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On a generalization of Hille’s functional equation

by HirosHI HARUKI (Waterloo, Canada)

Abstract. The purpose of this paper is to solve a generalization of Hille’s func-
tional equation using a lemma which is obtained from Nevanlinna-Pélya Theorem.

1. Hille (see [5], [4], [1], p. 19 and p.31) solved the following functional
equation:

1) If(s+4t)* = 1f(s)I* + If ()7,
where f = f(2) is an entire function of a complex variable z and s, ¢ are
real variables.

A simple calculation shows that (1) implies the following functional
equation:

(2) If(@+9) P +1f(z—9) = |f(z+7) ] +If@-D),
where f = f(z) is an entire function of z and «, y are complex variables.
The following theorem was proved in [1], p. 30-31, [2]:

THEOREM A. If f = f(2) is an entire function of z, then the only solutions
of (2) are f(z) = az+b and f(2) = asinaz+ b cosaz, where a, b are arbiirary
complex constants and a s a real or purely imaginary consiant.

Now we consider the following functional equation:

(3) D fe+oty)l? = D Ifl@+ PP,
k=0 k=0

where x, y are complex variables, f = f(2) is an entire function of z and w
denotes the complex number exp(2ni/n). Here n is a positive integer
greater than 1.

It is obvious that (2) results from (3) with n = 2.

The purpose of this note is to solve (3), i.e., to prove the following

THEOREM. If f = f(2) is an entire function of 2, then the only solu-

n—1 n—1
tions of (3) are f(z) = 3 a,2* and f(z) = ) a,exp(w®az), where for cach
k=0 k=0
k=0,1,2,...,n—1, a;, is an arbitrary complex constant and a i3 an
arbitrary real constant or a = ccxp(ni/n), where ¢ is an arbitrary real con-
stant.
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2. To prove the theorem in Section 1, we shall apply the following
four lemmas.

LeEMMA 1. Let n (> 1) be an arbitrary positive integer. If w denotes
n—1

the complew number exp (27i[n), the sum > o™ has the value n or 0 ac-
cording as m i8 or is not a multiple of n. =

Proof. Since the proof is easy, we omit it (cf. [10], p. 924).

LEMMA 2. If f = f(2) is regular in a non-empty domain D, then A|f(2)]
= 4|f'(2)|%, where A stands for the Laplacian 92[0s?+ 020t* (2 = s+t 8, ¢
real) holds in D.

Proof. See [7], p. 94.

Before we state Lemma 3, we state the following

THEOREM B (Nevanlinna—Pélya Theorem). Let n (> 1) be an arbi-
trarily fized positive integer and let D be a non-empty domain. Suppose that
fi =f1(2)y fa =F2(2)y fa =Fa(2), ooy fo =Fa(2)5 91=9:(2), 92 = 92(2), 9a
= g3(2), ...y Gn = 9n(2) are regular in D. Suppose further that f, = f,(2),
fa =fa(2), fs = fa(2)y - ooy fu = Fu(2) are linearly independent im D and that

fl = f1(), fa=fal®), fa=Ffa(2),...,[a =f,,(z); g1 = 91(2)y, g2 = 92(2),
gs = G3(2)y .-y §n = Gn(?) salisfy kZ‘l | fi(2)? =k§1 g% (2)]* in D. Then there

exists an n X n unitary matriz

(ag)y, k=1,2,3,...,m;1=1,2,3,...,n,

n

such that for each k =1,2,3,..., 1, g;(2) = > ayfi(2) holds in D. Here,

=1
for each pair of £ =1,2,3,...,m, 1 =1,2,3,...,m, ay s a complex
constant.

Proof. See [3]), [6], [8].

We may now prove the following

LEMMA 3. Let n (> 1) be an arbitrarily fized positive integer and let D
be a domain including 0. Suppose that for each k =1,2,3,...,n, f(2)
and g, (2) are regular in D and that for each k = 1,2,3, ..., n, f(0) = g,(0)
= 0. Suppose further that f, = fi(2), s = fo(2)y fs = Fa(2), ver fo = ful2)
are linearly independent in D and that f; = f,(2), f2 = fo(2), fs = fi(2), ...
v fo =1R); 6 =0r), 9. = gaiz), 9s = ysiz), vy 9n = Ga(2) satisfy

n

kf,: Ifz(2)® =k§ 9% (2)* in D. Then gllfk(z) ? = kgl 19, (2)|* holds in D.

