t) exists
and belongs to S} %+

m=0,1,...

Now we rearrange the functions u, ,, and v, ,, into a single sequence,
and we denote by ®v, the elements of this sequence. By F, we denote
the domain of definition of the function w, (each F, is equal to some A4, ,
or B;,. Thus we have

w,: F,->RY, F, c (&) xR,
w,(F,)=8, =n=1,...

From hypotheses (I)~(IV) and from (9) and (9’) it follows that w, € C'(F,),
forn =1,2,..
Let us put

Po,n = ({wO}XRq_l)nFn; Pl,n = ({wl}XRq-l)nFn'
We now try to find points @, and e,, such that e, 8, a,€8, a,
g§w, (P, ,), @, ¢ w,(P,,) and @, = g(x,, a,).
The point g is a fixed point of the tra.nsforma.tiop
Yy - gz, y),

which maps the set 2, mto RY (cf. assumption (V)). Since the function g
is continuous at the pomt (29, n), there exists a meighbourhood U, = §
of 5 such that g(z,, U,NnQ, ) c 8.

Let C denote the set of all n € U, for which there exist either a positive
integer m and t e P;, such that w,,,(a:.,, t) = n or a positive integer n

and 8 e P, such that t,(z,,8) = g(z,, n). On account of assumption
(II) we have the equivalence

9@, 1) = w,(x,,8) <=5 = h(wo, w, (2,, s))
Let us write
Zp(®1, 8) =h(“’o’wn(w11s)), n=1,..., 8eP,.

We notice the following facts: ~

Cc an(Po n)Y Uzn(Pl )

[n=1"
w,: F,>R", F,cBR, q<N, w,eC(F,), P,,cF,
n=1,..,
zn: Pl,n—>RN’ ‘Pl.n < Fn’ zn ecl(Pl,n)'
Hence, by the Sard theorem, we have

my(w,(Py,) =0 and my(2,(P,,) =0, =n=1,..,



System of functional equations of first order 125

which imply m,(C) = 0. This means that the set C has now interior
in U,,n.Q,o; so there exists an * such that

n* e U,,ano and g*¢0C.
Therefore we may take
a =9n* and @ = g(@,n*).

Now we can make use of Theorem 1. Take an arbitrary system of
points I € R¥, and put ¥¥ = g, (%, #*%, 4, ..., k), k =1,...,7, where g,
are defined by (2). According to Theorem 1 there exists a function » with
the properties

(11) u € 7 (&g, 21)y

(12) u(@) =n* u@) = g(x, n*),

(13)  uP(x) =1, uP(z) = gplzoy 0 G, ..., B); Ek=1,...,7]
(14) u(z) #w,(r,t) for every (z,t)eF,, n=1,...,

(15) u({wo, 1)) < 8.

This means that besides (11) and (15) the function u satisfies also:
(12 u(x,) = g (0, u(@,)),

(13) uP(z) = gk(“’o’ u (%), u' (%), -, 'u(k)(wo))y k=1,...,r,
(14") u(x) #u,,(x,t) for (,8)ed;,,i=1,...;m=0,1,...,,
(14”) wu(z) # v; (2, t) for (z,t)eB;,,,j=1,...; m =0,1...,

where u; ,, and v; ,, are defined by formulas (9) and (9'), and 4;,, and B, ,
by formulas (10) and (10).

Now we can define the function ¢ whose existence is asserted by our
theorem. We put

u(z) for z € {xy, =),
(18) ¢(@) =19[f (@), e(f(@)] for zelz,, @), n=1,...,
h[“’yﬂf("”)” for zede_py@_pp)y n =1,...,

where z, = f*(%,), #_, = f "(x,) and f*(z,) denotes the nm-th iterate of
the function f.

First we prove that formula (16) actually defines a function ¢ for
every « € (a, b). From (14'), (10), and (9) it follows, in particular, that
for n =0

u(w)¢gui(f-‘(w),Ai), o € (ty, 1)
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Thus, on account of assumption (V), we conclude that
a7 u(z) e .Qa, for every z e (@, z,).

Now we consider the interval <{z,, #,). If z € {#,, z,), then, by assumption
(X), [~ (2) € {xy, x,), and by (17) we get u (f~'(x)) € L;-1,; thus formula (16)
defines the function ¢ at the point .

Assume that the function ¢ is well defined by formula (16) in the
interval <{a,, x,).

We take an arbitrary ze{z,,x,,,), so that f~(z)e{z,_,,2,).
From the inductive assumption it follows that the function ¢ is defined
at f~'(x). The value g|f~*(z), ¢(f " (#))] will make sense if

(18) ﬂf’l(m)) € .Qj-l(z).
We know that
(19) ¢(f_l(m)) = g[f—z(m)r ?(f—z(m))]v

so that ¢ f!(®)) € I'y-2,). In view of assumption (IV), condition (18)
will be fulfilled when

¢(f_l(fl’)) ¢ Tp—20y)\ 210y = g)lui(f‘z(w), 4,.

This is equivalent to the condition

(20) ¢(f"‘(a;)) # u,(f*(x),t) for every ted;, i=1,...

