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Abstract. The paper deals with the equation
(1) (8, ax )@ @ y))) +a)y = 0,
where the coefficients az(t) >0, t=1,2, a(t) >0 are continuous on (— oo, o)
and satisfy the conditions f ayl(t)dt-= oo, i =1,2. There were made various de-

compositions of the set of all solutions of (1), were studied the relations between these
decompositions and asymptotic behaviour and also other properties of the solutions
belonging to the same class.

We are dealing with the equation

) (ax((axd(@,)y))) +a()y = o,

where a,(t) e C((— o0, o), (0, o)), © =1,2, a(t) e C(( — oo, o), [0, )
and a(t) does not vanish identically on any subinterval of J = ( —o0, o0).
We also assume that

at
(@) f — o, §=1,2.

By a solution of (1) we understand a non-trivial solution. Our assump-
tions ensure that the solutions of (1) are either all oscillatory or all non-
oscillatory ([1], [2], [3])- We use the notation

Ly =y, Liy=ay, Loy = ay(Lyy) = az(a,y’),
Lyy = ay(Ley) = ayfas(ayy’)), Ly = (Ly9) = (as(ae(aay’)))

and we call L;y the quasi-derivative of y of order ¢, ¢ =0,1,2,3,4.
We say that y = L,y has zero of order k at t,, if Ly(t) = 0,4 = 0,1, ...
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eeey k—1, L, y(1,) # 0. Using this notation we rewrite equation (1) in the form

(1) Ly-+ta(t)y =0.
THEOREM 1. Let y(t) be a solution of (1). Then the function
(3) Fly (1) = Loy (¢) Lyy (t) — Ly (¢) Ly (2)

18 strictly decreasing on ( — oo, ). If t, € (— o0, o0) 18 a double zero of y(1)
(at least), then F(y(t)) > 0 for t < i, and Fly(1)) < 0 for t > t,. Thus every
solution of (1) has at most one double zero.

Proof. We get by an easy calculation

Fly@t) = —at)Liy _ Liy<0, ted,
. a(1)
where = does not hold in any interval. Thus F(y (t)) is strictly decreasing.
The remaining statements in the Theorem are obvious.

Our main purpose is to investigate solutions of (1) with regard to
their relation to the function F(y(t)); we are mainly interested in those
solutions y(t) for which F(y(t)) > 0 for t e J.

We divide our considerations into two parts: I. The case where all
solutions of (1) are oscillatory. II. The case where all solutions of (1) are
non-oscillatory.

I. The case where all solutions of (1) are oscillatory. We start with
two lemmas.

LEMMA 1. Let y(t) be a solution of (1) and suppose that for some to € J
we have
Loy(te) = 0,  Lyy(to) L2y (t) Lyy(2,) # 0,
(4) ,
sgn L,y (t) = sgnLyy (o) #* sgnL,y(t).

Then for every zero s of y(t) such that s < t, the following relations hold:
Lyy(s) Loy (8) Lsy(s) # 0, sgnL,y(s) = sgnLyy(s) +# sgnLyy(s).

Proof. It follows from (4) that F(y(t,)) = —L,y(t)Lyy(te) > 0.
Therefore, F(y(t)} being strictly decreasing on J, we have F(y(t))> 0
fort << t,. Let s < t,bea zero of y(t). Then we get F(y (s)) = —L,y(8) Ly (8)
> 0, and therefore sgnL,y(s)  sgnL,y(s). Let now t_;, << t, be the first
zero of y(t) to the left of ¢{,. From the above we know that sgnL,y(f_,)
# sgnL,y(t_,). We have to prove that sgnL,y(i_,) # sgnL,y(i_,).
Suppose the contrary: sgnL,y(i_,) = sgnL,y(t_,) +* sgnL,y(t_,). Let
Ly (t) < 0, Lyy(t) > 0, Lyy(te) < 0. Then Lyy(t_,)>0, Lyy(t_,) <0,
Lgy(t_,) < 0 and Lyy(t) >0 on (t_,,%,). From (1) we see that L,y (t)
decreases on (¢_,, t,) and therefore L,y (t) < 0 on (?_,, t,]. But then L,y (¢)
also decreases on (i_,, t,] and therefore L,y (t) < 0 on (t_,, ?,], which is a
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contradiction to the supposition L,y(?,) > 0. Thus we have proved our
assertion for {_, < ¢,. By induction we get the assertion for all zero s <7, of
y(1)- |

