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A necessary and sufficient condition
for normality of linear control system with delays

by J. Kroca (Krakow)

m
Abstract. A control system deseribed by the equation @ (t) = Aw(2) + 3 Bja(t—§) +
i=1

+ Ou(t) is considered. We obfa,in an algebraic necessary and sufficient condition for
normality of such system. From this result we derive the well-known condition for
normality of linear ordinary control systems.

1. Introduction. Let us consider the control process described by
linear differential-difference equation of the form (')

n

(1) (1) = dw(t)+ D) Bjw(t—j)+Cu(t), tel0,T],
-j=1

(2) %(t) = o(t), teL_'m'; 0].

. In what follows we shall use matrix notation, where #(t) is an n-vector,
() is a measurable r-vector control function, 4 and B; are (n X n) constant
matrices, ¢ is an (n X r) constant matrix and ¢(t) is a continuous vector
function on the interval ¢ € [—m, 0], that is ¢ € C([ —m, 0]; E").

The adjoint equation of the system (1), (2) is given by

(3) y(t) = —y(WA— Dy@+i)B;, tel0,Tl,
J=1
(4) y(T) =9, y@ =0, t>T,
where y(t) is a (1 X n) vector function.
Denote

(5) T=K+v, EKeN, 7e(0,1], € =(0;,C...yC)-

DEFINITION. The system (1), (2) is said to be s-normal on [fy,%,]
0<t,<t,<T, s =1,2,...,r, if for every y, # 0 the function o,(?)

(1) We can always transform the equation z(t) = f(I, (), x(t—h), z(t— 2R),
.o Z(t—mh)) with b # 0 to the ease of h = 1 applying substitution & = Th, y(7)
= z(th).
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= g(t) ¢, is non-identically zero on any subinterval of [{,, ?,]. The system
(1), (2) is said to be normal on [£,, t,] if it is s-normal for every s=1, 2, ..., 7.

In this paper we derive an algebraic necessary and sufficient condi-
tion for normality of the system (1), (2) on [0, T]. From this result we
derive the well-known condition for normality of linear ordinary differ-
ential control systems. Some methods given in this paper are closely con-
nected with those investigated by Zmood in [4]. |

The solution of the system (3), (4) can be written (see [1]) in the form

(6) y () =y X (T, 1),
where X(z, t) is a unique (n X ») matrix solution, defined on [ —m, T] X
X [0,T], of

m

0 n ,
(7) 5= X(2,1) = AX (e, 1)+ D) BE(e—j,
for (z,1) e [t, T]1x [0, T], and
' (I forz=t,
(8) (1) _{O for (e,1) e [—m,?) x [0, T].

The matrix function X (z,?) will be called the fundamenial solution
of (1). In our case we may write (see [1]) the fundamental solution X (z, )
as X (2—1) without any loss of genecrality because the system (7), (8)
is an autonomous system. ‘

We now derive (see [4]) a’form of the fundamental solution, which
will be nseful further on in this paper.

Let us define

X,(v) = X(z+k), =e[0,1], %=0,1,2,...

=1

By a direct substitution in (7) and by assuming ¢ = 0, we obtain

d .

ET‘XO(T) = AXy(7), X,(0) =1,
d

'd__r‘xl("’) = B Xy(7) +4X,(7), X,(0) = X4(1),

(9) d ) m—1

E'Xm(r) = g an~j-Xj(77) +Axm(t)7 X,(0) = 4 m-l(l))
d \1 .

dr Xk m—ij+k—m(7) +AXIc(T)1 Xk(o) = A-Ic—l(l)'

.‘f="
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Thug tho golution of (7) and (8) over the interval ¢ e[k, k+1] is
given by X (1) = X, (t—F).
Denote

Zy(v) = [ X3 (1), XT(7), ...y Xp(z)]".
Then we have from (9) :

d
(10) —Z4(v) = 44Zu(),  wel0,1],

(11) L) = B (),
where Z,(7) is an (n(k+1) X n) matrix and

B, =(0,0,...,0,1),

(A4 0 0 0
B, A 0 .0
B, B, A 0
A4, =|:
* 1B, .. B, A R
0 B, ... B A °
0 .. B, .. B, A

A, and By are (n(k+1) X n(k+1)) and (n Xn(%k+1)) matrices, respec-
tively.

