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1. Introduction. Denote by #( M) the family of all functions of the form

(1) P(z) =1+bz+by22+ ...
regular in the disk K = {2: |2] < 1} and satisfying the condition
(2) |P(z)—M|< M for zeK,

where M >1 is a fixed number.
Let 8*(M), R(M) and U(M) be the families of all functions of the
form

(3) w = f(2) =z+a,22+ag23+...
regular in K and satisfying the conditions

o (=) ,

@) —M\< M, |ffR—M<M,

—M <M’

gs(e°2)f(2)—e*"cosa-z
isina-e” "z

where g;(z) = 1—2cosf -2+ 2% sina > 0, for z¢ K, respectively.

Next, denote by T(M) and C(M) the families of all functions of
form (3) which are regular in K, real on the real axis and satisfying the
conditions

|l—zz

, f(Z)—M|<M, 1—2f'(s)—M| < M

for zeK, respectively.

In this paper, using the variational methods, the greatest lower
ZP'(2)-
P(2)
wards, the exact value of the radii of convexity for the families S*(M)
and R(M), and the radius of starlikeness for U (M) are given. Moreover,
the radius of convexity for the family C (M) and the radius of starlikeness

bounds for reP(z) and for re

within #(M) are given. After-
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for T(M) are estimated. Finally we obtain the exact bounds of |f(z)|
and |f’'(z)| in 8*(M) and the estimates of the coefficients in 8*(M) and
P(M).

2. Some properties of the families #(M), 8*(M), R(M), U(M),
T(M) and C(M). Condition (2) means that the values of the function
P(z) for every z¢K belong to the disk with the centre M and the radius M.

Therefore,

(4) reP(2) >0 for every ze¢K.

The relation #(M,) c #(M,) for M, < M, follow easily from the
definition of the class #(M).

Let # denote the family of all functions of form (1), regular in K
and satisfying condition (4). Then, for various values of M, #(M) repre-
sents a subclass of #. Evidently #(o0) = £.

Moreover, denote by @ the family of all funetions w(2) regular in K
and satisfying the conditions w(0) =0 and |w(z)| <1 for ze¢K. It is
well known, that every function of # can be represented in the form

_ 14w ()

- 1—w(z)’

(5) p(2)

where w(z)e 2. Conversely, if w(z)ef2, then the function p(z) given by
formula (5) belongs to £.
If w(z)ef2, then it is easy to prove that

1+ w(2) 1

(6) P(z) = m=1-—0,

T 1l—mw(z)’

is a function of #(M), and conversely. From (5) and (6) we conclude that

P
(7) P(z)e #(M) if and only if p(z) = Q((:)) P,
where
: 2 1—m 1
®) Q@ =0—bP(), a=-——, b=J_—, m=1--_.
Using (6), we obtain easily, the estimate
1— | 1+ 2|
— < PR S ———.
T mp SN AQIES = mpe]
The bounds are sharp, being attained by
14 ez
P(z) = ’ le] = 1.

1—emz
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Moreover, let F be the family of all functions of form (3) regular
in K. Finally, let 8* be the subclass of F which contains all functions
starlike in K, i.e. 8* consists of all functions mapping the disk K onto
domains starlike with respect to the point w = 0.

Since any function of F is starlike (and schlicht) in K if and only if

2f' (2)
f(2)

then §°(M) represents a subclass of §°. Evidently 8*(oo) = 8°.
It is known [3] that any function f(2) of F belongs to the family §*

it and only it L2
f(2)

Let R by the subclass of all functions of F whose first derivative
have positive real part in K. Then R(M) c R and R(o0) = R.

It is known [5] that R is a subset of 8, where S = F is the class that
consists of all functions schlicht in K. ,

Moreover, let U = F be the class that consists of all functions f(2)
starlike in the direction of the real axis, i.e. for any », 0 <r< 1, and
f(2)e U the image of the circle |2| = r under f(z) meets the real axis not
more than at two points [6]. On the other hand, a function of F belongs
to U if and only if

P(2) =

Te >0 for every ze¢K,

c 2,

gs(e™"2)f(2)— e ““cosa-z
isina-e~ 2

y

where g,(2) = 1—2cosf-z+ 22 sina > 0, is a function of #, [6].
Hence U(M) < U and U() = U.
Next, denote by T the subclass of all functions of F which are typi-
cally-real in K, i.e. they assume real values if and only if z is real [9].
Since a function of F is typically-real in K if and only if

P(2) =

e

is a function of # with real coefficients [9], then T (M) =« T and T'(o0) = T.
Evidently T is a subclass of U and T (M) is a subclass of U(M).

