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1. Introduction. The theory of stochastic flows was developed by Kunita
[4] and Bismut [2]. The concepts and techniques from this theory have been
used to discuss the Malliavin calculus [1], and have again returned to
deterministic flows, [3]. In this paper, we show how concepts from the theory
of deterministic flows can be used to provide an elegant proof of the
Pontryagin minimum principle.

2. The dynamics of the optimal control problem as a flow. Consider the
control problem

(y x=f(,x,u), 0<t<T, x(t)eR?, x(0) = x,, with u(-)measurable,
u(t)eU < R™.
We assume that f is sufficiently well-behaved that: .

(a) solutions to initial value problems are unique in [0, T] x R? and each
solution extends to [0, T7];

(b) the solution to the IVP (1), x(s) = x,, is a continuously differentiable
function of x,.

Let the associated cost functional, to be minimized, be defined by:
2  c[x(7)], c[-]: R®—R differentiable.

We remark that (a), (b) need only hold in a “tube” of an appropriate sort
about an optimal solution (u*(-), x*(-)) of (1), (2).

* Member, Applied Mathematics Institute, University of Alberta.

Research of the first and third authors was supported in part by the Natural Sciences and
Engineering Research Council of Canada under grants A-7964 (Elliott) and A-3053 (Macki). The
research of Elliott was also supported in part by the Air Force Office of Scientific Research, U.S. Air
Forces, under grant AFOSR-86-0332.



142 R. J. Elliott, M. Kohlmann and J. W. Macki

The Pontryagin principle states that if (u*(-), x*(-)) is an optimal solution
of (1) (2), then there exists an absolutely continuous p(-): [0, T]— R? such that
(3)  minp(t)-f(t, x*(t), v) = p(t)-f(t, x*(t), u*(t)) in [0, T].

vel

In fact p(-) is a solution of the adjoint equation to the linearization of (1)
about x*(-).

We will show how this principle follows naturally from the use of ideas
from the theory of deterministic flows.

If an initial instant se [0, T], an initial value xe R" and a control u(-) are
given, we write the solution of (1) satisfying x(s) = x as ¢&%,(x). Here the
superscript u indicates the dependence on the choice of control u(-); in addition
we write u, for u(t). If (u*(-), x*(-)) is optimal, we write this pair as (u¥, &§(x,))
and

53,‘(x0) = x0+_‘.f(ra gg.r(xo)a u;k)dr°
0

For any x e R? and any se [0, T] we now define ¢¥,(x) by the integral equation:

(4) isr .)C) - x+§f és r()C )

Notice that ¥,(x) solves (1) as a function of ¢, and takes on the value x at t = s,
but it 1s not necessarily optimal (unless s = 0, x = x,). Our assumptions imply
that £¥,(x) is a continuously differentiable function of x. Differentiating
(4) with respect to x, we obtain the integral equation defining the matrix

0
D; ((x) = 5(6:1 (x)):

(5) Dyi(x) = I+{f.(r, E&(x), w¥)D;  (x)dr.

We now define V,,(x) for any xe R and any s, t in [0, T] by the linear
integral equation:

t

(6) Vo) = I=[ Vi 00, (1, E2,(), u?)dr.

S

LeMMA 1 (from [3]). V,.(x)Ds.(x) = I for all s, t in [0, T], and all xeR".
Proof. Using (5) and (6), we see that

(1) Vs,s(x)Ds,s(x) = Ia

y oV oD
(“) (E (Vs,t(x)Ds,f(‘x)) = (6_t )D + V(E)

= - Vs.t(x)fx (t5 :‘(X), u;k)Ds,t(x)
+ V() (8, &%), uF)Dg, (x) = 0.
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Thus, V, (x) = [D;,(x)]! for all s, ¢ in [0, T] and all xe R®. In particular, we
conclude that D ,(x) is always invertible.

