A necessary and sufficient condition for normality of linear control system with delays

by J. Kloch (Kraków)

Abstract. A control system described by the equation $\dot{x}(t) = Ax(t) + \sum_{j=1}^{m} B_j x(t-j) + Cu(t)$ is considered. We obtain an algebraic necessary and sufficient condition for normality of such system. From this result we derive the well-known condition for normality of linear ordinary control systems.

1. Introduction. Let us consider the control process described by linear differential-difference equation of the form (')

(1)
$$\dot{x}(t) = Ax(t) + \sum_{j=1}^{m} B_{j}x(t-j) + Cu(t), \quad t \in [0, T],$$

(2)
$$x(t) = \varphi(t), \quad t \in [-m, 0].$$

In what follows we shall use matrix notation, where x(t) is an n-vector, u(t) is a measurable r-vector control function, A and B_j are $(n \times n)$ constant matrices, C is an $(n \times r)$ constant matrix and $\varphi(t)$ is a continuous vector function on the interval $t \in [-m, 0]$, that is $\varphi \in C([-m, 0]; \mathbb{R}^n)$.

The adjoint equation of the system (1), (2) is given by

(3)
$$\dot{y}(t) = -y(t)A - \sum_{j=1}^{m} y(t+j)B_{j}, \quad t \in [0, T],$$

(4)
$$y(T) = y_0, \quad y(t) = 0, \quad t > T,$$

where y(t) is a $(1 \times n)$ vector function.

Denote

(5)
$$T = K + \tau$$
, $K \in \mathbb{N}$, $\tau \in (0, 1]$, $C = (c_1, c_2, \ldots, c_r)$.

DEFINITION. The system (1), (2) is said to be s-normal on $[t_1, t_2]$ $0 \le t_1 < t_2 \le T$, s = 1, 2, ..., r, if for every $y_0 \ne 0$ the function $\sigma_s(t)$

⁽¹⁾ We can always transform the equation $\dot{x}(t) = f(t, x(t), x(t-h), x(t-2h), \dots, x(t-mh))$ with $h \neq 0$ to the case of h = 1 applying substitution $t = \tau h$, $y(\tau) = x(\tau h)$.

306 J. Kloch

= $g(t) c_s$ is non-identically zero on any subinterval of $[t_1, t_2]$. The system (1), (2) is said to be *normal* on $[t_1, t_2]$ if it is s-normal for every s = 1, 2, ..., r.

In this paper we derive an algebraic necessary and sufficient condition for normality of the system (1), (2) on [0, T]. From this result we derive the well-known condition for normality of linear ordinary differential control systems. Some methods given in this paper are closely connected with those investigated by Zmood in [4].

The solution of the system (3), (4) can be written (see [1]) in the form

$$(6) y(t) = y_0 X(T, t),$$

where X(z, t) is a unique $(n \times n)$ matrix solution, defined on $[-m, T] \times [0, T]$, of

(7)
$$\frac{\partial}{\partial z} X(z,t) = AX(z,t) + \sum_{i=1}^{m} B_i X(z-j,t)$$

for $(z, t) \in [t, T] \times [0, \tilde{T}]$, and

(8)
$$X(z,t) = \begin{cases} \mathbf{I} & \text{for } z = t, \\ 0 & \text{for } (z,t) \in [-m,t) \times [0,T]. \end{cases}$$

The matrix function X(z, t) will be called the fundamental solution of (1). In our case we may write (see [1]) the fundamental solution X(z, t) as X(z-t) without any loss of generality because the system (7), (8) is an autonomous system.

We now derive (see [4]) a form of the fundamental solution, which will be useful further on in this paper.

Let us define

$$X_k(\tau) = X(\tau + k), \quad \tau \in [0, 1], \quad k = 0, 1, 2, ...$$

By a direct substitution in (7) and by assuming t = 0, we obtain

$$\frac{d}{d\tau} X_{0}(\tau) = AX_{0}(\tau), \qquad X_{0}(0) = I,$$

$$\frac{d}{d\tau} X_{1}(\tau) = B_{1}X_{0}(\tau) + AX_{1}(\tau), \qquad X_{1}(0) = X_{0}(1),$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{d}{d\tau} X_{m}(\tau) = \sum_{j=0}^{m-1} B_{m-j}X_{j}(\tau) + AX_{m}(\tau), \qquad X_{m}(0) = X_{m-1}(1),$$

$$\vdots \qquad \vdots$$

$$\frac{d}{d\tau} X_{k}(\tau) = \sum_{j=0}^{m-1} B_{m-j}X_{j+k-m}(\tau) + AX_{k}(\tau), \qquad X_{k}(0) = X_{k-1}(1).$$

Thus the solution of (7) and (8) over the interval $t \in [k, k+1]$ is given by $X(t) = X_k(t-k)$.

