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Fibre bundles associated with fields of
geometric objects and the structure tensor*

by J. J. KONDERAK (Salerno)

Abstract. Fields of geometric objects and natural bundles are considered. With a given field
we associate a sequence of vector bundles together with the Spencer cohomology morphisms. We
show that the induced cohomology spaces are vector bundles. We demonstrate a relationship with
the cohomology of the Lie algebra generated by the fields of geometric objects. A k-structure tensor
is then constructed using these bundles. It is then shown that vanishing of the kth structure tensor
is a necessary and sulficient condition for the field to be (k+ 1)-flat.

Introduction. A structure tensor of a G-structure is an invariant which
measures the degree of flatness of the structure. If the G-structure is k-flat (k
a non-negative integer) then there exists a kth structure tensor c*. The tensor c°
was introduced by Ehresmann [5] and was defined as the torsion associated
with the elements of the first order prolongations. It has been also considered
by Bauer [3], Bernard [4], Koldf [8], and Matsushima [11]. Singer and
Sternberg [16] gave another definition of that tensor. Suppose that: E is
a G-structure, % is a Lie algebra of G, R”"®% is embedded canonically in
R"®@R"®R", ¥ — gl(R") and 0 is the skew symmetrization operator. The
tensor ¢ is a function

®: E— A\’R"®@R"/0(R"®%)

that can be defined as the composite ¢ = go T where T: E— A’R"®R" is
the torsion form associated with any connection and g is the quotient map.
Structure tensors of higher order were introduced by Singer and Sternberg
[16]. They first defined the successive prolongations of the first order
G-structures and then defined c* as the ¢° tensor of the kth prolongation.
Guillemin [7] has redefined the structure tenmsor c* using the notion of kth
order structure preserving holonomic jets. The main theorem concerning the
invariant is that the vanishing of c* is a necessary and sufficient condition for
a G-structure to be (k+ 1)-flat. Guillemin proved that in the case of finite order
G-structures, i.e. such that g* = 0 for some k, the structure is flat iff it is
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k-flat. This is of great importance since many Lie groups are of finite order.
Later Molino proved in his equivalence theorem that flatness of infinite order
of a G-structure implies its flatness ([2], [12]). Hence vanishing of all structure
tensors is a sufficient condition for the structure to be flat.

Our main aim is to construct a structure tensor for a field of geometric
objects. We construct it on a vector bundle generated by the given field. There
is a correspondence between certain types of fields of geometric objects and
G-structures. It is natural to expect that there exists an invariant of a field of
geometric objects which is responsible for k-flatness of the field. An attempt to
construct such a tensor was made by Zajtz who did it locally using Lie
equations associated with the given field [17]. The main application of our
structure tensor is an analogue of Guillemin’s theorem: a kth structure tensor
of a field of geometric objects vanishes iff the field is (k+ 1)-flat.

In the first part of this paper we recall some properties of natural bundles
and structures associated with them. The concept of natural bundle was
introduced by Nijenhuis [13] as a modern approach to the classical theory of
geometric objects (see J. Aczél and S. Gotab [1]). We give some basic
properties of fields of geometric objects. Each 0-flat field of geometric objects
generates a G-structure. We show how some properties of fields can be
translated into the language of fibre bundles.

In the second part of this paper we construct a vector bundle H*?(g).
A given k-flat field o (k > 0) generates the vector bundle R! (o) (cf. 1.4). We prove
that the prolongations R!¥(g), ..., R'®(g) are vector bundles. The symbols of
these vector bundles generate Spencer’s complex g"® /\' T* M with the operator
of antisymmetrization 0™ where m, I are non-negative integers. We prove that
the morphisms 92, 3**':! are of constant rank. This leads to the conclusion that
the induced cohomology space H“?(¢) is a smooth vector bundle.

In the third part of this paper we construct, for a given xe M, a linear
mapping A: T,M —R'®(g), which satisfies some additional conditions. The
section determines an element 7} belonging to gt !® A'T*M such that for
v, we T, M, 15 = {1(t), A(w)}. This element is a cocycle and hence generates an
element of the space H*2(g),. The mapping t*: M — H*2(c) constructed in this
way we call the kth structure tensor of a field of geometric objects. It turns out to
be non-trivial to show that t* is well-defined and a smooth section of the bundle
H*?(0). Then we show a relation between t* and the kth structure tensor of the
G-structure generated by o. That correspondence gives immediately the theorem
that under the assumption of k-flatness of o, o =0 iff ¢ is (k+ 1)-flat.