LemMMA 2. Assume that t,<1,, 1,, 1, €J. Let y4(t) be the solution of
(1) determined by the conditions: L;y,(t,) = 0, ¢ = 0,1,2, Lyy,(t,) = 1,
and u,(t) & solution of (1) satisfying the conditions Lyu,(t,) = 0, L,u,(t,)
= Lyu,(t,) = 0. Then: y;(t) and u,(t) have no common zero in (1,,1,);
between any two comsecutive zeros of ys(t) in [1,,1,) there is exactly one zero
of u,(t), and between any two consecutive zeros of u, (1) in (ty,t,] there is
exactly one zero of y,(t).

Proof. Denote by %,(t), ¥ = 0,1,2,3, the solutions of (1) sat-
isfying the conditions

(5) Liye(te) = 0y,  J, % =0,1,2,3,
dj; being the Kronecker symbol. Then the solution u,(?) has the representation
(6) U (1) = Ly Ug (80) Y1 (¢) + Ly 14y, (1) Y5 () 4 Lis 4y, () Y5 (2) -

This means that w,(t), ¥,(f), y2(t), ¥s(?) are linearly dependent, and
therefore

Loy, LoY1y LoYsy LoYs
Lyw,y, Lyyyy, ILnysy LnYs
Lyw,, Lyyyy, LgYsy Lsyys
Lytyy L3y, LsYs, LsYs

(W1t Y1y Y2y Ys3) = =0 forall ted.

It is easy to verify that the subdeterminants corresponding to L,u,,
L,u,, Lyu,, Lyu,, respectively, are Lyy,, L;Ys, L1¥Ya, Lo¥Ys, respectively.
Therefore the above equation can be written in the form

() Lo, (8) Ligys(t) — Ly %, (8) Lipy 5 (t) +- Ly, () L Y5 (%) —

— Lyu, (t) Loys(t) = 0
for t € J. Now we are able to prove that u,(?) and y;(¢) have no common
zero in (t,,t,). In fact, let {, < t<?, be a common zero of u,(f) and
y3(t). Since 7<t,, from Lemma 1 we get sgnlL,u,(r) = sgnl,u,(r)
# sgnL,u,(7v). On the other hand, from the fact that ?,<< 7 and from
the initial data of L,y,(t,),7? =0,1,2,3, it follows that sgn.lL,y,(7)
= sgnL,y,(r) = sgnLyy,(r). Comparing these conclusions with (7),
we get a contradiction.

Let now a, 8 be two consecutive zeros of y;(t), t,<ae< ¢, and

let u,(t) # 0 on [a, f]. Then an easy calculation shows that (7) can be
written in the form

a1 [M] Lty (L (8) — Lty () Lo (1)
L Loua(t) [ Lo ()T ’
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whence, after dividing by a,(?),

LT Leu(t)
[%%m = T ou,r PO

Integrating from a to § we get

L,y3(B) . Lyys(a)
Loun(ﬁ) Loun(a)

N0 %mm%mm—h%mgmm]ﬁ
U, (t) a, (1) ”i (%) )

L ’
TR0

8 —— = Y3
®) [T, ()T

(9)

Since 1, is at least a double zero of u,(f), according to Lemma 1 we
have F(u,(8)) = Ly%, (t) Lyt (t) — Ly, (t) Lyu,(2) > 0 for t < t,. Thus the
integral on the right in (9) is not zero and its sign is sgny,(t)-sgnw,(?),
t € (a, ). Assume that {, < a<< < 1,. Then, by Lemma 1 and Lemma 2,
we get Lyys(a) # 0, L,yys(B) # 0 and for { € (a, f) sgny,(t) = sgnl,ys(a)
# 8gnL,y;(f). Thus the left side of (9) is not zero and its sign is
—sgnys(t)sgnu, (t). Therefore equality (9) yields a contradiction. If
t, = a< < t,, we have to consider the interval [, ¢, 8], where ¢ > 0 is
small.Then the equality which results from (9) on replacing a by #,-+¢ also
yields a contradiction. We have thus proved that «,(¢f) has at least one
zero in (a, #]. Since y4(t) and u,(t) have no common zero, we see that
4, (1) has at least one zero in (a, f8).

