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Hille-Wintner type oscillation criteria
for linear ordinary differential equations of second order

by SHLOMO BREUER and DAvID GOTTLIEB* (Tel Aviv, Israel)

Abstract. A new non-oscillation theorem is presented for linear ordinary differ-

ential equations of second order, implying, in particular, two classical results. An
open question of Taam is answered in part as a result.

1. Introduction. The main purpose of this note is to present a new
non-oscillation theorem, based on a known result due to Levin [3]. The
theorem compares two linear ordinary differential equations of second
order, and concludes that one of them is non-oscillatory if the other one
is non-oscillatory and certain Hille-Wintner type conditions, relating
the coefficients, hold on an interval. It is then shown that two classical
results of Moore [4] and Leighton [2] follow as corollaries. In addition,
an open question of Taam [6] regarding non-oscillation is partially settled
as a corollary of the theorem.

2. QOscillation Theorems. We begin this section with a lemma which
is the basis for all subsequent results. In this lemma, as well as throughout
this section, the functions a(x), A (), ¢(x), and C(z) are assumed to have
the following properties: A(z) > a(x) > 0, C(x) and c(z) are continuous,
and A’(z) and a’(z) are continuous, throughout the relevant intervals.

The following lemma is a trivial extension of a theorem of Levin
[3); [5], p. 34.

LEMMA. Let v and v be non- trwwl solutions of
(1) (au') +eu =0, xela,f],
(2) (49') +C0v =0, xe¢la, ],

respectively, such that w(x) does not vanish on [a, ], and such that v(a) +* 0.
Moreover, let the inequality
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hold for all x on [a, B]. Then v(z) does not vanish on [a, ] and
A (z)v ()
v(x)

a(x)u' (z)
B u(z)

(4)

y ®ela,f].

The preceding lemma leads to the following main theorem.
THEOREM 1. Let (1) and (2) hold in the interval [a, o). Moreover,
(1) Let v be a solution of (2) with v(d) # 0, v'(a) = 0.
(ii) Assume there exists a solution u of (1) such that %' (a) < 0, and
u(z) > 0 for x> a, so that (1) 8 mon-oscillatory.
(iii) Assume the inequality '

z

(5) [etyat>| f’o(t)dt|

holds for x> a, where the inlegrals need mot converge as x—oo.
Then v(x) does not vanish for x > a, and we have

A (z)v' (x)
v ()

a(z)u’ (x)
)

(6)

’ r=a

Proof. We choose a solution of (2) such that v'(a) = 0, v(a) # 0.
Condition (ii) of Theorem 1 guarantees that —a(a)u’(a)/u(a) > 0. Hence,
using also (5), we see that (3) in the lemma is satisfied on every closed
interval [a, 8]. The conclusions of the lemma therefore hold on every
such interval. In particular, (4) holds and hence also (6). Moreover, v(a) = 0
in every closed interval [a, ] (and hence v is non-oscillatory). This com-
pletes the proof of Theorem 1.

We next show that Theorem 1 can be utilized to answer, in part,
an open question in connection with a theorem of Taam [6], which is_
a generalization of Hille-Wintner’s comparison theorem [1]; [7]; [5],
Theorem 2.12.

THEOREM 2 (Taam). Let ¢(x) and C(x) be integrable functions in (0, o)
such that

.

(7) fc(t)dt;]fo(t)dq,

z
and both integrals converge for x > a > 0. Let a(z) and A(x) be as in the
lemma and, moreover, let a(x) < K, a constant, on (0, oo). Then (2) is non-
oscillatory if (1) is mom-oscillatory.