All objects considered in this paper, ie. manifolds, vector fields, bundles,
etc. are smooth, that is, of class C*.

I. Preliminaries

.I.l. Natural bundles. Let #, denote the category of n-dimensional
manifolds with smooth embeddings as morphisms. Let A denote the category
whose objects are smooth bundle maps (i.e. a morphism of n,: E, - M, to
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n,: E;—»M, is a map H: E, —»E, such that for each xeM, the fibre
Ey, = my '(x) is mapped diffeomorphically onto the fibre E,, over some point
y = h(x)e M,; the induced map h: M, -+ M, is automatically smooth and we
say that H covers h).

DErFINITION (1.1) (Palais-Terng [14]). A natural bundle on #, is a co-
variant functor F: .#,— A such that

(1) for each Me#,, F(M) is a fibre bundle over M,
(2) for each embedding ¢: M —» N the diagram

F(¢)

F(M) F(N)
M N

commutes;

(3) if U is an open subset in R™, where m is a non-negative integer and
f: UxR"=R" is a map such that for each teU, x- f(x)=f(t, x) is an
embedding then the map f : Ux F(R")— F(R") sending (t, v) to F(f)vis smooth.

In [6] Epstein and Thurston showed that if F(R") has a countable basis
then (3) is a consequence of (1) and (2). We assume that F is of order r; this
means that any two embeddings ¢, y: M — N with their r-jets equal at a point
x € M have to satisfy F(¢)v = F(y)v for any point v from the fibre F(M),, and
r is the smallest number which has this property. Palais and Terng showed that
any natural bundle is of finite order [14].

ExAMPLE (1.2). The functor T which associates with each manifold M its
tangent bundle TM is a natural bundle of order one. If ¢: M- N is an
embedding then T'(¢):= d¢ is the tangent map induced by ¢. This natural
bundle has an additional structure of a vector bundle and the induced
morphisms are morphisms of vector bundles. If there are given two natural
bundles with the additional structure of vector bundles then their tensor,
symmetric and skew symmetric products are also natural bundles.

ExaMpLE (1.3). Let M e.#, and let H"(M) denote the principal fibre bundle
of r-jets of difffomorphisms of an open neighbourhood of 0 in R" into M. The
structure group of H"(M) is the set L, consisting of all r-jets of diffeomorphisms
defined on an open neighbourhood of 0 in R" into R” sending 0 to 0. If
¢: M- N is an embedding then

H'(¢): H'(M)— H"(N)

is defined by H'(¢)(jb f):= jod o f for j f € H(M). It is easy to check that H" is
a natural bundle of order r. For any non-negative integers m, [ such that m = |
there is the canonical projection nf": H"(M)— H'(M).
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Let F be a natural bundle of order r defined on the category .4,. Then for
each non-negative integer m there is defined the mth prolongation J"F of the
bundle F; if Me.#, then

J"F(M):= {j7S|xeM and S is a local section of the bundle F(M)}.

There is a canonical structure of a fibre bundle on J™ F(M) with the canonical
projection «™: J"F(M)— M. If ¢: M— N is an embedding then

J"F(@)(78):= jom(F(®)oSodp ™)

where j*S € J™ F(M). One can easily check that J"F is a natural bundle of order
m+r.

1.2. Fields of geometric objects. We assume that F is a natural bundle of
order r defined on the category .#,. Suppose that M € .4, and let o be a field of
geometric objects on a manifold M; this means that ¢ is a smooth section of the
bundle n: F(M)— M. Let F, denote the standard fibre of F, i.e. the fibre over
0 of the bundle n: F(R")—R", Suppose that ve F,; then it defines a standard
field ¢, on R", namely o,(x):= F(t,)v where ¢, denotes the translation by the
vector x in R” (cf. [9]).