Let now y, 4, t, < y < 6 < 1,, be two consecutive zeros of , (¢). Assume
that y4(t) # 0 on [y, é]. Then (7) can be written in the form

(10) [ﬁﬁﬁﬂlﬁ=—£—D<M%UHMLm+Lwﬂ&%u@ﬂ,

() 1Y 930) " ad L
{ e [y, 6], and integrating from y to & we get, similarly to (9), the equality
L, u,(4) _ 'Ly, (y)

11
A =& " Trw)

/]
Uy, (?)
—2jammm[m%MA%m—a%mh%mwa
Since ¢, is a triple zero of y,(¢), according to Lemma 1 we have F(ya(t))
= LoY3(t) Lays(t) — Ly ys(t) Lyys(t) < 0 for t>1,. Therefore the integral
on the right in (11) is not zero and its sign is —sgny,(t) -sgnw,(t), t € (y, 6).
Suppose that 6 < ¢,. Then u,(t) fulfils conditions (4) at every zero point
which is less than ?,. Therefore, L,u, (y) # 0, L,u,{d) # 0 and sgnL,u,, (y)
# sgnlL,u,(6) = sgnwu,(t), te(y, §). This means that the right-hand
side of (11) is mot zero and its sign is sgnwu, (f)sgny,(t), t € (y, ). Thus
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equality (11) yields a contradiction. Taking into account that y,(f) and
%, (?) have no common zero, we have proved that y,(f) has at least one
zero in (y, 6). _

If § =t,and y,(t,) # 0, then £, is a double zero of u,(?) and therefore
sgnL,u,(d) = sgnu,(t), te(y,d). Equality (11) gives a contradiction
also in this ease.

If 6 = t, and y,(t,) = O then, as we will see in Remark 1, ¢, is a triple
zero of u,(t). In this case

Lyy,(t
lim 2?3( ) #,(1) =0 asi—1t;
Y3 (?)
and relations (10) and (11) are valid. Since
. Lyu,(t) Ly, (1)
sgn lim ="~ — ggn """ — gonu, (1)y,(t te(y,d
gnt_)t_ 2 (1) g v (L) n(0)Ys(t), 7, 0),

equality (11) again leads to a contradiction. In view of the fact that w,(t)
and ¥4(?) have no common zero in (f,, ?,), summarizing, we have proved
that between any two consecutive zeros y, 6 of u,(f), t,<y<< <1,
there is at least one zero of y4(¢). This ends the proof of Lemma 2.

Remark 1. It follows from (7) that ¢, i1s a zero of y,(?) if and only
if ¢, is a triple zero of u, ().

DerFiNITION 1. Denote by E the set of all solutions of (1) having
the property: u(t) e B iff F(u(t)) > 0 for all t e J.

DrrINITION 2. Denote by U the set ¢f all solutions of (1) hav_ing the
property: u(t) e U iff at every zero p of u(?)

S

(12) Lyu() Lot (@) Lyu(e) # 0,
sgnlyu(e) = sgnLyu(e) # sgnL,u(o).

TEOREM 2. The set U is non-empty. There are at least two elements
u(?), v(t) € U linearly independent.

Proof. Let t, eJ and y,(?), k =0, 1, 2, 3, be solutions of (1) satistying
(). Let {30, 1, <t,, be a sequence such that lim?, = oo as n — co.
- Denote by u,(t) the solution of (1) satisfying the conditions
(13) u’n(to) =0, Loun(tn) = I’lun(tn) =0,
(14) L w, (o) + L3, (8) + L3, (t,) = 1.
From (14) it follows that the sequences {L;u,(,)}n, ¢ = 1,2,3, are
bounded. Therefore one can find a sequence {n;};>; < {n};., such that
{Li U (1) }521, i =1,2,3,convergestoc,,t =1,2,3,and ¢;+¢;+¢; = 1.
Using for u,,,j(t) the representation (6), i.c. writing