 Finally, let C be the family of all functions f(z)¢F which are real
on the real axis and map K onto a domain convex in the direction of
the imaginary axis, i.e. for any r, 0 < r < 1, and f(2)¢C the image of the
circle |2 = r under f(z) meets every straight line parallel to the imag-
inary axis not more than at two points [7]. Since a function of F belongs
to C if and only if 2zf'(2) is typical]y-real [7], then

P(z) = (1—2%)f(2)

is a function of positive real part with real coefficients.
Therefore C(M) represents a subclass of C. Evidently C(oo) = C.
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3. A variational formula for the class #(M). If p(z) ¢, then [8] so is

Ps(2) = p(2)— e(1— |2[*)28(2)+0(e),
where

(= nz_ np(2) nz2p(2) )
Jg(z)"(zo(z—zo)+1—ioz P(Z)(z—2)  P(R)(1—%2)

zeK, |7 =1, ¢ >0 and the error term o(¢) is an analytic function in 2
uniformly bounded in each interior region of K.

Since there is a one-one correspondence given by (7) and (8) between
the function p(2) of # and the function P(2) of #(M), we obtain easily,
after some calculation, the following variational formula within #(M):

9) P,(2) = P(2)— e(1— |2 28(2)@* (2)+ o(e),
where
o P(2) Q(z)
(10) () = 2o (29— 2)* [z Q(2) P(z) ]+
n aP'(z) Q(z)
20 (20— 2) [”“ @) Plz) _1]+
L [1 P() Q@) 7w  aP'(2) 6(7..)].
(1—2,2)? Q(®) P(sy) 1722 Q2 P(a)

4. Extremal problems for re P(z) and re z;; (2)
P(M). It is well known that ()

within the family
1—
inf rep(2) ——t |2) =r<1.
peP +
THEOREM 1. For every P(2)eP (M) and 2| =r, 0 <r <1, we have

1—7r
+mr’

(11) reP(s) > —

The bound is sharp, being attained by

1—ez

(12) P(z) = 1+smz1

le] = 1.

Proof. Let P(2) be the minimizing function for reP(z), z¢ K being
fixed and P,(2) belonging to #(M). Now we may suppose without loss
of generality that the minimum is attained on the real axis at z =r > 0
since P,(z) = P(e"z) belongs to the family #(M) for ¢ real. Applying
the variational formula (9) we obtain
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eP,(-PM) _ ., { r [P(r) Q20) ]
(13) - M@ P em P T

v [ aP'(r) Qa) ] i [ P(r) Q)
-1 1 —
T =) ["' F) Pl A=z | T em Py

n? aP'(r) Q(z)
1-27 @ r) P(z)

}+ ()0,

Using the fact the rex = rez for any complex z, and replacing 2,
by # in (13), we obtain renH < 0 for all 7, |y| =1, where

¢ [P0 Q) Q'(r) [ aP'(") Q)
H=Hr =200 [Q(r) P() ’] 2(a—1) [z ¢ PG _1]+

&' [1 L0 9@, r@l) aP'(n) Q)
(1—re)® Q(r) P(2) 1—rz @*y) P(2)

+

Since 7, || = 1, is arbitrary, it follows that H = 0. Now, for real
values of ¢ we have

P,(r) = P(e'r) = P(r)4itrP'(r)+o(t).
Therefore
re(P,(r)—P(r)) = —trimP’(r)+o(?) > 0.

Since ¢ is an arbitrary real number, then we obtain imP’'(r) = 0.
Hence the equation H = 0 can be written in the form

T 1 PM QR o« P Qe 1
(14 Q"’[( 7 Q) PR T a=r @0 P(z)"z—ﬁ]+

g 1 P0) Qe  a P Q@ 1 _] o
A [(l—rz)2 Q(r) P2 1—rz @*(r) Pl2) (1—r2)? ’
By P(0) =1 and (14) we have

1—17r2 P(
1) 20T pgpy - SOEOZRON | 6 BE v em.