Any embedding ¢: M —» N transports fields of geometric objects {rom
M to ¢(M). We denote that operator by ¢, and it acts as follows:

(1) ¢u(0):=F(p)osog™".
DeFINITION (1.4). A field o is flat if it is locally of the form ¢, (o,).
In other words, o is flat iff for each point xe M there exists a local
diffeomorphism ¢: (R", 0) »(M, x) (this notation means that ¢ is a diffeomor-

phism of an open neighbourhood of 0 in R" onto an open neighbourhood of
x in M with ¢(0) = x) such that (1) holds for some standard field o,.

DEFINITION (1.5). A field ¢ is said to be k-flat if there exists a standard field
g, on R” such that for each point xe M there is a local diffeomorphism
¢: (R", 0)~ (M, x) such that ji¢, o, = jto where k is a non-negative integer.

Each 0-flat field ¢ generates a principal fibre bundle of order r which is
defined as follows:

2) E(c):= {fo fe H'(M)| F(f)a,(0) = o(f(0))}
(cf. [17]). Its structure group has to be of the form
G = {johe L5, | F(f)o0(0) = 00(0)}.

Hence there is a correspondence between O-flat fields of geometric objects and
principal subbundles of H"(M). The properties of flatness and k-flatness are well
preserved with respect to this relationship. We describe that fact in the
following proposition.



Fibre bundles associated with fields of geometric objects 215

PROPOSITION (1.6). Suppose that F is a natural bundle of order r defined on
M, Let ., o, be O-flat fields of geometric objects and let

E; = {jo f e H'(M)|F(f)(c0(0)) = 0,(0)}

be principal bundles associated with g, for i = 1, 2. Then for each xe M and for
each non-negative integer k the following two conditions are equivalent:

(1) jxoy =j503;
(2) E;x=E,. and E,, E, are k-tangent at each point of the fibre over x.

For a proof see [2] (Proposition VL4).

L.3. The vector bundle J™"TM and liftings of vector fields. Let M e .#,. By
J™"TM we shall denote the vector bundle consisting of all m-jets of smooth
vector fields on M where m is a non-negative integer. For technical reasons we
also define J™'TM as the null subbundle of TM. For each pair of integers
m, | such that m>[> —1 we have the canonical projection

pr: J"TM - J'TM.

We also define the subbundle of jets of vector fields which vanish at their
sources; namely J"TM:= ker ro-
On the fibres of the bundle J"TM we define the algebraic bracket

(3) {,}: JPTM xJ2TM -J7 'TM

by {("X,jmY}:=j""'[X, Y] where xeM, j7X, jPYeJ"TM and [X, Y]
denotes the Lie bracket of two vector fields. For convenience we define this
bracket also for m = 0; namely {v, w}:=0 for v, we T M.

One can easily see that the restriction of the algebraic bracket to the set
J™TM is a well defined inner product which equips this set with the Lie algebra
structure.

From 1.1 we see that J™T is a natural bundle of order m+1 as the mth
prolongation of the bundle T. Each local diffeomorphism ¢: (M, x)—=(N, y)
defines the isomorphism of vector spaces:

JmT(¢),: JTTM —J"TN.

Since J™ T is of order m+1, J™ T(¢), depends only on the (m+1)-jet of ¢ at the
point x.

Let X be a vector field on M; it induces a flow ¢,. From the definition of
the natural bundle we easily find that F(gp,) is a flow on F(M). Hence
X generates a vector field on F(M). This induced vector field is called the
complete lift of X to the bundle F(M) and we shall denote it by & (X) (cf. [15]).

Let us consider liftings of vector fields in the particular case of the bundle
H™ Let X be a vector field on M and let #™(X) denote its lifting to the bundle
H™(M). For each x e M and z,,e€ H™(M), there is a canonically defined function

&, : J"TM T, H"(M)
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such that &, (j5X):= s#™(X),,. Libermann showed that &, is an isomor-
phism of vector spaces (cf. [10]).