(1) U (1) = Ly sy (80) Y1 (8) + Lyt (20) Y2 () + Ly 2 (1) Y5 (1)

22 — Annales Polonici Mathematicl XLII
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we see that {unj(t)} converges uniformly on every compact subset of J to
a solution u(?):

(16) (1) = €Y1 (1) + 2y (1) + 3y, (t),

which is not trivial. For ,,(f) we have, by Lemms 1, F(u (t)) > 0 for
t<1,. In view of the continuity of ¥ and the convergence of {u,, (1)} to

u(t) we get hmF( ( )) > 0 for all t € J. Then from the strict monotonicity

of Flu(t)) it follows that F(u(t)) > 0 for all teJ and therefore every
zero of u(t) is simple.

Let ¢ be a zero of w(t). Then from F(u(i)) > 0 we have —L,u(g) X
% Ly (g)> 0 or sgn L, u () # sgnL,u(e), L, u(o) # 0, Lyu(e) # 0.Suppose
that, say, Lyu(e) >0, L.u(g) <0 and that L,u(g)<<0. Let 7 be the
first zero of «(t) to the right of p. Such a zero exists because w(f) is oscil-
latory. Then Lyu(t) > 0on (g, 1), Lyu(r) < 0 (7 i1s & simple zero of «(t)) and
from (1) we get that L;u(?) is non-increasing on (g, ). Thus L;%(?) < 0 on
(0, 7] and L,u(t) is non-increasing on (g, v]. Therefore L,u(f)<<0 on
[e, z]. But F(u(r)) = —Lyu(t)L,u(r) > 0 and therefore L,u(r) must
be positive. This is a contradiction, which proves that Lyu(g) > 0. We have
thus proved that «(t) e U.

In the construction of the solution u(¢) we choose the point t, ar-
bitrarily. We showed that ¢, is a simple zero of w(?) (u(f) has only simple
zeros). If now we choose #, # ?, such that w«(f,) # 0 and construct the
solution »(¢) in the same way as it was done with %(t), we get that v(t) e U
and v(f;) = 0 and therefore u(t) and v(t) ate linearly independent.

THEOREM 3. F = U.

Proof. Let u(t) € U. Then (12) holds at every point ¢ which is a zero
of u(t) and therefore F(u(g))> 0 at those points. Now, F(u(t)) being
strictly decreasing and wu(t) oscillatory, this implies that F(u(t)) > 0.
Thus %(t) e E.

Let u(t) € E. Then F(u(t)) > 0 for all teJ. Let ¢ be a zero of u(?).
Then F(u(g)) = —L,u(e)L,u(g)> 0. Thus at every point which is
a zero of u(t) we have: L u(p) # 0, Lyu(g) # 0, sgnL,u(g) # sgnl,u(p).
Assume that for a certain zero point 7 of u(t) we have: L u(z)-Lyu(z) .
# 0, sgnL,u(t) # sgnl,u(r), sgnLlyu(r) = sgnl,u(r). Then, if &>
is the next zero of %(t) to the right of 7z, we get using the same reasoning
as in the proof of Theorem 2, L,u(&)-L,u(é)-Lyu(§) # 0, sgnL,u(&)
= sgnLyu(£) = sgnL,u(€). Therefore, F(u(¢)) = —Lyu(&)-Lyu(£) <0,
which is a contradiction. Thus, at any zero point 7 of «(¢) the follow-
ing relations hold: L u(z) L,u(r)-Lyu(r) # 0, sgnL,u(r) = sgnL,u(r)
# sgnL,u(7r) and u(t) e U.

We can inspect the structure of the set U from another point of
view using the classification of solutions due to U. Elias [1].
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Let S(¢y, ¢4, ..., ¢,) denote the number of sign changes in the sequence
Coy C1y +-+y C,, Where all ¢; = 0. Let y(f) be a solution of the equation

(%) L,y+a(t)y =0,

’
’ ) and a,(t), ¢ = 0,1, ...

where L,y = (an_l(t)(an_z(t)(.~-(a1(t)(a0(t)y)’)’...) 1
() >0,1=0,1,...,2—1,

..., % —1, a(l) are continuous in ( —oo, 00), a,(¢
a(t) > 0 or a(?) < 0. Write

S(y,t7) =Eliltn_S(Loy(£),L1y(§), coey Ly (£))-
8(y,tt) =61i1318(130y(£), — Ly (), .ory (—1)" L,y ().

