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Paley-Wiener theorems for the Mellin transformation

by Zoria SzmyYDT (Warszawa)

Zdzislaw Opial in memoriam

Abstract. The paper is devoted to establishing theorems on the Mellin transforms of Mellin
distributions analogous to the Paley-Wiener-Schwartz theorems on the Fourier transforms of
distributions with bounded supports and of functions in Cg . The role of C7-functions is being
played by a subset, defined by boundary conditions (6), of the space MM, _,, of Mellin multipliers.
Section 4 contains a characterization of the set of Mellin distributions.

The paper is strictly connected with papers {5] and [6] by B. Ziemian, and Section 3 contains
some of his unpublished results.

1. Notation and basic facts on the Mellin transformation. Throughout the
paper, we use the following vector notation: if a,beR", a=(a,, ..., a,),
b=(b,,...,b,), then a <b (resp. a <b) denotes a; < b; (resp. a; < b)) for
j=1,...,n.

We denote R, = {xeR™ 0 <x}, J=(0,r] = {xeR%: x <r} for some
fixed r=(r,,...,r,)eR%. N, is the set of non-negative integers, |« =
o, + ... +a, for aeNj. 1 =(1,..., 1)eR";.

If xeR%, z=(z,,...,2,)eC" we write

x* = xi' ... xin.
Vector notation is also used for differentiation, namely, for ve Ng,

ot avn
D'=Dy...D) = e —,
! ox\! oxpn

- - - a Vi a Vn
Y=DY...Dr= — ... - -
=i = () (5

We use the notation commonly used in the theory of generalized
functions. The value of a generalized function u on a test function ¢ is denoted
by ule].

Following [5] we recall the definition of the Mellin transform of
a distribution and some of its properties which will be useful in the sequel.

LetaeR", J = (0, r]. By M, = M, (J) we denote the complex vector space
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of functions ¢eC®(J) such that (')

xa+a+l a—(P(X)

n
e <o for aeNj

Qaa((p) = sup

xed

with the topology given by the seminorms pg,, xeNj. For any we
(R U{+w}) we define the inductive limit

9‘-’?’(ﬂ-’) = U m’Ia'

a<w

By IR7(J) we denote the complex vector space of functions ¢ € C™(J) such that
0aa(@) < 00 for |¢] < m with the norm ) g..(¢).

z|<m

I
The space M, (J) denotes the dual of M,(J) (?). ue M, if and only if there
exist me N, and C < oo such that

(1) ulell < CHZ, 2alp) for peM,(J).
We say that a generalized function ue I, is of Mellin order < m if (1) holds.
The dual of 9N denoted by (M) is isomorphic to the subspace of M, formed
by generalized functions of Mellin order < m.

Denote by Cg (J) the linear space of restrictions to J of Cg (R") functions,
by D(J) the space Cg(J) with the topology induced by D(R?).

. Denote by D'(J) and M, (J) the dual spaces of D(J) and M,

respectively.

From the definitions given above, the following topological (*) inclusions
follow easily

2 DPNcWMy <cM M), My, cM,cD(J) for a<ow.

It turns out that for every w, Cg§(J) is a dense subset of M), thus N, is
a subspace of D'(J).
Let

D)(RY) = {ue D'(RY): suppu c J}
and note the following proposition:
PrOPOSITION 1. There exists a linear isomorphism L

L: D,(R")2urs Lue D'(J)

(*) The space M, can be equivalently defined by the system {g__} » of seminorms, where
aeNg
2,.(9) = sup|x** D% (x)l, peC*(J).

xeJ
(3) In the sequel we often omit the symbol J of a basic cube, because it remains fixed
throughout the paper.
(®) This means that the convergence of a sequence in the smaller space implies the
convergence in the bigger space.
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defined by: (Lu)[@] = uf @], where ¢ e CE(J) and ¢ € CE(R") is an extension of ¢.