Next, for any continuous map (path) z: [0, T]—R% we consider the
composite map ¢: t+—&¥,(z,), i.e., the function ¢(t) = £¥,(z,) defined for s and
t in [0, T] by the integral equation:

7 @(t) = z; +i flr, o(r), u*(r))dr+iDs.r(dzr/dr)dr-

This equation is obtained from (4) by differentiation with respect to t.

We now perturb the given optimal control u*(-) in the by now standard
manner:

@®) L= {u,* outside [s, s+Hh],

#eV inside [s, s+h],

and define the curve z,: [0, T]— R? by the somewhat improbable integral
equation:

) z,= X+ [[Ds,(z) 1 [ (r, €52, w)—S(r, E5(2,), uf)] dr.

LEMMA 2.
E*(z)=¢"(x) for all xeR* s and t in [0, T].
Proof. By (7) and (9),

Ehz) = x+[f(r, &(2,), uf)dr

s

+{ D (2)[Ds, (2017 [ S(r, E5,(2,), ) =S (r, E5.(2,), uX)] dr

4

=x+(f(r, &%,(z,), u,)dr.

s

The assertion follows from the uniqueness of solutions to (1).

3. The minimum principle. If we define x = &% .(x,), for a given se[0, T],
then the optimal cost can be written

c[x$] = cl&8.7(xo)] = c[E¥snr(E¥sn()],
for any h >0, se[0, T], s+he[0, T], with x = £¥ (x,).
Since u(-) cannot give a lower cost than u*(),

C[‘::‘+h.1‘(‘£:‘,s+h(x))] < C[f?ﬂ.r(f:su(x))] = c[¢?+h.1‘(¢:s+h(2s+h))]a

thus

(10) c[&r(x)] —c[&r(zs+n)] <O
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for all se[0, T], h=0, (s+h)e[0, T].

This, with judicious application of Mean-Value Theorems and letting
h tend to zero, leads to the Pontryagin principle. In fact, by the Mean-Value
Theorem,

0
[5%][( r(x)—E¥r(z,48)] <0

for s, h as above, where the gradient of ¢(-) is evaluated somewhere on the line
between £¥*;(x) and £*1(z,.,) in RY. Since we will shortly let h decrease to zero,
this evaluation point will become &¥*;(x) = x¥.

It follows from (4) and our assumptions on f that

é
(11) [ngle‘T[x_zs+h] <0,

but here the rows of D, r = &, (x)/dx are evaluated at perhaps different points
between x and z,,, because the Mean-Value Theorem is only valid for
real-valued mappings and hence must be applied to each component of &¥r.
From (9) we can write

s+h

(1) x=zp= | [Dusle)] ' [l Erler) )=/, G2, )} dr.

Combining (11) and (12), dividing by A > 0 and letting 4 go to zero, we obtain
(noting that Dy = I, z, = x = &¥): '

oc .
0> [&hp]l’s,r(ézo- LG5, & w)—S (s, &8s, D).

This is the Pontryagin principle (3) with

a *
(13 po = | St | i,

4. The adjoint equation. By the semigroup property of the solution flows,
for 0<s<t<T;

(14) £8.4(x0) = EE(E8.5(x0))-
Writing D}, = fs'(x) and differentiating (14) by the chain rule
(15) D¥., = D¥,(£8.(x0) DE.(xo).
From (13)
pls) = (XT)D r(£5s)-

o
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Therefore, using (15)
dc

(16) P(5)Di.s(xo) = > :

(x¥)D§ r(x,) = const.

Diflerentiating (16) in s
pdD* +(dp)D* = 0.

That is dp = (—pdD*)D*~'. (We have noted in Lemma 1 that D& ' = Vg
exists.)
From (5)

dD§ s = (s, £§.5(x0), u¥)DE ods.
Therefore, p(s) is the solution of the equation

dp(s) = —p(s)f(s, E8.5(xo0), u¥)ds
with initial condition
oc

p(0) = PR

(x7)D3,r.
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