Proof. By hypothesis and by Theorem B there exists a unitary
matrix

(gu), £ =1,2,3,...,n;1=1,2,3,...,n,
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such that for each ¥ =1,2,3,...,n
n
(4) g% (2) = D) aufi(2)
i=1
holds in D. Here, for each pair of ¥ =1,2,3,...,2, 1 =1,2,3,...,n
a;; 18 2 complex constant.
Integrating both sides of (4) from 0 to z along a contour and using
the hypothesis that for each k¥ =1, 2, 3, ..., n, f,(0) = ¢,(0) = 0 yields,
for each ¥ =1,2,3,...,n,in D

’

Nl

(5) gi(2) = D, aufi(2).

!

I
—

. n
Since the matrix (ay) is unitary, by (5) we have D [f.(2) =
K=1

kil (@) i D. QED.

LEMMA 4. Let n be an arbitrary positive integer. If for each k =1,2,3,
eeeym, A, i8 a point set tn the finite complex plane which has no accumula-
n
tion point, then the set \_) A, has no accumulation point.
k=1
Proof. Since the proof is easy, we omit if.
3. We may now prove the theorem in Section 1.
First, we shall prove that an arbitrary polynomial of degree at most
n —1 is a solution of (3). Let f = f(2) be an arbitrary polynomial of degree
at most n —1. Then we can put

fl@+y) 2 A;(2)y’
i=0
for all complex z, y.

Hence, by Lemma 1 we have

n—1 n—1 -
6) D If@+o*ylF =) fl@+o*y)f(@+oFy)
k=0. k=0
n—l n—1
=" (3 4, (*yy 2 4,(z) ("))
k=0 j=0 lm(
n—1 n-1

—2 (Y D 4(2)4) M0 y'7)

k=0 J=0 l=0

_ 51 nz—:l (Aj (oA w)@l’?[’Z k(j-l))
J=0 I=0 k=0
= 2 [4(2) 1y,
J=0

7 — Annales Polonicl Mathematici XXXVI.2
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Replacing y by 7 in (6) yields that f = f(2) is a solution of (3).

We may now assume that f = f(z) is an entire function which is
not a polynomial of degree at most n —1.

Keeping y arbitrarily fixed and taking the Laplacians 92/ds?-}-92/0t2
of both sides of (3) with respect to # = s i (s, ¢ real), by Lemma 2 we have

n—1 n—1
4 D If (@+oty)* =4 ) If (a+* PP,

k=0 k=0

or
n—1 n—1

(7) D Uf@+otyf = Y If @+ o5
k=0 k=0

When z is arbitrarily fixed, foreachk = 0,1, 2, ..., n—1, f(z + o*y) —
—f(x), f(# + 0*§) —f(x) are entire functions of y with (f(z + w*y) —f(2)),-,
= (f(x+ *§) —f(®))y=, = 0. Moreover, by (7) we have in |y]|< + oo

n—1 n—1
D\o10y) (f(@+*y) —f @) = D' |(0189) (f@+*F) —f (@),
k=0 k=0

since for each & =0,1,2,...,n—1, Jo*| = |of] = 1.

Further, we shall prove that when « is arbitrarily fixed, f(x+y)—
—f(z), flo+wy)—f(@), f(@+wy)—-f@),...,f(®+o"'y) —f(x) are line-
arly independent in |y| << 4 oo. To this end, we assume that

(8) ) 0(@)(f(e + w*y) —f(2) =0,

k=0
where for each k¥ =0,1,2,...,n—1, C,(z) does not depend on y and is
a function of z only.

Differentiating both sides of (8) I times with respect to ¥ and putting
y = 0 in the resulting equality yields for cach ! =1,2,3,...,n

(©) 0@ Y ot Cy(@) = 0.
Let e
(10) D ={oI[] ") = 0}.

im])
Since, by our assunmption, f is not a polynomial of degree at most
n—1, we have J] f™(z) # 0. Henee, by (10) D is a non-empty domain.
=1
By (9), (10) we have for ceeh 2 bdonging to D and for cach
l=1,2,3,-.-,n

n-1

(11) D) WMCyla) = 0,

k=0
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Since, by Vandermonde’s Identity in the theory of determinants
(see [9], p. 102), the determinant of system (11) of linear equations for
Cy(z), C1(x), C3(x)y ..., Cp_(x) does mot vanish, we have (,(z) =0,
Cy(x) =0,0,(x) =0,...,C,_,(x) =0 for each x belonging to D. Hence,
when # is arbitrarily fixed in D, f(z +vy) — f(x),f(z + owy) — f(2), f(2z + w2y) —
—f(@), ..., f(x+ o™ 'y) —f(x) are linearly independent in |y| < - oo.