Proof. To see that this formal definition defines correctly Lue D'(J) it is
necessary to verify the implication: Y e C§(R%), ¥ = 0 on J implies u[¥] = 0.
To this end, take 6eC¥(R%), 6=1 on supp¥. Then ¥ =o¥, u{¥]
= (ou)[¥] and Y is k-flat on supp ou for every ke N. Thus, by Theorem 7.4 of

[3], (cu)[¥] = 0, and hence u[¥] = 0. The end of the proof of Proposition 1 is
now clear.

In view of the isomorphism given by Proposition 1 one often writes
u instead of Lu.

COROLLARY 1. For every we(R, v {+o})', M, is a subspace of the
space of distributions D).

We say that ueMy,, is of Mellin order <m, meN, if for every a < @
there exists a constant C = C, < + oo such that (1) holds. The space

M= U D)

we(RU(+ o))"

is called the space of Mellin distributions(*).

By Corollary 1 every Mellin distribution is a distribution. It is important
to note that the notion of Mellin order < m differs from the analogous classical
notion from the theory of distributions (see Section 4, Remark 5).

LEMMA 1. Let fe M, (J), beR". Then the functional u, defined by
M_po > ¥ o, [¥] = [f(x) ¥ (x)dx
J

belongs to the space M(_,_,,.

Proof. Let fe,. Take an arbitrary sequence ¥, — 0 in 9 _,_,, and let
¢ < —b—1 be such that ¥ —0 in M_. We get easily the estimation

u [P0 < geo(¥,)suplc®* f (x)] f x*~'dx
J

xed
where e = —c—-b—1>0.
Thus u,[¥,] - 0; hence u,eM_,_y)

Remark 1. By Lemma 1 we write shortly 9, < MM;_,_,, identifying the
functional u e Wt_,_,, with the function feM,. Hence by (2) we get
M, = My =M, for c < —b—1.
The operations of multiplication and differentiation
P M, > My_rep,  x*: My = My—pepy for BeC,

3
( ) D*: nga—) ma+¢, D*: ‘.Dz(m)—’m“u.g.a) fOI‘ OZEN'(')

(*) We have also D'(J) = {J ().

acR"
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are continuous. By duality the operations,
B M, - My vgeps XP: M) > Miprrepy for e,
D*: M, - M, _,, D*: My, —» M, 4y for ae N},
are continuous. Hence follows the continuity of the operations

5“: nga - 9]?0, D"v: 9]2(0,) i W(w)

4) for ve Nj.
D¥: M, ->M,, D" M, —» M,

The Mellin transform of ueM,, was defined in [5] by the formula
Mu)(z) =ul[x"*"'] for zeC", Rez < w.
Mu is holomorphic for Rez < w and has the following properties:
M(x*u)(z) = Mu(z—a) for aeC" and Rez < w+Rea,

M@Du)(z) = (z;+ D)Mu(z,, ..., z;+1, ..., z,)
(5)
for Rez, <o, (k#j), Rez;<w;—1 (j=1,...,n),

M(ﬁju)(z)=zj(Mu)(z) for Rez<w (j=1,..., n).

2. Paley-Wiener theorems for the Mellin transformation. The following
Paley-Wiener theorem for the Mellin transform of an n-dimensional Mellin
distribution ue 9, was stated by B. Ziemian:

THEOREM 1(%). In order that a function F(z) = F(z,, ..., z,) be the Mellin
transform of a Mellin distribution ue Y, it is necessary and sufficient that F be
holomorphic in the set {ze C": Rez < w} and that for every b < w there exists
a polynomial P such that(°)

|F(z)] < r~RZ|P(z)] for Rez <b.

This theorem is analogous to the Paley-Wiener-Schwartz theorem for the
Fourier-Laplace transforms of distributions with compact support(’). The aim
of this paper is to give for the Mellin transform a theorem analogous to the

Paley—Wiener-Schwartz theorem for the Fourier-Laplace transforms of
C&(R™ functions.

(°) This is a precise statement of Theorem 1, ». 278 in [5). The same formulation in
dimension 1 was given in [6], Theorem 3.
(°) In accordance with the notation introduced in Section I:
r—llez — rl—Rc:1 .

(") See 1], Theorem 7.3.1.