Since P’(r) is real, then, by (15), we have
Q(r)[P(r)—Q(r)]

re

+ QPN +Q)]
_ QPN —Qn]
rd

+ Q[P (r)+Q(r)].



164 W. Janowski

Therefore
(16)  [P(r)—P(r)][a(l—r?)+2ab(1+r?)— L
—(lb(l—r’)+b2(1+r’))(P(r)+P(r))] = 0.

It can easily be verified that, by P(z)e# (M), the second factor in (16)
does not' vanish. Consequently

(17) P(r) = P(r).
Thus equation (14) takes the form

[P0 Q@ | aP'E—1) Q) ]
t W[Q(r) o @¢m Pe AT

P(r) QR) , aP'(n(l—r) Q) ]
+{e=r)! [Q(r) P(2) o PR H] =90
Solving this equation with respect to Q(2)/P(z) we obtain
(18) (o2t + Eyo 4+ K,) Q(; — Q—ma—=),
where
P(r) P'(r)
1492 1—p2) — L
= () gy — o= Gy
P(r) P
K =—tr— " ,
o TG
K, = K,.

By (17) and (15) we have
aP’(r) 14" P(r) 1

@) r(1—m) Q(r) r’

Hence
K, =1—1%
11— P(r)
B== [1 " am "z)]
and (18) becomes
Q(2)
24+ A241)——— =1—2
(#*+ A2+ )P( 2)

where
1—r2 P(r) 1472

Q) v

Solving this equation with respect to P(z) we get
(1—2)*+(2+4)2

(L—2)(L+m2)+ }(1+m)(2+4)z "

A=

P(z) =
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By P(r) > 0 we have A > —2. Since the minimum of the real part
of functions belonging to # (M) is attained for P(r), we must take A = — 2.
In this case
1—2

Ple) = 14+mz’

Hence (11) follows with equality for function (12) only. Passing
to the limit in (11) as m — 1 we obtain the corresponding result for the
functions of the class 2.

THEOREM 2. For every P(z)eP(M) and |2| =r,0<r< 1, we have

rezP’(z)2 —(14+m)r .
P(z) = (1—r)(1+mr)

The bound i8 sharp, being attained by

(19)

1—e2
20 P = - =1.
(20) @) = oms? M
L . 2P’ (2)
Proof. Let P(z) be the minimizing function for rew,zeK

being fixed and P (z) belonging to #(M). Now we may suppose in analogy
to the previous theorem that the minimum is attained on the real axis
at 2 =7r>0.

Using the variational formula (9) we obtain

(rPf,(r) _ rP'(r)
P(r) P(n) ___ Q"
1— |22 B P(r)
Q(7)

— W S(r)P’ (r)] _S(")Q(")}‘F o(¢) =0,

{r [Q (1) (1) +28 (1@’ (r) —

where S(z) is -given by formula (10).
After some simplification we obtain

91 1 (rP:(r) rP' ()
) T\ Ee T Pm
= —or D 4801+ W1+ 0l > 0,
(r)
where
A(r) = Q(r) (1— 711:(:’)')) —2rbP' (r).

Next we differentiale function (10) with respect to z and apply to (21)
the expressions for S(r) and 8'(r) given by (10). Using the fact that
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rex = reZ for any complex z, and replacing z, by 2 in (21), we obtain
renrH < 0 for all 5, |y| = 1, where

QMA@{ 1 [P0 QG
P(r) zw—wv[zQV)Pw) 4*’

H=H() =

1 [P0 QR L e 2 [P0 e
+a%mMWMPm]H+MﬂAmeWﬂHa’%

1 [a P'(r) @(2) +z(P(T)) Q(2) _2]+

26— LY@ Py " \Qn ), P()
a mn@m}@%ﬂﬂ 1 Fmom ]
+z—#(QHﬂllﬂﬂ 20) Lr—mv o Py T

ar P Q@) @[22 [P QE
1—7rz @a(r) P(2) P(r) |(1—720 | Q(r) P(2)