I.4. Vector bundles associated with fields of geometric objects. Assume that
E is a principal subbundle of the bundle H™(M). With each xe M we associate

the vector space
W(E),:= ¢ (T,,.E)

where z, € E.. The definition of W(E), does not depend on the choice of the
element z,, from the fibre E,.. Then we define
W(E) = ) W(E),.
xeM
The set W(E) is a smooth vector subbundle of J™TM.
Suppose that F is of order r and o is a 0-flat field of geometric objects on
M. Then o generates a principal fibre bundle

E(0) = {jo fe H'(M)| F(f){(0,(0)) = 04(/(0))}

(cf. 1.2). With E(o) we can associate a vector bundle as above. We shall denote
that bundle by R"(¢) = W(E(q)). It will be useful to describe this vector bundle
not using E(s). We give such a description using the Lie derivative of a field of
geometric objects. This derivative is a generalization of the Lie derivative of
tensor fields. A very beautiful exposition of that subject can be found in
Salvioli’s paper ([15]). We shall recall briefly this notion.

Let V(F(M)) denote the subbundle of the vector bundle TF(M)-»M
consisting of vectors tangent to the fibres of the bundle m: F(M)— M. Let us
remark that V(F(M)) is a natural bundle of order r+1. Suppose that X is
a vector field on M. Then the Lie derivative of ¢ in the direction of X will be
denoted by Lyo and is a section of the bundle V(F(M)) such that

(LX a)x:= dxa(Xx)—'g;(X)o(x)
where xe M.

We would like to point out one property of the Lie derivative of a field of
geometric objects. Let j*¢ denote the field on the bundle J™F (M) such that for
each xe M, (*0)(x):=j4 0. It is well known that the spaces J* V(F(M)) and
V(JF(M)) are canonically isomorphic. Then under this canonical isomor-
phism we can identify j*(Lyo) with Ly(*e) (cf. [15], [17]).

II. The vector bundle H**(0). Throughout this section we assume that F is
a natural bundle of order one defined on .#,. We also assume that ¢ is a k-flat
field of geometric objects on M €4, (k = 0). We denote by ¢, a standard field
on R" such that for each xe M there exists a local diffeomorphism

J: R", 0)~(M, x)
satisfying the equality j% f, o, = 0.
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IL1. Prolongations of the vector bundle R'(s). For each non-negative
integer m we define

E™0):= {j§*1f e H"* Y (M) |jFi0) 1 00 = 0y 0]}
We also put E~!(s):= M. For each m > | > —1 there is a canonical projection
. E™(o)— EY(M).

PROPOSITION (2.1). If ¢ is k-flat and if me {0, ..., k} then the set E™(c) is
a principal fibre bundle over M.

Proof Let me{0, ..., k}. Then j”¢ is a field of geometric objects on
J"F(M). 1t is O-flat because o is k-flat. Hence the set

E(j"0) = {§* ' fe H" " (M) |J"F()(("0,)(0) = j"a(/ (0)}
is a principal subbundle of H™*!(M) (cf. (2)).
To end the proof it is enough to notice that the set above coincides with
E™(0) because jo) [, 00 = J™F(f)(j"0o)(0) for each jg*!feH™*!(M).
Let us remark that the structure group of E™(o) is
G™:= {8+ f e L}|jE fyo0 = /800},

where me {0, ..., k}. By Proposition (2.1), E%(0), ..., E¥(c) are principal fibre
bundles. Moreover, they are generated by the fields o, j1g, ..., j*o, respectively.

With the field o we also associate the vector bundle R!(o) (cf. 1.4). In the
standard way we define the mth prolongation of R'(s), namely

R'™(g):= J"RYo)nJ"*' TM

where m is a non-negative integer. For technical reasons we also put
RY“Y(g):=TM and R ?(g) is the null subbundle of TM. For each
m 2 | > —2 there is a natural projection

pivt: RY™(g) = R'P(a).
The symbol of R'™(¢) is defined as
g™ =ker{pn*!: R'™(g)— R~ D(g)}.

Also for technical reasons we put g~ ':= TM and g~ 2:= R¥~2}(g). The sets
R'©)(g), R'")g), ... and ¢°, g',... are not generally all vector bundles.
However, we shall find that some of them, in fact, are. To do this we shall
explore the relationship between the prolongations of R!(¢) and the sets
E°), EX(0), ...

LEMMA (2.2). If o is k-flat then R'"™(g) is a smooth vector bundle for m
e{0,..., k}.

Proof. Zajtz showed that
Rl(m)(o.) — Rm+1(jmo.)