--Rezp

- r,
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The set which corresponds to C%(R") forms in this case a subset of
() M_,. For short we shall write

b<1
WMy -y = ﬂ M, = ﬂ M)+
b<1 e>0
Observe that () M, = () M, for every aeR". So M_,;= () M—; +0-
b>a b>a £>0

THEOREM 2. In order that a function G(z) be the Mellin transform of
a function @ e M _,, satisfying the conditions

" o(x)

4
Ox?

it is necessary and sufficient that G be holomorphic in the set {ze C": Rez < 0}
and that for every me N, and b < 0 there exist constants C,, < o0 such that
1

n

I+ ) |z"
i=1

The proof of Theorem 2 will be based on a part of Theorem 1 and on
Lemma 2 which B. Ziemian used in the proof of the sufficiency condition in his
Theorem 1. For convenience we write them down as Theorem 3 and Lemma 2,
but we omit their proofs.

THEOREM 3(%). Let ue My, and F(z) = (Mu) (z) for ze Q = {z: Rez < w}.
Then F is holomorphic in Q and for every b < w there exist m(b)e N, and
C(b) < oo such that ue(MI®Y and

IF@I < C(b) Y. Ip(alr " for Rez <b,

ja| < m(b)

where p,(z) = (z,+1) ... (z, +a,) ... (z,+ 1) ... (z,+,), |2 < m(b). Consequen-
tly, there exists a polynomial P such that

|F(z) < |P(z)|r~R¢* for Rez < b.

LEMMA 2(°). Let beR". Suppose that G is holomorphic on the set
{zeC": Rez < b} and that

(6) =0 (j=1,....,n,p=0,1,2,..),

Xj=rj

(7) |G(2)] < Cpp r Rez  for Rez < b.

C
IG(2)| < r Rz  for Rez<b,
ISt Gy
where C < o0, {z)*=|z|*+1 (i=1,...,n), reR%.
Then the formal definition

g(x)=Q2ri)™" | G2)x*dz  for x>0 (c < b)

ct+iR"

(®) From Theorem 3 follows at once the necessity condition in Theorem 1.
(°) For n =1, see [4], Theorem 4.3.1.
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defines correctly a function g continuous for x > 0 which does not depend on the
choice of ¢ < b. Moreover, supp g < J, the function R". 3 x> x ~bg(x) is bounded,
ge My, (J) and G(z) = (Mg)(z) for Rez < b.

LEMMA 3. Let oeM,(J), beR". Write

o \?
(8) Pjplx) = (xja—) ¢(x) for xel.

Xj
Then for every meN and j=1,2,..., n the boundary conditions
9) QipXys ooy Xj15 Fjy Xjiy, ., X)) =0 (p=0,1,...,m—1)
hold if and only if
(10) (5j)”u(p =U,, in My, (p=1,...,m).

Prool. Weshall prove Lemma 3 for m = 1, leaving the induction proof to
the reader. For simplicity of notation we suppose that j=1 and write
x=(xy, x), X' =(x,, ..., x,). Take @eM,(J), beR". From Lemma 1 u
eMi_,_,). Let ceM_,_,,. Then, integrating by parts, we get

@

~ 0
Du,[o] = —!qa(x)x1 6.._:1dx —E(p(x)a(x)dx

)
= —r, j oy, x)o(r,, x’)dx’+ja(x)x1(;_(pdx,
J J X

where J' = {x'eRV ' X' <r'}.
Hence

51u¢ = utl’n
if and only if
(11) fo(ry, xVa(ry, x)dx' =0 for every aeM_p_y(J).
5

Therefore from (8), (9) with p = 0 we get (10) with p = . Assuming now (10)
with p =1 we get (11) and it suffices to prove that ¢(r,, x) =0 for x'eJ".
Suppose to the contrary that there exists X' such that ¢(r,, X') # 0. Without
loss of generality we may assume that ¢(r,, X') =¢> 0.

Let ¢ >0 be such that ¢(r,, x') > ¢ for x' e B(X', ¢) = {|x—X'| < o}
Choose 0 €M _,_,, such that o(r,, x') = 1 for X’ € B(X', }9) and o(r,, x) =0
for |x'—'| > ¢. Then | ¢(r,, x)a(r,, x')dx" > +¢|B(%', 30)| > 0 contrary to (11).

i

In the sequel we shall use only the part (9)=(10) of Lemma 3.