ProrosITION 1 [1]. For every non-trivial solution y(t) of (%) there
exists a t, such that S(y, t™) and S8{y, t~) are constants for t > t,. If S(y, t*)
=k on (t,, o) then S(y,t") =n—Fk on (I, o) and (—1)"*a(t) < 0.
Oon (ty, o) Loy, L1y, ..y L,_y may have only simple zeros. .

We will denote limS(y,t*) as ¢t — oo by S(y). Following Proposi-
tion 1 it is possible to sort the solutions of () into classes 8, = {y|8(y, t*)
= k for sufficiently large values of ¢} indexed by integers &, 0 < k < m,
such that (—1)""*a(t) < 0.

PROPOSITION 2 [1]. The set of non-trivial solutions of (*) is the union
of the disjoint, non-empty sets 8,, 0 <k <, such that (—1)"*a(t) < 0.
Each one of the above sets consists either of oscillatory or of non-oscillatory
solutions only.

According to Propositions 1 and 2 we will have in the case of equation
(1) only two sets, 8, and §;.

THEOREM 4. U = 8§,.

Proof. Let y(f) e U and suppose that y(t,) = 0, L,y(t,) > 0, where
1, is large enough. Then there exists ¢ >0 such that L,y (¢) L,y (1) Lyy (t) # 0
for te(ty,t,-Fe). In view of (12) we have sgnl,y(t,) = sgnLyy(t,)
# sgnL,y(t,). Therefore Lyy(t)> 0, L,y(t) > 0, Lyy(t) > 0, L,y(t) < 0,
L,y(t) < 0 for every te(ty,t,+¢). This means that S(y) = S(Lyy(?),
—Lyy(t), Ly (t), —Lsy(t), Lﬂ/(t)) = 1. Thus y € §,.

Let now y € S,. This means that there is ¢, such that S(y, t*) = 1 for
t € (ty, o). The solution y(¢) can have only one multiple zero point. There-
fore there exists z, such that y(f) has only simple zeros in (x,, o). Let
T > max{t,, z,} and let ¢ > T be a zero of y(t). We may suppose that
L,y (e) > 0 without loss of generality. Then there exists & > 0 such that
for t e (o, 0+¢,) we have L;y(t) #0, ¢ = 0,1,2, 3,4, and Lyy(t) > 0,
L,y(t) > 0. Thus in the sequence {L,¥(t), —L,y(t), Lyy(t), —Lsy(t),
L,y(t)} we have certainly one change of sign on the first place. This means
that there is no change of sign on others places, because y(¢) € §;. Con-
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sequently L,y (t) < 0, Lyy(t) > 0, L,y () < 0. It follows that condition (12)
is satisfied at g, and since ¢ is an arbitrary zero of y(¢) greater than T,
we infer that y(¢) e U.

THEOREM 5. Let u(t) e U. Then
(17) fa(t)u2(t)dt< 0, fa;‘(t)Lﬁu(t)dt< 0o,
Proof. Using the properties of F(u(t)) we have
0< Flu(t) = (1) Ly (¢) — Ly w () Ly (2)

¢
= F(u(z)) —f [a(s)u?(s)+a; ' (s)Liu(s)]ds for t> .

Since lim F(u(t)) = L> 0 as t — oo, inequalities (17) follow.
COROLLARY 1. Let a(t) =m > 0, ay(t) < M,. Then

(18) [ prmat< o, [ Iyydt< oo

for all ye U.