As is well known, the unique solution of (10) is given by

(12) Zy(1) = 644 7(0)
and so
(13) X, (1) = He¥ Z,(0)..
It is clear from (9), by the definition of Z,(z), that
(14) Z,(0) = 1.

From the definition of Z,(t) we also get

Z,(0) = [X3(0), X1 (0), ..., Xp(0)]* = [I, X5 (1), ..., T, (1)]"
= [I,Zz_l(l)]*-

Hence the recurrent formulas follow:

I B
(15) Zp(0) ==t y b=1,2,...
6Ah"lzk-—-l(o)
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Now we prescent the other way of computing Z,(0). If we introduce
the notation

0
-Mk,,= IO i L= 0:
o100 0
where M, and I, are (n(k-+1)xn(k-+1)) and (n(k+1)Xn) matrices,
regpectively, we can write
- (16) Z,(0) = L+ M2, (1) = L), +M,e*%Z,(0).

' Let us notice some properties of the matrix M,e4% We can check
by matrix multiplication that

M;'CGA’E = GA"M;“
(17) (M ekt =0,
(I—Mpee)™ = I+Mpek+ ... +(MeH)".

The matrix (I —Mke“k) is non-singular because all non-zero elements
of the matrix M, e“x lie below the diagonal. From (16) and (17) we obtain
by direct substitution that

(18) Z,(0) = (I+ M6+ ... +(Mye%)¥) L.

Finally, from (13) and the definition of X, (7) we obtainfort e[k, k+1]
and t =0,1,2,...

(19) X (1) = Xy(t—k) = Bt =1 2,(0).

2. Main results. We now formulate conditions for matrices A, B,
and C, under which the control system (1), (2) is s-normal on [T —%k—1,
T—k].

TEmOREM. A necessary and sufficient condition for the control s Jstem
(1), (2) to be s-normalon [T —k—1,T—kL %k =0,1,..., K, s=1,2,...,71,
s that the matriz

Qi = (ByCry By A Oy, ..., B ATEI10)

has ranl n, where C,, = Z,,(0) ¢,

Proof. From (6) and (19) we obtain by direct substitution that
for te[T—k—1,T—k]

Gs(t) = y(t)os = yOX(T7 t)cs = inX(-T—t)Gs = ynElceAk(T—t—k)Zk(O) Cs
— yoEkGAk(T—t—k) Ol.:'
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Since o, (t) is piecewise analytic, the control gystem (1), (2) is s-normal
on [T—%k—1,T—F] iff
(20) Yo B o™T90, =0  for te[T—k—1, T—k]

implies y, = 0.
Now we only need to show that (20) implies y, =0 if and only if
the rank of @, is . '
Differentiating equality (20) n(k+1)—1 times and writing ¢ = T —k,
we obtain the following system' of equalities:

Yo, G, =0,
(21) %Erc-{ikak =0,

Yo ANY-1g, — 0.
From the Cayley-Hamilton theorem and by (21) it follows that
Y By AL0, =0
for 1 =0,1,2,... Using the power series expansion of the exponential
matrix, we find that
g B TR — 0 for te[T—k—1, T—k].

This means that (20) is equivalent to (21). Now it is sufficient to show
that 4, = 0 is a consequence of (21) if and only if the rank of @, = n.
But this equivalence is obvious and so the proof is complete.

In the following example we present a control system which is a normal
system on [0, 1] and on [2, 3], but is not a normal system on [1, 2].