LEMMA 4. Let @eWy_,, satisfy conditions (6). Then u,e M, (D U,
Moy (m =1, 2,...) are Mellin distributions of Mellin order < 0 and (sec (8))
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(12) Dyu,=u,, inMo j=1,...,n,m=1,2,...).
Proof. Let e _,; and assume that (6) holds. Hence, by (8), (4) and
Lemma 1, ¢;,eM_, ., u,e () M_, = Mo, and (5j)"’u¢e‘.m(0, (j=1,...,n,

>0

m=1,2,...). From Lemma 3 we get (12). We shall show now that (ﬁj)mu¢ are
distributions of Mellin order < 0. To this end choose arbitrarily # > 0 and
AeIM_,. By (10) we know that

D )"u, 4]l = |f @jm(x)A(x)dx|
J

< sup |x 7" EA(x)] sup [x"2@ (%) | XM M dx
xeJ xedJ J

S ng —!],0(;")’

where C, = 0-1+m2.0(@m) [ x"?71dx < o0.
J

Proof of Theorem 2. (i) Suppose first that ¢ € M, _,; satisfies conditions
(6). By Lemma 4, u e M, and (5j)mu¢eﬁ1i;0, are Mellin distributions of Mellin
order < 0. Therefore G(z) = (Mu,) (z) is holomorphic for Re z < 0 and by (5)

(13) M((D)"u,)(z) = z7(Mu,)(z) for Rez<0 (j=1,2,...,n).

By Theorem 3 for every b < 0: (D )u, € (M) (because m(b) = 0, since (O )T,
are of Mellin order < 0) and there exist constants C;,,, C, such that
[(MD)u,))(@)] < Cjmpr R

(14) for Rez < b.
(M (u,))(@)] < Cyr~Re*

Putting

Cmb = Cb+ Z ijb»
=1

J

we get from (13) and (14) the estimation

A+ Y I2M(Mu,)z) < Copr Re*  for Rez < b.
j=1

Hence

1
(Mu,)(z)] < Cpp————r~*  for Rez < b.

1+ Z |zj|”l
j=1

(i) Suppose now that G is a holomorphic function in the set {zeC"™:
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Rez < 0} such that for every me Ny and b < 0 there exist constants C,, < o0
satisfying (7). If m > 2n then there exists a constant C such that

(D% 2 ) S C 4z ™+ ... +1z,)™).
By (7) we get the estimation

1
GO 2y

By Lemma 2 the function

IG(z) < C-C,, “Rez  for Rez < b.

(15) g(x) =2n) " | Glc+iy)x*?dy for x>0 (c <b)

RYI
1s continuous for x > 0, and its definition does not depend on the choice of
c < b,suppg = J, geM,,(J), G(z) = Myg(z) for Re z < b. We shall show that

geWi_,,. To this end it is enough to show that geWi_, _,, that is (see foot-
note (1)),

sup |x ?(Dyg(x)| < oo for aeNp.

xedJ

Fix arbitrarily xe Nj and take m such that m > max(2n,|¢|+n). By (15)
and (7) we get for ¢ = b the estimation

(DY g () < (21) "Cpgr 4 | — O H 1Y

14 Y lbtiy,
=1

j=

for x > 0;

hence x ~°(D)%g(x) is bounded in J. Since a e N} was arbitrary, it follows that
geM_, _,. Thus we have proved that ge M;_,,. Since suppg < J, the function
g satisfies conditions (6).

Remark 2. It is worth noticing that the set M-,y = () M_, ., from

>0

Theorem 2 coincides with the set of the Mellin multipliers defined by B.
Ziemian. The following section is devoted to this notion.

3. Mellin multipliers (*°).

DEFINITION 1. By a Mellin multiplier we mean a function ue C*(J) such
that the multiplication by u

H: gﬁ(w) - gﬁ(w,

is a continuous operation for every we(Ru {+ oo})".