-

Suppose that (20) is not fulfilled, i.e., there exist a positive integer ¢ and
a t € A; such that

o(f (@) = w(f (=), 4.
By (19) we have
glf @), e(f(@)] = u(f =), ¢

and using the inverse funetion (ef. assumption (II)) we obtain

p(f @) = h[f @), w(f*@)] = u, (f (), ¥),
where u; , is defined by (9). After n steps we get
o (f " (@) = uyp, (f" (@), E);
but '
I7™(@) € <@y, f(,)),
and so by (16) we get
W(f_n‘(“’)) = u(f"‘(m)) = i.n—l(f_n(w)y t)v (f—n(m)’ t) € Ai.n—l!

which is impossible by (14’). Thus, if = € {,, ,,,), then condition (18)
is fulfilled and formula (16) defines the value ¢(z).
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Finally, it follows, by the induction principle, from assumption (I)
and from the theorem proved in [4], p. 21, that the function ¢ is defined
for every =z e(w,,b).

We omit an analogous proof of the fact that formula (16) defines
the function ¢ for every z € (a, ).

This part of the proof is analogous to the proof of the corresponding
theorem contained in [1] (cf. also [3], p. 127-128). We notice that (11)
and assumptions (I)-(IIT) imply that ¢ is a C"-class in every interval
{&py Tpy1)y ® = 0,1, ... Thus it suffices to prove that

lim p¥)(z) = ¢¥(z,), &k =0,...,7, n =0,1,...,

e p—
za:n

where ¢! (2,) denotes the k-th right derivative of the function ¢ at the
. point z,.

First, by induction we show that
(21) limp(z) = p(2,).

:n—-»zn

For n = 1, by (16) and (11) we have -

lim ¢(z) = Iim u(zx) = u(z,).
Ml— a‘—FIl—

On the other hand, it follows from (16), (I), (11), (III), and (12’) that
li'I_t ¢(x) = lim g[f~(z), o(f " (2))]

> xl Eaag |

= lin:_g[f“l(a:), ‘u(f_l(m))] = g(‘”a; u(“’o)) = u(z:,);

:c—-:cl
thus ¢ is continuous at the point #,. Now, we suppose that

lim ¢ (z) = p(a,)

T>Ty

for certain » > 1 and we inveétigate lim ¢(z). On account of (16), as-
T=>Tp 41
sumptions (I), (II) and the inductive assumption we may write

lim ¢(#) = limg(f(2)) = lim g(z, ¢(2))
Tz,

T+In+1 Z=Tp
= g(mm 1’(‘7"1;)) = @(%,11);

thus condition (21) is fulfilled for every natural n, which means that
p € C"((@, b)). Similarly we prove that ¢ e(C°((a,2,>). We omit this
proof.

In the sequel we suppose that the solution (16) is C*~! in the interval
(s, b), k> 1, and we show by induction that it is C* in (z,, 2,) for every
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natural n. According to (16) and (11), this is true for n = 1. Now we suppose
that @ € O%((xy, ,)} for certain » > 1. Let us take an z e (=,,,,,);
then f~'(x) € {z,, ,), and so by (16), (I), (II) and by the inductive as-
sumption, we have

(22) PE [Ck(<m07 wn)} NC* ({y, wn+l)] .

On account of (4) we may write

(23) o™ (@) = g, [ @), o(f (@), o' (f (@), ..., ¥ (F (@))]

for any « € (2, z,).
Further, if #—>z,, then f~'(2) »> z,_,; thus by (22), (23) and by
assumptions (I)—-(II1) we get '

lini oM (z) = gk!(mn—n P(Tp_1)y @ (Zpi)yoeey ¢(k)($n—1)) .

>
z:rn

On the other hand, because ¢ € C¥ (¢, #,41)), We have

¥ (w,) = g1 (T 0(25_1), 0 (@,_1)5 ., @F (@, _)))
and consequently

lim ¢ (2) = ¢¥(z,),

xr—>
&€ J.'n

80 that ¢ eC"((mo,acn +1))- By induction (on «) we conclude that ¢ e
C*({m,, x,)) for every natural =, in view of Theorem 0.4 in [4] and,
by induction on k¥ we get the conclusion that ¢ € 0" (<w,, b)).

Similarly we prove that ¢ € C"((a, #,)). Using (16), (11), (4’), and
hypotheses (I), (ITI), we show that ¢ is C" in every interval (z_,, z,),
n =1,... We omit the numerical details. Finally, we conclude that
9 € C"((a, b)). Properties (8) and (9) result immediately from (16), (15),
and (13).

This completes the proof.

Remark 2. According to Remark 1, for any g, 0 < o < g,, and for
arbitrarily chosen If e RN, k =1, ..., r, there exist infinitely many solu-
tions of system (1), which enjoy properties (5)—(8).

From Theorem 2 we also obtain the following

Remark 3. If the assumptions of Theorem 2 are fulfilled, then the
solution ¢ of system (1) defined by formula (16) satisfies the conditions:

o(@) ¢ U u,(f (@), 4) for every & e <z, b),
1=1

and

() ¢ D v,(f~'(z), B;) for every « € (a,2,).
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