Denote

$$Z_k(\tau) = [X_0^*(\tau), X_1^*(\tau), \ldots, X_k^*(\tau)]^*.$$

Then we have from (9)

$$\frac{d}{d\tau}Z_k(\tau) = A_k Z_k(\tau), \quad \tau \in [0, 1],$$

$$(11) X_k(\tau) = E_k Z_k(\tau),$$

where $Z_k(\tau)$ is an $(n(k+1) \times n)$ matrix and

$$B_{k} = (0, 0, ..., 0, I),$$

$$A_{k} = \begin{bmatrix} A & 0 & 0 & & & 0 \\ B_{1} & A & 0 & & & & 0 \\ B_{2} & B_{1} & A & & & & 0 \\ \vdots & & & & & & & \vdots \\ B_{m} & ... & B_{1} & A & & & \vdots \\ \vdots & & & & & & \ddots \\ 0 & ... & B_{m} & ... & B_{1} & A \end{bmatrix},$$

 A_k and E_k are $(n(k+1) \times n(k+1))$ and $(n \times n(k+1))$ matrices, respectively.

As is well known, the unique solution of (10) is given by

$$(12) Z_k(\tau) = e^{A_k \tau} Z_k(0)$$

and so

(13)
$$X_k(\tau) = E_k e^{A_k \tau} Z_k(0).$$

It is clear from (9), by the definition of $Z_k(\tau)$, that

$$(14) Z_0(0) = I.$$

From the definition of $Z_k(\tau)$ we also get

$$Z_k(0) = [X_0^*(0), X_1^*(0), ..., X_k^*(0)]^* = [I, X_0^*(1), ..., X_{k-1}^*(1)]^*$$

= $[I, Z_{k-1}^*(1)]^*$.

Hence the recurrent formulas follow:

(15)
$$Z_k(0) = \begin{pmatrix} I \\ \vdots \\ e^{A_{k-1}} Z_{k-1}(0) \end{pmatrix}, \quad k = 1, 2, \dots$$

308 J. Kloch

Now we present the other way of computing $Z_k(0)$. If we introduce the notation

$$M_k = \left(egin{array}{ccc} 0 & 0 & 0 \ \mathrm{I} & 0 & dots \ dots & \ddots & dots \ 0 & \ldots & I & 0 \end{array}
ight), \quad L_k = \left(egin{array}{c} \mathrm{I} \ 0 \ dots \ 0 \end{array}
ight),$$

where M_k and L_k are $(n(k+1) \times n(k+1))$ and $(n(k+1) \times n)$ matrices, respectively, we can write

$$Z_k(0) = L_k + M_k Z_k(1) = L_k + M_k e^{A_k} Z_k(0).$$

Let us notice some properties of the matrix $M_k e^{4k}$. We can check by matrix multiplication that

$$M_k e^{A_k} = e^{A_k} M_k,$$

$$(M_k e^{A_k})^{k+1} = 0,$$

$$(I - M_k e^{A_k})^{-1} = I + M_k e^{A_k} + \dots + (M_k e^{A_k})^k.$$

The matrix $(I - M_k e^{A_k})$ is non-singular because all non-zero elements of the matrix $M_k e^{A_k}$ lie below the diagonal. From (16) and (17) we obtain by direct substitution that

(18)
$$Z_k(0) = (I + M_k e^{A_k} + \dots + (M_k e^{A_k})^k) L_k.$$

Finally, from (13) and the definition of $X_k(\tau)$ we obtain for $t \in [k, k+1]$ and k = 0, 1, 2, ...

(19)
$$X(t) = X_k(t-k) = E_k e^{A_k(t-k)} Z_k(0).$$

2. Main results. We now formulate conditions for matrices A, B_I and C, under which the control system (1), (2) is s-normal on [T-k-1, T-k].