3 — Annales Polonici Math. 53.3
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(cf. Lemma 2.12¢ of [17]). In fact this equality was shown for any field of
geometric objects and an arbitrary m. Now our lemma is obvious since
R™*1(jma) is associated with the field j®¢ which is O-flat for me {0, ..., k} (cf.
1.4) and hence R"*!(jm0) is a vector bundle.

Our field o generates the principal fibre bundles E°(¢), ..., E*(). Proposi-
tion (1.6) links k-flatness of ¢ with k-flatness of the G-structures associated with
them.

It is easy to notice that the set

E°(0o) = {js f e H'R") | F(f)(05(0)) = 0(0)}

is the standard flat structure on R".
Let us take a local difftomorphism h: (R", 0)—> (M, x). Then by Proposi-
tion (1.6) the following two conditions are equivalent:

(1) j2(h,00) =Jj30;
(i) H™(h)E°(0,), = E°(0), and HO(h)E®%(c,), E°(c) are m-tangent at each
point of the fibre above x.

The above equivalence provides some information about the set of jets
which witness k-flatness of G-structures and the field of geometric objects. In
fact, E™(0) appears to be the set of all those (m + 1)-jets which witness m-flatness
of the G%structure E°(s). Explicitly this means that

E™(o) = {/8* S eH™ (M) |H"(W)E®(0,), E°(0,)
are m-tangent at the fibre above x}.

Hence E°(o) is also k-flat . Moreover, the properties of these sets have
already been investigated (cf. [3], [7]). From those papers we know that the
canonical projections

nn*1l. E™(0)— E™ (o)
are surjective for me {0, ..., k}. As a consequence we get the following property.
LEMMA (2.3). If me{0, ..., k} then the canonical projections
pntt: R1(g)— R~ 1(g)
are epimorphisms.

Proof. Take xe M, ¢ € E} (), ne ET (o) such that z* (£) = #. Then the
diagram

D
R*™(g), ———— T,E"(0)

Pm dﬂm

Py
Rl(m—l)(a,)x_____, -I;Em— 1(0.)



Fibre bundles associated with fields of geometric objects 219

commutes. Now it is easy to see that p7*! is an epimorphism since dn** ! is an

epimorphism and &,, §, are isomorphisms.

As a corollary of the above lemma we find that g™ are vector bundles for
me{-2, —1,0,..., k}.

We would like to connect the spaces R!™(c,) and R!™(s) via the
isomorphisms defined by the jets from the bundle H**!(M); namely if
jatife H"*1(M), then we have the canonical isomorphism J™"T(f): J§ TR"
—JTTM (cf. 1.3)

LEMMA (24). Let m be an arbitrary natural number and let
ja+2 fe H™*%(M). Suppose that E™(c) is a principal fibre bundle over M such
that j5*' f e E™(c). Then the following conditions are equivalent:

(1) j8*2 fe E"Y(o);
(2) Jm*! T(f)[Rl("')(Uo)o] = Rl(m)(ﬂ)f(oy

Proof We regard j"g,, j"a as fields on R" and M respectively. Let us
point out that

+lf*(ao) = m+10. l-ff Jx(]mf*ao) ]:lc(jma)
where x = f (0). Hence jg*2 f e E"* (o) iff im(j" f, 0) and im(;j™0) are 1-tan-
gent submanifolds of J™F(M) at the point j7 . But this is equivalent to the fact
that

4 Tyim(j" fy0,) = Tyim(j" o)

where 3 = jTo. Each vector from the spaces in equation (4) is the complete lift
of an element from J7*!TM. Therefore equality (4) is equivalent to

RY™[f (d0)o] = R'™(0),.
To end the proof it is enough to notice that
J" LT (f)(R1™(0)o) = R'™(f, 00)s-

Let us notice that though J™*!T is of order m+2 the natural bundle
JP+1T is of order m+1. Hence any element jo*!fe H"*1(M) generates
a well-defined mapping

Jm+1 T(f) jm+1 TR"—*jf(o)

LEMMA (2.5). Let m be a non-negative integer. If. E"(0) is a principal fibre
bundle over M and j4*' f € E'™(0), then

J"H LT (f)[RY™(a0)o N JETLTR™] = RY™(0) (0.