1 Fw memﬂ M(FWVW)

=72t (@)  \@N )| PR T 1—r\@' ("), P2 |’

Since %, || = 1, is arbitrary, it follows that H = 0. Now, let
rP' (r P'(r rP'(r rP' (r
B=[ H+4wm 0=4 () 0 H}

P(r) P(r)  Pir) P(r)
2
D =2rQ(r), E= IQJ—:%A(r), - 12(:) :

Then the equation H = 0 after some calculation becomes
(22) {[D+B(z—r)+C(z—7)*](1—rz)®*+

+{D+B(1—r2)+rC(1— r2)*]} Q(2)

P(z)
= [2F+E(z—1r)](1—r2)*— [2F2+E(1—r2)](2—r)2
We claim that

C =C.
In fact, for real ¢ we have

. [rP;(r) _rP'(r)
Py(r) P(r)

] = re%it0+o(t) =>0.

Since t is an arbitrary number, we obtain

imC = 0.



Eaxtremal problems for a fam'ily of functions 167

P
Solving equation (22) with respect to Qf:; , we get
P(z) Dot P12+ Pa2?+ P12+ Do
QR Gt Gzt Bt — 2 — ot

(23)

where
Po = D+r¥(1—r?)C—rB—r*B,
p,=(1+3)B+r:(3+r3)B+2r(r*—1)C—3rD—+¥ D,
= (1+43r2—3r*— 1 C+3r*(D+D)—3r(1+r3)(B+B),
¢ = 2F—rE+7rE,
g, = (3r*+1)E+42Fr*—r2(34-r)) E—6¢F,
g, = 6r2(F—F)—3r(1+1?)(E—E).
Applying the results contained in [2] we obtain that the function

) can be expressed in the form
Q(2)
4
P(z) 1+ ¢,2
(24) = 2
Q(2) g; “1— e’
where

4
D=1, gl =1 fork=1,2,3,4.
k=1

Now, differentiating function (24) with respect to 2z, using (8), and
substituting r for 2 = |2|, we obtain

GP' 2Akek
Q’(T) Z (1— g2

Therefore
P'(r) <
25 <2 V%
#%) ‘lem ;2 =P
Since
__) -
Q(r = )Z Il—ekfl"
we obtain
P () 2 P(r)
e |S1=r e




168 W. Janowski

Hence

, 2r —_—
P’ (r)] < —c;(—l_-——r—") reP(r)Q(r).

Next, by (8), we have

(26) reP(r)Q(r) = areP(r)—b|P(r)|* < (a—b) |P(r)[reP(r)
and consequently by

11—

P@I>T s =1,
we obtain

, 2r oy 1t _ (14m)r

27 [P < _—a(l—r’) (a b 1+mr) reP(r) = A= L mr) reP(r)
and
(28) 7P’ (r)| < (1+m)r .

reP(r) A—=r)(1+mr)

Since
ro rP’(r) rP’ (r) [rP’ (7)]
P(ry = | P() |T  reP(r)’

we obtain finally
(29) re rP’(r) S A+m)r

Pir) = (A—n@+m)’

i.e. inequality (19). Since equality holds in (25)-(29) if and only if ¢ =1,
k=1,2,3,4, then the extremal function is given by formula (20), and
this completes the proof.

Passing to the limit in (19) as m — 1 we obtain a result of Libera [2].

COROLLARY. For every P(2)eP (M) and 2| =r,0<r< 1, we have
2P’ (2) QA+ m)r
<
P(2) (L —7)(1+mr)
with equality if and only if

re

1—ez
14 emz’
5. The radii of convexity for the families S(M) and R(M). The radius
of starlikeness of U(M).
THEOREM 3. The radius of convewily of the family S*(M) i3 given
by the formula

P(z) = le] = 1.