‘In Taam’s theorem, (7) replaces (5) of Theorem 1, and condition
(ii) is replaced by the requirement a(x) < K. Swanson [5], p. 62, observes
that it is an open question whether a(x) < K is mecessary for the con-
clusion of Taam’s theorem. It is seen here that Theorem 1 does go without



Hille-Wintner type oscillation criteria 259

- .
this condition. Moreover, it is easily seen that if 0 < [ C(?)dt, the integral
z

being convergent, then (7) implies (5).
For suppose that for each a;, there is an a;,, such that
k41 ®k+1
(8) [ emat< [ cwa,
ag %
where ay, = a. Let y = sup{a,}. If y < oo, then
k

(9) fc(z)dt > f o(t)dt

for all # > y, and we may take a = y in (5). On the other hand, if y = oo,
we sum (8) on k¥ and get

(10) [ e < [ cpyat,
contradicting (7). Hence (7) implies (5) under this circumstance. But
note that Theorem 1 does not require the convergence of the integrals
in (5). :

Finally, we observe that condition (ii) is certainly not vacuous. For

example, if [ c(t)dt = oo, then u'/u < 0 for sufficiently large z [5],

Theorem 2.40. ,
Next we show that Theorem 1 implies a slightly different version
of the classical non-oscillation theorem of Moore [4]; [6], p. 73.

CoroLLARY 1. If

] x

4 :
(11) —d—< oo and 0<limsup | C()dt< oo,
; A(?) z>00

1

then (2) is mon-oscillatory.
To prove the corollary, we associate with (2) the equation

kﬂ
(12) (Au') + Iu =0,
with a solution '
'13 u(z) = cos[k F_a
( ) - ; .A (t) .

If we can fihd a and k = k(a) such that

k]

. Y@t
(14) °<"fI'(T)<?’
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as well as

(15) 2 f%ﬂ)> fC(t)dt

for all # > a, then % satisfies the conditions of Theorem 1, and hence
the solution v of (2) is non-oscillatory. To this end, define

T

(16) k(e) = —
*J 3w

Evidently, k(c) is monotonically increasing with a and is unbounded.
If no k(o) satisfies (15), there is a sequence {a,} such that

%n41

(17) %“fzm<fww

If {a,} is bounded, then sup{a,} = a, , and k, = k(a,,) satisfies (15).
If {a,} is unbounded, we sum (17) on =, to get

n+l T+l

(18) Zkz ")f A(t)<f o

n=0

where a, = a. Since k(a) is monotonic, (18) leads to

oo d‘ o0
(19) k*(a) f 10 < f C(yat,

which is true for all a. Putting (16) in (19), we find that k(a) is bounded,
contradicting (16). This completes the proof of Corollary 1.

In a similar manner we show that Theorem 1 implies the classical
oscillation theorem of Leighton [2]; [5], p- 70.

CorOLLARY 2. If

(20) lfm=lf e(tydt —

then (1) is oscillatory.
To prove the corollary, consider

(21) (@0) + =0 =0,
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with a solution

(22) v(2) = cos[k f-:(‘_t)]

We proceed indirectly. Suppose (1) is non-oscillatory. From (20) it
follows, as before, that «'/u << 0 for sufficiently large z. Hence (ii) of
Theorem 1 is fulfilled. If we can show that for a given a there is & § and
a k = k(a, f) such that, say,

dat
(23) k(a, f) f s
as well as
(24) K (a, B) f f o(t)t

for all ze¢ [a, 8], then Theorem 1 would show that v(z) # 0 for z¢ [a, £],
because of (23), contradicting (22). Thus the non-oscillation of (1) would
be contradicted, proving the corollary. To show that 8 and k(a, §) can

be found, define
B

dt
(25) K, ) [ ooy =

i.e. let (25) define k(a, f) for a given a and each f. Suppose (24) cannot
be realized, i.e. suppose for each given a there is an a, such that

(26) K(a, B) f e f o(t)dt

for some @,¢[a, f]. Then if we substitute (25) in (26) we obtain
1 o

(27) ko, p)>— [ o,

where the right-hand side is independent of 8. Letting f—oc in (25) and
using (20), we find that k(a, §)—0, contradicting (27). This completes
the proof of Corollary 2.
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