Proof. Let j7*1X e R'™(g,), 3+ TR". This means that (Lxj™0,)(0)
=0 and X, =0. Hence

0= fulLgj"oo)(x) = (LyxJ" [, To)(%).
Since the operator L,y is of order zero at x we have
(Lyxi"0)(x) = (LyxJ" fx00) () = 0
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Hence jm*! f, X eR™*1(j"¢),. Our lemma is now obvious since R™*!(j"q)
= R1®)(q) (cf. [17]).
IL2. The vector bundle H**(c). We shall now recall the definition of the

Spencer cohomology spaces associated with o.
Let m, | be non-negative integers. Then we have the following sequence of

functions:
(5) —>g"'®/\'“1T"‘M gl gm—1®/\lT*M gm—2®/\l+1 T*M N
where if xeM, Eegf '@ /\'T*M and wy, ..., w4 €T, M then

1+1

6) @)Wy, ..., Wiag)i= Z (=1 w,o&(wy, .oy Wy, ey Wiay).

i=1
The symbol e in formula (6) needs some explanation: if ae g™ and we T, M then
wea:= {W, a} where W is an element of J¥ TM such that pg(w) = w (cf. L.3).
Using standard manipulations and the Jacobi identity one can prove that (5) is
a complex (cf. [17]). Let

H™!g):=ker &™!/imgm* 111

be the induced cohomology spaces. We are particularly interested in the space
H%2(g). It plays an important role in deciding whether ¢ is (k+ 1)-flat.

The field o, is flat. Hence we may construct the space H*2(a,). We shall
show that H%%(g,), is a standard fibre for the space H*?(o).

Let xeM and let j§*! fe E*(0), be a jet witnessing k-flatness of o, i.e.
jf,00=jto. From Lemmas (24) and (2.5 we see that j&*!'f induces
isomorphisms between the following spaces: g ~g~, gk ' ~gt !,
672~ gk 2. Set f=j4*'f Hence B induces the following isomorphisms:

90
[Flo: g5®R™ - i@ T* M,
() [8]: g6 '@ /A\'R™ - g '@\ T*M,
(81:: g6 2@ /\’R™ - gt 2@ A\’ ¥ M.
We are interested in the following result concerning the maps [£],, [$],and [8],.
LEMMA (2.6). The diagram

pm-1.0+1

. Vi3]
gERR™ ——— s GrQT* M

3164'1.1 51;4»1,1

gla—1®/\2Rn* L1 ’9’;-1@)/\2 T*M

5’6'2 al’C‘,l

- ‘ " [A]2
gl(t) 2@/\3Rn gl;-2®/\3Tx*M

commuites.
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Proof. We shall show that the upper rectangle commutes. The com-
mutativity of the lower one can be shown in a similar way. Let £eg5@R"™ and
v, we T,M. Then

(A1, 086" 1 &)(v, w)
= J§P (N6 1 E1(d, S~ (), d, f 1 (W)
=5 (NS T ) e E(d S T W) =T (d ST w) e Ed ST )))
=veJ"TE¢(d, f~ (W) —weJ"TE(d, £ (v)
=ve[fly()w—we[B]o{S)v
= (0" 1o [B1o O, w).

COROLLARY (2.7). The morphisms &**'', 8“2 are of constant rank, ie.
dimim #***! = const and dimker 8%? = const.

COROLLARY (2.8). The set H**(c) is a smooth vector bundle.

COROLLARY (2.9). Each (k+ 1)-jet from the bundle E*(c) canonically induces
an isomorphism between H*?(0,), and the respective fibre of H**(a). If B € E*(0),
then we shall denote that induced isomorphism by

(8) [81s: H**(0g)o ~ H"*(0),.

III. Structure tensor. As in the previous section we assume that F is
a natural bundle of order one and ¢ is a k-flat field of geometric objects on
M where k = 0. We denote by o, a standard field of geometric objects on R"
such that for each x € M there exists a local diffefomorphism f: (R", 0) »(M, x)
such that j&f, o, =j 0. Hence there exist principal fibre bundles E™(g) of
(m+ 1)-jets witnessing m-flatness of o for me{0, ..., k}. There is a canonical
projection

pr: JKTR" > JX TR"

such that pr(j%X) = j%(X —X) where X = X,. There also exists a canonical
inclusion u: R"— R'®~Y(g),. The existence of these mappings is a conse-
quence of the fact that all the above spaces can be expressed canonically as
direct .sums of their suitable subspaces.