. — 3+m—Vmit+6m+5

(30) 2
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Proof. If f(z)eS8*(M), then
¥ @ _
1@ |
for some function P (z2)eZ?(M). Differentiating .(31) we obtain
f@ 4@ _z(f'(Z)) _ P

(31)

P(2)

fz)  f(2) f(2)
An easy calculation yields
zf" (2) . #2P'(2)
1 =P -,
e TP P
Thus
g\ 2P’ () -
o T )2 PO T =
By (11) and
2P’ (2) 1+m)r B
(32) P |S O-nitmn’ A =0O0ST<D
we get
of () rA—(3+m)r+1
43 m(” ) )2 A—n @ tmr)

The denominator of the expression on the right-hand side of ine-
quality (33) is positive for 0 < r < 1. Thus the inequality

re (1—|— 4, ()

f'(2)

is valid for r = [2| < ¢, where ¢ is given by formula (30). Hence the

radius of convexity R, for S§*(M) is not less than .
The function

>0

2
(34) ffz) = (1L emz)0rmim ? lel =1, m #0,
as it can easily be verified, belong to S8*(M), where M # 1.
Since
o (2) e222—¢g(3+4+m)z-+41
14— =

(=) (L— e2)(1+ emz)

we get
zf*lr(z))
re|l+——) =0
ST

for z = eo. Thus the funetion f*(z) is not convex in the disk |2| < r for
* > o. Hence, by R,> ¢ we obtain R, = ¢ in case where m # 0.
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The function
(35) f"(z) = ze%, le] =1,
belongs to 8*(1). Since
o™ (2)  e%P43er1

14

()  14ez
we get
zfﬁl#” (z))
re{l+ ] =
( J7(?)
for 2 = —¢ep. Thus, if m = 0 we obtain likewise B, = g, and this com-

pletes the proof.

Passing to the limit in (30) as m — 1 we obtain ¢ = 2—V§, (4]
Similarly, we obtain

THEOREM 4. The radius of convexity for the family R(M) is equal to

(36) - |(l/l+m—1)/'m, 1:.f m # 0,
%, if m =0,
The functions
37 ) =i log(lteme)— 2, le] =1,logl =0
m? m
and
(38) f*(e) =2—fe?, e =1

from R(M) (M 1) and from R(1), respectively, shows that this result is
sharp. Passing to the limit in (36) as m — 1, we obtain ¢ = y2—1, [2].

THEOREM 5. The radius of starlikeness for the family U (M) is equal to
(39)

( l/ m m
arccos |/ —— arccos |/ ——
14+m m-+1 -, m+1
'1_1/ (cos —V¥3sin ~ ,
e =/ m 3 3
if m #£0,
\ 1) if m =0.

Proof. If f(2)e U(M), then

gﬁ(e‘i"z)f(z) —e¢ "cosaz

ia

(40) -
810 a-‘e -4

=P (z)
for some function P(z)e#(M). Differentiating (40) with respect to =z
and simplifying the result we get

of'(2) 1— e %2 2P’ (2)
f(z)  1—2e¢ "cosf-z+e 2 ' P(z)+h’

h = —icota.
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Thus
ro 4 > minre 17 — max P | 2] =7
f(z) ap L1—2e"cosf-z+e %2  pueson|P(z)+h| ="

Let z = 7%, 0 < ¢ < 2=, and

1— =y

A =7 - - .
(a7 ﬁr ¢) © 1— 2ez(w—a)cosﬂ_r+ 62‘!(0’—0).,.2

Since
. 13 m
iﬁ:j:A(a’ Byp) = A(E’ 0, — ?),
then
zf (2) _ _2P'(2)
f(=) 1+7‘ P(z)ea(M) P(z)+h |

Next, we have

2P’ (2) < 2P’ (2)
P(z)+h |  reP(z)

and, by (28), we obtain

zP' (2) ~ (14+m)r
PR)+h|  (1—nr)(1+mr)’

Therefore

(41) zf (z) —r A+ m)r .
: f(z) 1—|-r 1—7r)(1 4+ mr)
Consequently
o' (@) q(r)

(42) e (=) dtmr)’
where

q(r) = mr3—3mr?—3r+1.

The denominator of the expression on the right-hand side of ine-
quality (42) is positive for 0 <r<1, ¢(0) =1>0, ¢q(1) = —2(14+m)
< 0. Thus the smallest positive root r, of the equation g(r) = 0 lies between
0 and 1.

Thus the inequality

o &)
f(2)

is valid for r = |z| < r,. Hence the radius of starlikeness R, for U (M)
is not less than r,.