Sinece all hypotheses of Lemma 3 are satisfied, by Lemma 3 we have

(12) D f(@+aky) —f(@)F = 2|f(w+wy —f(@)P
k=0

in |y|< 4 oo and for each z belonging to .D. Taking into account the

fact that, by our assumption, f = f(2) is not a polynomial of degree at

most »—1, by a famous theorem in analytic function theory for each

1=1,2,3,...,n, the set {x|f®(x) = 0} has no accumulation point.
n

Hence, by Lemma 4 the set § = | J{z|f”(z) = 0} has no accumulation

1=1
point. Hence each point of § is an isolated point. Therefore, by the con-
tinuity of f we see that (12) holds not only for each = belonging to D, but

also holds for each x belonging to | ) {z|f®(z) = 0}. Thus, (12) holds for
=1

all eomplex z, y.

Subtracting (12) from (3) side by side and using the formula |a —b|?
= |a|*+ |b* —2Re(abd) (a, b complex) yields

(13) 2 2 Re (f(z + o*y)f(z)) = 2 2 Re (f(z + o*§)f ().

k=0 le=0
Using the formula Re(y) = Re(¥) (y complex) in (13) yields

(14) Re( D (f@+a*y)f(@) —fla+ w"g)f(fv))) =o.

k=0
When « is arbitrarily fixed, for each k¥ =0, 1, 2, ..., n—1,

fl@z+o®y) f(®) —f(z+ o*7)f(x) is an entire function of y. Hence, by
(14) and by a famous theorem in analytic function theory we have

(15) 2(fw+w 0)7@) —F@ T hif (@) = 4(),

k=0

where A () is a function of z only.

Putting ¥ = 0 in (15) yields A(z) = 0 for each complex ». Hence,
by (15) we have for all complex z, ¥

(16) f@) Y flo+oty) = 2f(w+w 7).
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Differentiating both sides of (16) » times with respect to y, using the
formula o™ = 1 and putting ¥y = 0 in the resulting equality yields for all
complex z

nf ™ (@)f(z) = nf (2)f @ (@),
or
(17) ™ (@)f (@) = f(2)f™ ().

By our assumption we have f(z) # 0. If we put F = {z|f(x) #~ 0},
then F is a non-empty domain. By (17) we have in ¥

1®(@) (@) = (f (@) [f(@)).

Hence the regular function f"™(z)/f(x) in E is real-valued. Hence,
by a famous theorem in analytic function theory we have in

F™ (@) /f(x) = 4,

where A is a real constant, and so
(18) (@) = Af(@).

Since f = f(2) is an entire function which is not a polynomial of
degree at most n—1, by the Identity Theorem (18) holds for all complex
x, A being a non-zero real constant.

Solving (18), we have

n—1

(19) f@) = D) ayexp(ataz),
k=0

where for each ¥ =0,1,2,...,n—1, a; is a complex constant and «a is
a real constant or a = cexp(=ni/n), where ¢ is a real constant.
We shall prove that (19) is a solution of (3). By (19) we have

n-—1 n—1
(20) Y If(@+oty) = D fla+o*y)f(@+oty)
k=0 k=0
n—1/n—-1 n—1
= (2 a;exp(w’a(x + w*y)) Z E,exp(w’a(a;—i—w"y)))
k=0 =0 I=0
n—1 n—' n—1
= 2 (aszl 2 exp(w’ az + o~ 'ag 4 o' t* ay 4 w""‘dg?)) .
J=0 =0 k=0

We discuss two cases.
Case 1. a is a real constant.
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Replacing y by # in (20) and observing that @ = a together with

n—1
2 exp(w/az + o™l aZ + o' ¥ ay + 0% a)
k=0
n—1
= Z exp (o’ ar + 0~ aZ + v af + o~ *ay)
Jem0

{o* keZ,0<k<n—1} = {0 " *keZ,0<k<n—1}
={1, 0, 0% ..., 0"}
yields that (19) is a solution of (3).
Case 2. a = cexp(ni/n), where ¢ is a real constant.
Since @ = cexp(—=i/n) = ajw, by a similar calculation to that
in Case 1 (19) is a solution of (3). Q.E.D.

Remark. It is obvious that Theorem A in Section 1 results from
the theorem proved in this section with n = 2.
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