IIL.1. Structure tensor of a field of geometric objects. For a given xe M and
j&*! fe E*(0), we shall construct an element of the space H*?(o).

LEMMA (3.1). There exists a linear mapping /: T.M — R'® (o), such that
(%) pttlod=idr y; proJ*T(f YHopitloi=0.

Proof. Let 4,:=J*T(f Y)ouod,f~!; it has its values in R'*~V(g),
because
JkT(f)[Rl(k—l)(a.)o] c Rl(k-l)(d)x.
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It is easy to notice that 4, is a section of the projection pf. On the other hand,
from Lemma (2.3) we see that

pit R'®(0),» RN (g),

is an epimorphism, Suppose that 4, is a section of this epimorphism. Finally,
we define 1 = 1,04, which satisfies (9).

Let 4 be a linear mapping which satisfies (9). Then it induces the mapping
w8 TMx T,M—g%! such that

(v, w):= {A(v), 4(w)}
for v, we T, M. The explicit definition of 7% implies that it has its values in
RY=1(g)  but
JTET(f ™ pk-1{A@), AW)} = (7T ek A), T T(f ) pkt A w)}
= {uod f~'(v),uod, f'(w)} =0

Hence pf_,0A=0 and % has its values in g*!.

From the Jacobi identity one can easily find that 1% eker 82, Therefore
t% defines an element in H*?(g),. We repeat this construction for each xe M so
we obtain a section

™ M — H*?(0).

DEFINITION (3.2). The section t* will be called the k-th structure tensor of
the field o of geometric objects.

Let us stress that the kth structure tensor was defined only for fields which
are k-flat. We are to show that t* is well-defined, i.e. that t* does not depend on
the choice of a jet j§*' f and a section A. The independence on the choice of the
jet will appear as Corollary (3.8).

LEMMA (3.3). If a jet j&* ! [ € E*(0), is fixed then T%(x) does not depend on the
choice of a section A satisfying (9).

Let 4, 1 be two sections satisfying (9). Hence the mapping #:=1—2
belongs to gi®T*M. Then for v, we T.M we have

(v, w)— 15, w) = {1(v), T(w)} —{A(v), A(w)}
= {A(v), n(w)} = {A(w), n(v)}
=uon(w)—won(v)
= (22" ), w).

This precisely means that 74—tk eim o+ 11,
To show that 7*(x) is independent of the choice of a jet we shall first recall
the definition of the kth structure tensor of a G-structure. Then we shall
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compare that tensor with the one defined above. As a side result of this
comparison we shall obtain the independence of () from the choice of the jet
defining it. The construction of the kth structure tensor of a G-structure is
taken from [3].

IIL2. The structure tensor of a G-structure. From Proposition (1.6) we
know that E°(c) is m-flat and E™(0) is the set of (m+ 1)-jets which witness the
m-flatness of this G%-structure where me {0, ..., k} (cf. (2.1)). Let ¢ denote the
Lie algebra of the structure group of the bundle E°(s). Then there are defined
the prolongations %™ of the Lie algebra . It is known that the Lie algebra of
the structure group of the bundle E™(¢) is of the form

®9

=0
where me{0, ..., k}. On the space E*(c) there is defined the fundamental
1-form 6% if neE*(o), n=j5"'f, {=j§f and X**'eT E*(o) then

(10) @:(Xk+1)2= d;Hk(f_l)OdnTEi+1(Xk+l).

The form @ has its values in the space Ty, (E*~!(0,)) where O, = j¥1p.. The
space Tg, E*"1(0,) is identified, via the isomorphism &, , with a subspace of

J&TR", namely
k-1

R"®(D ¥).
i=0
Then @* may be expressed as a direct sum @* = 0+ Q%+ ...+ 2*"! such that
o has its values in R" and @' has its values in %'
The k-th structure tensor of E°(c) is a mapping c*: E*(c) = H*2(%) such
that c*(y) is a cohomology element defined by the bilinear mapping

(11) ck(n):= d@* o (5 A 8)o(dy f A dy f)

where ¢ is a linear section of the projection dng™': T, E*—+T.M and Q™06 =0
for k—1>m and m > 0.
There is a canonical representation g: L&*! — Aut(J§TM) such that

e h)jo X :=johy ' X

where jE*'heIk*! and j5 X e J% TR". This representation induces the represen-
tation o*: G*— H*?(%). The structure tensor c* is of the g*-tensorial type, i.e.
for each neE*(g) and axeG* we have

(12) c*(na) = ¢*(@)c*(n).