>0
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Equality in (41) holds for z — —ir, @ = —, § =0, P(2) = ——"* and
2 1+ imz
z2(1—12)
*e) = Y —.
(1412)2(1 -+ tmz)
Moreover, it can easily be verified that f*(2)e U(M). Since
#f* (2) _ —im&®43me®— 3iz+1
ey (L4iz)t (1 +ime)?
we get '
2f*' (2)
re—y— =0
')
for z = —ir,. Thus the function f*(2) is not starlike in the disk [¢| < 7

for » > r,. Hence, by R, >r, we obtain R, =r,.
Now it remains to choose the smallest positive root r, of the equation

(43) mr'—3mrt—3r+1 = 0.

If m # 0, then (43) is cubic. Its discriminantis — 108m(m+1)% < 0.
Consequently (43) has there distinet real roots for-each m # 0; the
smallest non-negative root is given by (39). In the limit case m =1

we obtain ¢ = 2—V3. If m = 0, then (43) is linear and we obtain ¢ = }.

6. An estimate of the radius of convexity for the family C(M).

THEOBREM 6. The radius of comvexity o of the family C(M) is not
less than the smallest positive root of the equation

(44) q(r) = mr*—2mr’ — (14m)r2—2r+1 =0.
Proof. If f(z)eC(M), then
(45) (1—2%)f"(2) = P(2)

for some function P(z)e#? (M) with real coefficients. Differentiating (45)
we obtain

(L—2%)f" (2)—22f" (z) = P'(2).
An easy calculation yields
2f'' (2) 142t zP' (z)

(46) e T1ma T PE
Thus
of'" (2) 1422 ) 2P’ (2)
“(“ @) )>ﬁil’i‘r° Il T

P(z)eP(M)
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Using (19) we obtain

@)\ 1= Qtmyr a(r)

f'(2) )’ 1+72 A—n)(14+mr) (QA—r)A+r)1+mr)
The denominator of the expression on the right-hand side of ine-

quality (47) is positive for 0 <r <1, ¢(0) =1 and ¢(1) = —2(14+m) < 0.

Thus the smallest positive root r, of equation (44) lies between 0 and 1.
Therefore the inequality

of" @)
mb*’fw))>°

is valid for r = |2| < r,. Hence the radius of convexity for C(M) is not

less than r,. The theorem is proved.
In the limit case m = 1 we obtain a result of Libera [2].

In the case m = 0 we have o> V2 1.

CoROLLARY. The radius of starlikeness for the family T (M) is not
less than the smallest positive root of equation (44).

In fact, if f(2)eT (M), then
1—
z

(47) re(l—l—

2 fz) =P()

for some function P(2)e#(M) with real coefficients. Therefore

zf'(2) 1422 2P’ (2)

fo) o i—a T P

re

(comp. (46)) and, consequently, we obtain the assertion.

7. The estimations of |f(2)|, |f'(2) im S*(M).
THEOREM 7. If f(2)eS8* (M), then for 2| =7, 0<r<1

r r
(48) (1+m)(1+m)lm g If(z)l < (1_mr)(1+m)/'m fOT m;& 07
(49) re" <|fR) <re  form=0,

1—r , 14-r
(50) (1+W)(1+2m/m < If () < (1_mr)(l+2m)lm for m#0
and :
(61) A—ne"<|f'RI<1+r)e  for m =0.

These bounds are sharp, being attained by functions of form (34) and
(35), respectively.
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Proof. Since

'@ 8 B
ey =Ty el @l e =7,
and using (33) we obtain
0 . (1+m)(r—2)
Eloglf () = A—nafmr

Integrating both sides of this inequality from 0 to r, we obtain

1—r
(1 + mr)(l+2‘m)[m ?

If* (2)| > if m+#0,

and
I’ =1—r)e”", if m =0,

i.,e. the bound of the left of (50) and (51).
Let z,, |2] = r this value of 2, for which |f(2))| < |f(2)}, for all 2,
|2l =r. If I' is the pre-image of the segment <0, f(z)), then

—7r

T
fet = [If @)11de] > Jirena= [ o it mo
r 0

and

fe) = [(1—r)e"dr, if m =o0.