THEOREM. A necessary and sufficient condition for the control system (1), (2) to be s-normal on [T-k-1, T-k], k = 0, 1, ..., K, s = 1, 2, ..., r, is that the matrix

$$Q_k = (E_k C_k, E_k A_k C_k, \dots, E_k A_k^{n(k+1)-1} C_k)$$

has rank n, where $C_k = Z_k(0) c_{\varepsilon}$.

Proof. From (6) and (19) we obtain by direct substitution that for $t \in [T-k-1, T-k]$

$$\begin{split} \sigma_s(t) &= y(t) \, c_s = y_0 X(T, t) \, c_s = y_0 X(T-t) \, c_s = y_0 E_k e^{A_k(T-t-k)} Z_k(0) \, c_s \\ &= y_0 E_k e^{A_k(T-t-k)} \, C_k \, . \end{split}$$

Since $\sigma_s(t)$ is piecewise analytic, the control system (1), (2) is s-normal on [T-k-1, T-k] iff

(20)
$$y_0 E_k e^{A_k(T-t-k)} C_k = 0$$
 for $t \in [T-k-1, T-k]$ implies $y_0 = 0$.

Now we only need to show that (20) implies $y_0 = 0$ if and only if the rank of Q_k is n.

Differentiating equality (20) n(k+1)-1 times and writing t=T-k, we obtain the following system of equalities:

(21)
$$y_0 E_k C_k = 0, \\ y_0 E_k A_k C_k = 0, \\ \vdots \\ y_0 E_k A_k^{n(k+1)-1} C_k = 0.$$

From the Cayley-Hamilton theorem and by (21) it follows that $y_0 E_k A_k^l C_k = 0$

for l=0,1,2,... Using the power series expansion of the exponential matrix, we find that

$$y_0 E_k e^{A_k(T-t-k)} C_k = 0$$
 for $t \in [T-k-1, T-k]$.

This means that (20) is equivalent to (21). Now it is sufficient to show that $y_0 = 0$ is a consequence of (21) if and only if the rank of $Q_k = n$. But this equivalence is obvious and so the proof is complete.

In the following example we present a control system which is a normal system on [0, 1] and on [2, 3], but is not a normal system on [1, 2].

EXAMPLE. Consider the following control system:

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} 0 & 2e \\ e^2 & 0 \end{pmatrix} \begin{pmatrix} x_1(t-1) \\ x_2(t-1) \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} u(t)$$

for $t \in [0, 3]$. We can easily verify that

$$\begin{split} X_1(t) &= \begin{pmatrix} e^{t+1} & 2e^{2t+1} - 2e^{t+1} \\ e^{2t+2} - e^{t+2} & e^{2t+2} \end{pmatrix}, \quad t \in [0\,,1], \\ Z_2^*(0) &= \begin{pmatrix} 1 & 0 & e & 0 & e^2 & e^4 - e^3 \\ 0 & 1 & 0 & e^2 & 2e^3 - 2e^2 & e^4 \end{pmatrix}, \\ Q_0 &= \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad Q_1 &= \begin{pmatrix} e & 3e & 7e & 15e \\ e^2 & 3e^2 & 7e^2 & 15e^2 \end{pmatrix}, \\ Q_2 &= \begin{pmatrix} 2e^3 - e^2 & 4e^3 - e^2 & 10e^3 - e^2 & \cdots \\ 2e^4 - e^3 & 4e^4 - e^3 & 8e^4 - e^3 & \cdots \end{pmatrix}, \\ \operatorname{rank} Q_0 &= \operatorname{rank} Q_2 &= 2, \quad \operatorname{rank} Q_1 &= 1. \end{split}$$

310 J. Kloch

From our theorem we obtain that this system is normal on [2, 3] and on [0, 1] and is not normal on [1, 2].

The following result is the well-known algebraic criterion for normality of linear ordinary control systems.