Let now ©% denote the fundamental 1-form on H***(M). The form ©% has
its values in Ty, (H*R").
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LeMMA (3.4) (Maurer-Cartan equations). Suppose that neH**!(M),
n=j5"'f and X**', Y**'eT, H**1(M). Then
2404 (X*H, YRR = JET(f 71 {@, HX*TY), o7 (YT Y))
Proof. There exist vector fields X, Y such that s#**'(X), = X**! and
HRFI(Y), = YL, Set
X:=o*1(X) and ¥:=x"Y(Y).
Then
20%(X, ¥) = (Lz 6% Y- (Ly @) X + O%([X, 7).
Since the form ©% is invariant with respect to the natural liftings of
diffeomorphisms from M to H**!(M) we have
(Ly@Y) ¥ = (LyO8) X = 0.
Therefore
2(d@%),(X**1, Y**) = 04((X, 11,)
= dgH*(f ") odn}* 1 ([X, T],)
=T {@, (X Y, o7 (YY)

We would like to stress that we identify here Tg, , H**!(M) with J§TM.

IIL3. Flatness of fields of geometric objects. We shall now compare the kth
structure tensor of a field of geometric objects with the kth structure tensor of
E°(c). For given points xeM, ne E"(c), and a section A: T,M — R'®(qg)
satisfying (9) we defined the bilinear form t%; let us now further define
d:= &, 0A. The mapping & appears to be a linear section of the projection
dr¥*! and Q"0d =0 for m > 0 and k—1 = m. Hence the bilinear mapping
c} generates the value of c* at the point #.

In the second part of this paper we constructed the mapping [n],. We
shall use this mapping to describe the relationship between c¢§ and t%.

LEMMA (3.5). The following equality holds: 2[n],ck = t%.
Proof. Let v, we T, M. Then
([ry (v, w) = J*T(h)ch(d h ™ (v), d h™ (W)
= J*T(h)[d6* (5(v), S(w))].

Now we apply the Maurer-Cartan equations, which hold for the form @* too,
and we get

2T (R [dOK(5(v), S(w)] = {®;(v), B, (W)}

n

= {A(v), Aw)} = T4(v, w).
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COROLLARY (3.6). The definition of t*(x) does not depend on the choice of
a jet belonging to E*(o).

Proof. Let 4, e E*(0), and let t*(x), *(x) denote the values of the
structure tensors defined by #, # respectively. From Lemma (3.5). we get

2[n]sckm) = *(x) and  2[F],¢*() = *(x)

where [n];, [#]; are the mappings generated by the jets #, ff (cf. (8)). There
exists £e€G* such that 7 = n&. Now our statement is obvious since

t(x) = 2[7]3* () = 2[n¢156" (O c* () = 2[5 c*(n) = T*(x).

COROLLARY (3.7). The tensor c* vanishes at each point of the fibre E*(o), iff
™*(x) = 0.

COROLLARY (3.8). The function 1* is smooth.

Proof Let &: U — E*(c) be a local section of the bundle E*(¢) defined on
an open set U. Then for every ye U we have t*(y) = 2[£(y)]5*(£ (). Since ¢*
is smooth we see that t* is smooth.

THEOREM (3.9). Assume that F is a natural bundle of order one and let o be
a k-flat field of geometric objects on M (k = 0). Then ¢ is (k+1)-flat iff t* = 0.

Proof. From Proposition (1.6) we deduce that ¢ is k-flat iff E°(c) is k-flat.
By the main theorem from Guillemin’s paper [7] we know that E%(g) is
(k+1)-flat iff ¢* vanishes. Hence once again by Proposition (1.6) and by
Corollary (3.7) we get our theorem.
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