In what follows we will need

LeMMA 3 ([4], Lemma 6). Suppose that a function f(i) has a
bounded derivative on [t,, o) and that f fF()dt < oco. Then lmf(t) = 0
as t — oo. to

THEOREM 6. Let 0<m<a(t) < M, 0 < m, < a,(t) < My, a,(1) < M,
for t > t,, where m, M, m,, My, M, are constants. Then

(19) ja;l(t)Lgy(t)dK o, [ Lydt< oo, [ ILyt)ai< oo,
[Lyy (t)| is bounded and imL,y(t) =0 as t - o

Jor every y(t) e U.
Proof. Multiply (1) by L,y, where y(t) € U. We get — L,y (1) L;y(?)
= a(t)y(t) L,y (?), which can be rewritten as

—(Loy (1) Loy (1)) +a; (1) L3y (1) = a(t)y (D) Loy ().
Integrating this equality from a to ¢, where a is a zero point of L,y (?)
greater than {,, we get

¢ ¢
— Ly Ly )+ [ a7’ (s)Iiy(s)ds = [ a(s)y(s)Ley(s)ds.

Then using the inequality
—(y2 () + Liy (1) < 2y (1) Loy (¢) < (92(0) + L3y (1)),
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we obtain

— f (a(s)y2(s)+MLiy(s))ds
< —2Lyy (1) Loy (1) + f a7 (s) Liy(s)ds

f(a 2(s) 4 a(s) Liy(s) f(a 2(s) -+ MLy (s))ds.

From fa (8)L2y(s)ds < oo and a;'(t) > M~? it follows fL y(s)ds < oo.
Usmg also the fact that f a(s)y%(s)ds < oo, and lettmg t pass through
the zeros of L,y (t) to mflmty, we get from the above mequahty f ay'(s) %
x Liy(s)ds < oo; and since M;' < a; (1), t > t,, we have fL y(t)dt< 0.
Now multiply (1) by L,y (?). VVe obtain
—Lyy (1) Lyy (1) = a(t)y () Loy (1).
Integration over [a, ], where a << t is a zero of L,y(?), yields

—L3y(t) _Zf (8)y(8)L3y(s)ds

and similarly as above we get

- f (a(8)y*(s)+MLyy(s))ds < — [ (a(s)y*(s) +a(s) Liy(s))ds < —Liy(2)

oo

< [ (a(9)y*(s)+a(s) Ly (s))ds

o]

< [ (a(9)y?(s)+MLy(s))ds.

Thus |Lsy(t)| is bounded and this, together with the assumption 0 < m,
< a,(t), implies the boundedness of |L,y(t)| on (t,, o).
An application of Lemma 3 gives limL,y(t) = 0 as ¢t — oo.

THEOREM 7. Let the assumptions of Theorem 6 be fulfilled and suppose
that 0 < m, < a,(t) for t > t,. Then (19) holds evidently and, moreover,

(20) |Lyy(t)] is bounded, limy(l) = 0 as t — oo,
IimP(y(t)) =0 as t - c0o, limI;y(t) =0, and
limL,y(t) = 0 as t - o0, for all y(t)e U.
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Proof. Let y(t) € U. The function F(y(t)) being strictly decreasing
on (—oo, oo), we have L,y () L,y(t) < y(¢)L,y(t). Then

(Liy(0)' < 207 1)y () Loy () < a7 (@){y2() + L3y (1) < mz*{y* () 4 L3y (1))-

Intcgration of this inequality gives
Liy(t) —Liy(t) <m (fy 8)ds + f Ly s)ds)
;‘(f y2(s)ds + j Liy(s)ds) < oo.
g £

Thus LZy(t) is bounded on (t,, o). Taking into account the boundedness
of a,(t) and applying Lemma 3, we get limy(t) = 0 as t — oo.

From this fact and from Theorem 6 it follows immediately that
LimF(y (1)) = 0 as ¢ — oo.

Further, we have to prove that limL,y(t) = 0 as ¢t — oo. Since L,y (t)
is bounded and a,(t) is also bounded, we infer that L y(t) is bounded.
An easy calculation gives

ar' )Ly () = () Ly @) —as )y () Loy (t).