From which we get the bounds of the left of (48) and (49). Since
f(z)e8* (M), then

s = o[

Therefore

P)—1
¢

dc), P(z)e?(M).

@) = el (re [ E%Lx).

Substituing { = 2¢, we obtain

1

1) = el (re of 5@“—1 dt).

Hence

1
If(2)] < lzlexp(a max (l'e'P(z?—l)dt).

|et] =1t
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Because
P(zt)—1 14+m)r
max re = ’
\otl=rt t 1—mrt
then, after integration, we obtain the upper bounds in (48) and (49).
Similarly, we obtain the bounds of the right of (50) and (51), which ends

the proof.

8. The estimations of the coefficients in 5*(}M) and #(M).
THEOREM 8. If f(2)eS*(M), then

1 r
(52) lan|<m—_1)—!k];[(1+k(1——)) N

and

N-1
1 1
62) ol < o [ (18 (1= ) »=Fs1, 742,
* kel

where Ne[2M,1+2M), is natural.
Estimate (52) is sharp, equality holds for functions (34) and (35),
respectively.

Proof. If f(z)eS* (M), then

z2f'(2) 14 w(?) B 1
(59) &) 1-me@’ "M

for some function w(2)e2 (comp. (6)).
From (53) it follows that

o' (2)—f(2) = (maf' (2)+f(2) 0 (2),

whence

(54) Z(k 1a,2* = w(z) 2(1+mk)akz" (a, =1).

k=1

Equating the coefficient at 2* on both sides of (54) we obtain a,
= (14+m)w’(0). Since |w'(0)] <1, we obtain

(55) |@e| < 1+m.

Thus, estimate (52) holds for n = 2.
Suppose n > 2. We rewrite (54) as follows:

(56) 2 k=& Z+ D' o = o(z) Y (1+mk)ae,,
=2 k=n+1 k=l

where the sum ' ¢,%* is convergent in K.
k=n+1
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Let z = re, then since |w(z)| < 1

(57) 2 (b1l = f {g (k—1) gy (re)"

k=2

2
dt

2t n-—1 n—1

1 N1 21, 12,2k
< Py, of '_g(1+mk)ak(_re) c_it_k;l‘(urmk) a2 2.

Pagsing to the limit in (57) as r —1, we conclude that

D (k—1)*la|? < D' (14mk)2|a 2.

k=2 k=1

Therefore

n—1

(n—1)*a, P < (14+m)2+ D [(1+mh)?— (k—1)2]|a 2.
k=2

We observe that (1+m(n—1))2—(n—2)2 > 0, if and only if » < N.
By an inductive argument we obtain estimates (52) and (52').

The proof of this theorem is based on a method introduced by Clunie
1]

CoROLLARY. The values assumed by f(z) in K include the disk

(68) [0 < i—1jm

In fact, let f(2) be in 8*(M) and let w be any number such that
f(2) #w for z in K. Then the function

@ 1
o = gy = g o
w

belongs to §. Hence |a,+1/w| < 2. From which we obtain (58).
THEOBREM 9. If P(2)eP (M), then

: 1
(59) bat<2—37, n=1,2,3,...

The bound 1is sharp, being attained if and only if
1-4-e2™

1 y
1'—8(1— -E)z"

Proof. If P(z)e#(M), then

(60) P(2) =

le| = 1.

1+ w(z)

for some function w(z)e£.
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From (61) it follows that

(62) P(2)~1 = (1+mP(2))w(2).
Let
w(?) = €2+ 2%+ ... +c, 2"+ ...

Applying the metod of Clunie we obtain finally the inequality
n—1
(63) Bal? < (L4-m)? 4 (m2—1) 3 [, 2
k=1
Since m?—1 < 0,

bl <14+m, =n=1,2,3,...,

i.e. we obtain estimation (59). Equality holds for function (60).

If |b,| =14+m, n =1,2,3,..., then from (63) we conclude that
b, =0 for k =1,2,...,n—1. Therefore, from (62) we obtain |c,| =1
and ¢, = 0 for & # n. Thus, the function f(2) for which |b,| = 1+m is
of form (60).

COROLLARY. The values assumed by f(z) of R(M) in K include the
disk

< s—ym
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