(*°) This section contains some unpublished results of B. Ziemian.
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It is easy to see that ue C*(J) is a Mellin multiplier if and only if the
operation

(16) p: Moy = Mo,
1S continuous.
THEOREM 4. peC*(J) is a Mellin multiplier if and only if ueIM _,,.

Proof. Let ueM;_,;. To prove the continuity of the operation (16) we
choose arbitrarily a sequence {¢,} convergent to zero in M,. Thus there exists
a < 0 such that ¢, - 0in M,. Choose a < ¢ < 0, ae Nj and observe that there
exist constants C,, d < o such that

Qca(tu(pv) < Z C&Qa&((Pv)Q—1+c—a.a—6(ﬂ)'
o0<a
As c—a > 0and peM;_,, we see that peM_, . ._,, therefore o_; +—zqa-s(1)
< . Since ¢,— 0 in N,

0a5(@,) > 0  for every deNg,

from the estimation proved above it follows that g.,(ue,)— 0. o being
arbitrary, we get pup,— 0 in MM, so pp, -0 in M, since ¢ < 0.

To prove the converse, take a Mellin multiplier x and e R”, . Observe that
Jax @(x) = x~1 "¢ belongs to M, if b > —e. In particular, pe M_,;, < M,
and hence x ! "*ue M, and, by (3), ueM_, +). Since ¢ > 0 was arbitrary, it
follows that pe¥i_,; which ends the proof of Theorem 2.

Remark 3. Clearly, M_, = () M_, ;. and the inclusion is proper. In
e>0
fact, the function J3x+— (Inx)* = Inx,...Inx, belongs to the space M, _,; and

does not belong to M _,.

EXAMPLES OF MELLIN MULTIPLIERS. It follows from Theorem 4 and
Remark 3 that the function (Inx)' is a Mellin multiplier. Another example gives
the function

xi.. X
plx) = ="

> xb
i=1

satisfying the condition sup|u(x)| < C < . It is not difficult to prove that such

xeJ

a function belongs to M_,.

for xeJ, a;eC, B,eR (i=1,...,n)

Remark 4. By duality it follows from Definition 1 that the multi-
plication by a Mellin multiplier u

w: My > M,y for we(Ru {+0})

1S a continuous operation.

21 — Annales Polonici Mathematici LI
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4. Characterization- of Mellin distributions.

THEOREM 5(!1). The space M (J) of Mellin distributions coincides with the
space of restrictions to R" of distributions on R" with support in J.

Proof. If w is a distribution on R" with support in J, then there exist
constants C < o and me N, such that ('?)

(17 w1 <C Y suplD*¥(x)| for ¥eC™(R".

lal <m xeJ
Leta=(—m—1, ..., —m—1)and choose arbitrarily a sequence {¢,} such that
(18) Cs(N)390,-0 in M.

Hence, there exists ¢ > 0 such that

Qu-sq(,) =0  for every aeNj.

Let u = wjg- . By Proposition 1, Lu[¢ ] = w[@,], where ¢, e CZ(R") is an
arbitrary extension of ¢, (v=1,2,...). Thus by (17) we get

'(LU)[(PV:” <C z SuplDa(p“(x)I < CQa—s.a(‘P‘.)SUPL’C_“_1_1 ‘i’EI’

laj €m xeJ xed

and therefore (Lu)[¢,] — 0. In Section 1 we observed that C§ is a dense subset
of M, and My, is a subspace of T'(J). So, by arbitrariness of sequence (18),
LueMy,. Taking into account Proposition 1. we can identify u with Lu and
write ueMy,.

We begin the proof of the second part of Theorem 5 with the following
lemma.

LEMMA 5. Let Q = R"\(J\J) and let Q, be a bounded open set Q, < 8.
Suppose that C3(2,)3¥,—0in D(R") and let o, =¥ |, (v=1.2,...). Then
for every aeR"

M,20,-0 in M,.