ExAmpLE. Consider the following control system:

z, (£) 1 0\ [z,() 0 26\ [z, (t—1) 1
e O e R
a(8))  \0 2/\m®) "\ 0 [\mp(t—1)) 1

for ¢t € [0, 3]. We can easily verify that
gt Qg+l _ ggl+l

X, (t) = (32t+2 __gtt? ot+2 )’ te[0,1],

o 10e¢ O ez el—¢ed

% (0) = (0 10 e 268—2e2 ¢ )’
11 e 3¢ Te 1be

% = (1 2)’ 9= (e% 362 Te? 1532)’
2e3 —e? 463 —e% 106®—6? ...

* T (26“’—63 de*—e® Be'—e® )’

rank@, = rank@, = 2, rank@;, =1.
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From our theorem@ we obtain that this system is normal on [2, 3]
and on [0, 1] and is not normal on [1, 2].

The following result is the well-known algebraic criterion for nor-
mality of linear ordinary control systems.

~ CoROLLARY 1. Suppose that in (1),(2) B; =0j =1,2,..., m. Then
the conirol system (1), (2) is on s-normal system on [0, T if and only if
rank@, = rank(c,, Aec,, ..., A" 'o,) = n.

Proof. We know from the theorem that the system (1), (2) is s-normal
on {0, T] iff for every ¥ = 0,1, ..., K rank@, = n#. Hence it is pufficient-
to show that

rank@, = rank@, for k =0,1,..., K.
In our case we obtain by matrix multiplication
B,ALC, = A'E,Z,(0)0, = A' X, (0)e, = A X (k)e, = Alet*q,
for | =0,1,..., ¥ =0,1,..., K.
Hence for ¥ = 0,1, ..., K we get
ralnka = r&nlcQo = I‘&DJIQS
and the proof is finished.
CoroLLARY 2. Suppose that in (1) A = 0. Then the conirol system (1),
(2) 4s on s-normal system on [T —=k—1, T —k] if and only if
rank (I, Oy, B A, Cry - ..y B d30,) = .
Proof. The proof is a simple consequence of the equality
4, =0 forl="FL+1,%k+2,...

CoroLLARY 3. Suppose that in (1) A =0, B,= B, B;= 0 for j= 2, 3,
-.«y m. Then the control system (1), (2) 48 on s-normal system on [T —k—1,
T—%] off

rank P, = rank(c,, Bg,, ..., B¥e,) = n.

Proof. Tt iy sufficient to prove that rankP, = rank @,. From the
form of A4, we find that |
I ' 0]
B
' 1! I
(e4h)} = B’
21

lk_:Bk E zzB2 ZlBl
KT 21 1t
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and hence by (17), (18) we conclude that

I
I
1' B!
(22)  Z,(0) = I+—
(k—1PB'  (k—27B Bt
I+ 1! 21 +"'+(k-—1)!‘

The general term in @, is given by E, 4,0, forl=0,1,...,n(k+1)—1.
Upon substitution for E,, 4, and Z,(0), the general term becomes

B, ALOp= B, ALZ,(0)o,

e, (B—1—1'B' | (k—1—2)*B® Br-i-1 )
—B(I+ 11 21 T T Goionr)
k—1—1 B*-1
2 Y ;R el - T T
(28) (B T Bt (k—z—l)z)"‘

_ for 1 =0,1,..., k-2,
. E,AC,=DBe¢ forl=Fk—1,%
B, A.C, =0 for 1 = k+1,...,n(k+1)—1.
Using notation (23), we can easily verify that
Ker@, = KerP,,
but this is equivalent to
rank¢), = rank?P,.

From Corollary 3 it follows immediately that if in the system (1)
A =0 B, =B, B=0, j =2,3,...,m then the control system (1),
(2) cannot be s-normal on [T'—n+41,T]."

The Cayley-Hamilton theorem implies

rank Py = rankP, , for k =n—1,mn,...,K.

Hence, if the system considered in Corollary 3 is s-normal on [T —~mn,
T —mn+1], then it is also s-normal on [0, 7T —n-41].
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