Integrating this equality and respecting the facts already known, we
obtain

¢
M [ Liy(s)ds < f a7 (s) L3y (s)ds < 1y (1) Lyy (£) — y (te) Lyy (o) | +
t
+M;1f(yz(s)+L§y(s))ds<K1 for t>=a

Thus ley(t dt < co. An application of Lemma 3 gives limL,y(f) = 0

as t — oo.
Now, we are going to prove that also limZL,y(f) = 0 as ¢ - co. In
fact, |Lyy(t)| = |—a@®)y(t)| < M]y(t)|< K,. Thus ZL,y(t) is bounded.

Then in view of the fact that f Liy(t)dt < oo, Lemma 3 implies lim L,y (f)
=0 as ? — oo.

II. The case where all solutions of (1) are nmom-oscillatory. In this
case (see [5]) the quasi-derivatives L,y (t), 1+ = 0, 1, 2, 3, of the solution
y(?) of (1) arc monotone on some interval [T, oc) and therefore the limits
limZLy(t), « = 0,1, 2, 3, exist (finite or infinite). The set of all solutions
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of (1) can be divided into 4 disjoint classes: V4, V,, V,, and V; in the
following way.
DEFINITION 3. A solution ¥ (%) of (1) belongs to the class V,, k (0,1,
2, 3), if imL,y(t) as t - oo is finite and |lim L,y (t)| = oo for i < k.
LEMMA 4 (see Lemma 2, [5]). If y(t) e V,, then
(@) (—L)*yMLyt)>0,1=Fk+1,...,n—1, for t>4,>T,;
(b) lim L,y(t) =0 as t »> o0, 1 =k+1,...,n—1;
(¢) lim L;y(t) = oo sgny(t) as t - o0, t =0,1, ..., k—1.
THEOREM 8. U =FE = V,uV, and

21) [ a@)ypr)@ < o, fa;*(t)Lgy(t) dt < oo for all y(t)eE.

Proof. Let y(t) e V,uV,. Then, in view of (a) and (¢) of Lemma 4,
we have sgny(f) = sgnL,y(t), sgnL,y(l) # sgnL,y(?) for ¢t >1¢,. There-
fore F(y(t)) > 0 for t > 1, and thus y(t) € E. The same reasoning as in the
proof of Theorem 5 leads to inequalities (21).

Now, let y(t) € B. Then F(y(t)) > 0 and therefore (21) holds. Suppose
that y(f) e V, and y(?) > 0 for ¢ >1{,. Then L,y(¢f) > 0 for ¢ > 1, and so
L,y (t) increases. If we have L,y(t) << O for t > t,, then L,y(f) decreases
for ¢ > ¢, and must be positive to avoid contradiction with the assumption
that y(t) > 0. But then lim L,y (¢) is finite and therefore y(t) e V,LUV,,
which contradicts the assumption that y(¢) € V,. Thus L,y (f) must be
positive for ¢>1,>1¢, and increasing. Therefore L,y(f) > L,y(t;) > 0

for t > ¢,. From this and the second part of (21) we get Ly (t,) [a;* (f)d?
< o0, which contradicts (2). We get the same contradiction if we suppose
that y(f) e V,, ¥(1) < 0 for t< ?,. Summarizing, we have proved that
ify(t) e £ then y(t) ¢ V,.

Let now y(t) e E and y(t) € V4. Suppose that y(f) > 0 for t>1,.
Then L,y(f) > 0 and decreases for t>t,; according to (¢) of Lemma 4
we have limL,y(2) = oo as ¢ — oo. This, jointly with the second part of
(21), gives a contradiction of the same kind as above. We get the same
contradiction if we assume that y(t) e E, y(t) e V, and y({) < 0 for t > ¢,.
Thus we have shown that y(¢) e E implies y(t) ¢ V,.

THEOREM 9. U = E = V,uV, = §,.

Proof. Let y(t) € Vou V. Then from (a) and (c) of Lemma 4 and
from equation (1) we get sgny(f) = sgnL,y(t) = sgnL,y(t) #~ sgnL,y(t)
= sgnl,y(t) for ¢ large enough and therefore S(y) = 1. ’

Let y(t) e V,uV,. Then from (a) and (¢) of Lemma 4 and from
equation (1) we have sgny(t) = sgnL,y(t) = sgnL,y(t) = sgnL;y(t)
# sgnL,y(t). Theretore S(y) = 3.

This paper generalizes the results of paper [4].
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