Proof. Take Cg(2,)2¥,—-0 in D(R"). Thus supp¥?, < Q,,
Y eCPR) (v=1,2,...), sup|D*¥ (x) - 0 for every e N}. Fix arbitrarily

XER™

aeR", ae Ny and take p =(p,...,p) such that p+a+a+1 > 0. Write g (x,)

('') Theorem 5 is an extension of Proposition 5 from [6], sec Theorem 6.
('?) See [1], Theorem 2.3.10.
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=DV (x,,..., Xy—y, X,) for xeJ (v =1,2,...). By the Taylor formula there
exists 0,, 0 <0, < 1, such that

xP (v
gv(x'n) = '[—)" d;f:q (Onxn) .

Proceeding in the same way with respect to the variables x,, ..., x,-;, we
arrive at the formula

xP
G

where 0 <0, <1 (j=1,....n).
From the inequality

D*¥ (x) D*FPY (0, x,. ..., 0,x,),

nn

0ur() = SUDIXT ¥ DI ()] < —— suplx®*** 1 P sup|D** P (x)
xeJ (p |)n xeJ xeJ
it follows at once that g,(¢,) — 0.
Returning to the proof of Theorem 5, suppose that ue M (J), that is, (*?)
ueMi,(J) for some aeR". By (2) and Proposition 1 there exists a unique
ve D)(R") such that u = Le. By Lemma 5 the formal definition

(19) T{¥Y] =u[P|;] for PeC§(Q)

defines correctly T € ©'(€2). In fact, if CF(€2)2 ¥, - 0 in D(Q), then there exists
a bounded open set Q, = Q such that ¥ e C5(,) and if o, = ¥ |, then ¢, - 0
in M,. Hence uf[p,] -0 and therefore T[¥ ] — 0.

For the proof that T extends to a distribution on R" take an arbitrary
bounded open set Q, = Q. It suffices to prove('?) that T, extends to R". To
this end take an arbitrary sequence {¥,} such that C§(2,)> ¥, — 0 in D(R").
By Lemma 5, ¥ |, >0 in ¢, and hence as before we get that T[¥ ] — 0.

Let w be an extension of T:

(20) weD'(R"), w=Ton Q.

Take g e C¥(R") = C¥(R) and put ¢ = ¢|,. From (19) and from Proposi-
tion 1 we get T[¢] = u[o] = v[¢], thus T = v on R% and by (20) w = v on
R".. To see that suppw < J take ¥ € C¥ (R"\J). Clearly, ¥ € C§ () and by (20)
and (19) w[¥] = T[¥] =u[Y|,] =u[0] =0.

Note the first version of the theorem on characterization of Mellin trans-
formable distributions due to B. Ziemian in the case n = 1('3).

(**) CI. footnote (*).
(**) See [2], subsection 5 and [3], subsection 6 of §3.
(*%) CI. [6], Proposition 5.



324 Z. Szmydt

THEOREM 6. The space M'(J) of Mellin transformable distributions re-
stricted to (0, r) coincides with the space of restrictions to (0, ¥) of distributions
from D'(R").

Proof. If ueM'(J) then from Theorem 5 there exists we D'(R"), w| = u
and hence w|..) = ulo.n- ol

We shall give the proof of the second part of Theorem 6 independently of
the analogous part of Theorem 5. It is simpler and does not use Theorem 2.3.10
from [1] based on the Whitney theorem.

Suppose that veD'(R"). Write Q =(0, t), v, =v|,. Thus v,eD'(Q) is
extendable from Q to R" and therefore there exist constants C > 0 and me N,
such that

(1) o, [e]l < C Y. sup|D*p| for peCF(Q).

jal €m
Let a=(—m-1,..., —m—1). Take an arbitrary sequence {¢@,}, C§(Q)>
@, — 0in M,,. This means that for some ¢ > 0, C§F3¢, -0 in M, _,. By (21)

W [e N S C Y ga-ealp)suplx 77271

laj<m xeJ

and thus v,[¢,] - 0. Hence v, e M, = M'(J).

Remark 5. It follows from Theorem 5 that every Mellin distribution is
a distribution of finite order. In subsection 3 of G. Lysik’s paper (this volume,
pp. 219-229), he constructed a Mellin distribution of Mellin order + oc. Thus
the notion of Mellin order is a concept essentially different from that well
known from the classical theory of distributions.
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