COROLLARY 1. Suppose that in (1), (2) $B_j = 0$ j = 1, 2, ..., m. Then the control system (1), (2) is on s-normal system on [0, T] if and only if

$$\operatorname{rank} Q_s = \operatorname{rank}(c_s, Ac_s, \dots, A^{n-1}c_s) = n.$$

Proof. We know from the theorem that the system (1), (2) is s-normal on [0, T] iff for every k = 0, 1, ..., K rank $Q_k = n$. Hence it is sufficient to show that

$$\operatorname{rank} Q_k = \operatorname{rank} Q_k$$
 for $k = 0, 1, ..., K$.

In our case we obtain by matrix multiplication

$$\begin{split} E_k A_k^l C_k &= A^l E_k Z_k(0) c_s = A^l X_k(0) c_s = A^l X(k) c_s = A^l e^{Ak} c_s \\ &= e^{Ak} A_0^l Z_0(0) c_s = e^{Ak} A_0^l C_0, \end{split}$$

for l = 0, 1, ..., k = 0, 1, ..., K.

Hence for k = 0, 1, ..., K we get

$$\operatorname{rank} Q_k = \operatorname{rank} Q_0 = \operatorname{rank} Q_k$$

and the proof is finished.

COROLLARY 2. Suppose that in (1) A = 0. Then the control system (1), (2) is on s-normal system on [T-k-1, T-k] if and only if

$$\operatorname{rank}(E_k C_k, E_k A_k C_k, \ldots, E_k A_k^b C_k) = n.$$

Proof. The proof is a simple consequence of the equality

$$A_k^l = 0$$
 for $l = k+1, k+2, ...$

COROLLARY 3. Suppose that in (1) A = 0, $B_1 = B$, $B_j = 0$ for j = 2, 3, ..., m. Then the control system (1), (2) is on s-normal system on [T-k-1, T-k] iff

$$\operatorname{rank} P_k = \operatorname{rank}(c_s, Bc_s, \ldots, B^k c_s) = n.$$

Proof. It is sufficient to prove that $\operatorname{rank} P_k = \operatorname{rank} \, Q_k$. From the form of A_k we find that

$$(e^{2k})^l = egin{bmatrix} I & & & & 0 \ rac{l^1B^1}{1!} & I & & & \ rac{l^2B^2}{2!} & & \ddots & & \ rac{l^kB^k}{k!} & \dots & rac{l^2B^2}{2!} & rac{l^1B^1}{1!} & I \end{bmatrix}$$

and hence by (17), (18) we conclude that

$$(22) \qquad Z_k(0) = egin{pmatrix} I & & & & & & & \\ & I & & & & & & \\ & & I + rac{1^1 B^1}{1!} & & & & & \\ & & \vdots & & & & & \\ I + rac{(k-1)^1 B^1}{1!} + rac{(k-2)^2 B^2}{2!} + \dots + rac{B^{k-1}}{(k-1)!} \end{pmatrix}.$$

The general term in Q_k is given by $E_k A_k^l C_k$ for l = 0, 1, ..., n(k+1)-1. Upon substitution for E_k , A_k and $Z_k(0)$, the general term becomes

Using notation (23), we can easily verify that

$$\operatorname{Ker} Q_k = \operatorname{Ker} P_k$$

but this is equivalent to

$$\operatorname{rank} Q_{\nu} = \operatorname{rank} P_{\nu}$$
.

From Corollary 3 it follows immediately that if in the system (1) A = 0, $B_1 = B$, $B_j = 0$, j = 2, 3, ..., m, then the control system (1), (2) cannot be s-normal on [T-n+1, T].

The Cayley-Hamilton theorem implies

$$\operatorname{rank} P_k = \operatorname{rank} P_{n-1} \quad \text{for } k = n-1, n, \dots, K.$$

Hence, if the system considered in Corollary 3 is s-normal on [T-n, T-n+1], then it is also s-normal on [0, T-n+1].

Roferences

- [1] A. Halanay, Differential equations: stability, oscilations, time-lags, Academic Press, New York 1966.
- [2] J. Kloch, A necessary condition under which a linear control system with delay is a normal system, Ann. Polon. Math. 32 (1976), p. 186-205.

- [3] V. M. Popov, Pointwise degeneracy of linear, time-invariant delay differential equations, J. Diff. Eq. 11 (1972), p. 541-561.
- [4] R. B. Zmood, The Euclidean space controllability of control system with delay, SIAM J. on Control 12 (1974), p. 609-624.

Reçu par la Rédaction le 3. 11. 1975