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In this note we work out several examples in order to indicate how our
previous quantitative resonance principles apply to multivariate approxima-
tion problems. All processes under consideration will possess some product
structure, thus involving limits with regard to several parameters.

Our first example is concerned with error bounds for product cubature
formulas. Let C[0, 1] be the space of functions f, continuous on the compact
interval [0, 1], endowed with the usual max-norm ||f]|c. For the remainder
R, := Q—Q, of the compound trapezoidal rule

SR} o

one has for any fe€C[0, 1] and keN (:= set of natural numbers)

kK wk
(1) Ikals%;(_{m[f( ’*f(“ : ) 2f<2# 1>]

du

Tk
S (f;1/2k):= sup ||f(u+2h)—2f(u+h)+ f(W)lc.
Al €1/2k

This estimate is sharp (see proof of Corollary 1). Introducing the second
partial moduli of continuity w,(f;s, 0), w,(f;0,t) of f(x, y)eC[O0, 1]
thus (cf. [10], p. 112)

2 @2 (f; s, 0):=sup ||f (x+2h, y)=2f (x+h, )+ f(x, Yllc,

|h| <5

[269]
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for the_corresponding product cubature rule

OQmnf:= (Qm xQw f
u—1 v-—1 u v-—1 u—1v
4mn Z Z[ ( n )+f(;’ n )+f<—r;1_’ r_t)
v
)

+
<
N
3=

11
Rm,nf:= (Q xQ)f_Qm,nf’ (Q xQ)f:= ggf(lh v)dudv,

one therefore has for any f eC[O0, 1]% (m, n)eN?

R f1 < (@ = 0n) xQ) f|+](@m x(@—01) ]
< w0, (f; 1/2m, 0)+ 0, (f; 0, 1/2n).

Again this error bound is sharp in the following sense. Let @ be a modulus
of continuity, thus continuous on [0, o0) with (cf. [10], p. 96)

3) w0 =0<ow(s)<o@s+t)<w@E)+o@) O<s,i),

often additionally satisfying
@ lim w(t)/t =

t-0+
CoroLLARY 1. For any subsequence {(my, )}y = N? with my, n, =00
Jor k = oo and for any moduli w, Y subject to (3) there exists a counterexample
fow €CIO, 172 satisfying (s »0+,t »0+)
1)) (fw "’ S, 0) 0(0) (SZ)) () (fw,w; 0’ t) = O(W (tz))
such that for the compound trapezoidal cubature rule (k = o0)

11

[ [ fou W, V)dudo—Qp p fou # o(@(mg ) +y (n?).
00

The proof will be given by an iterative (componentwise) application of
the following uniform boundedness principle with small o-rates. Let X be a
Banach space and X* the class of real-valued functionals T on X which are
sublinear, i.e.,

IT(f +9)l <ITfI+ITgl, |T(af)| = lal|TS|
for all f,geX and aeR (:=set of reals), and which are bounded, ie,

I Tllxs : = sup {|Tf1: lIflix < 1} < 0.

Let o(r) be a strictly positive function on (0, ), and let lo) =R be a
sequence, strictly decreasing to zero.
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THEOREM 1. Suppose that for linear T, € X* there are elements g, €X
satisfving

) llgllx < €1 (keN),
(6) limsup T, g, = C, > 0.
k=

Furthermore, let {U,: r > 0} = X* be such that
(7 U, gl < Mmin {1, o(/@.} (keN,r>0).

Then for-each w subject to (3), (4) there exists a counterexample f,€ X such
that

®) U, ful = O(w(c()) (r —0+),
©®) limsup T, f./@ (o) = C2 > 0.
k =

For proofs and detailed comments see [3]-[6] in connection with the
observation (see [12]) that the linearity of the real-valued functionals T;
ensures T,(f+9) 2 T, f —|Tig| (cf. proof of Theorem 3).

Proof of Corollary 1. Proceeding iteratively, let us start with the one-
dimensional problem in x for T, = R,,, gi(x) = sin?>(2tm, x), and U, f
=w,(f; 1) (cf. (1)) on X = C[0, 1]. Obviously, since T;g, = 1/2, conditions
(5), (6) hold true, and (7) follows with a(r) = r?, ¢, = m, 2. Consequently, if
satisfies (4), Theorem 1 ensures the existence of f,(x) eC[0, 1] satisfying

0y (fo; 1) = 0(w0(r?), R, folo(m?) > 1,

at least for a subsequence. Concerning the limiting case w(t) =t note that for
fi(x) = —x? one has T, f; = 1/6m¢. Thus, in any case, for such a subse-
quence of k the analogous argument in y leads to a corresponding counter-
example f, (y). Therefore the assertion follows for f, ,(x, y) = f,(x)+ £, (V)
since at least for a subsequence

Roym fou = Ru fo+ Ry fy Z 0(m ) +¢(n?). m

A further application of Theorem 1 is concerned with the best approxi-
mation E, ,(f), of f(x, y) €L, ,x by trigonometric polynomials ¢, ,(x, y) of
degree m in x and n in y, i€, t, ,€Il, ,. Here L5, ,,, 1 < p < o0, is the space
of functions, 2n-periodic in each variable and, if 1 < p <o, pth power
integrable over [0, 2n]2, with the usual norm and the convention L,
= C,q2x, the space of continuous functions. Let L5, be the corresponding
spaces of functions of one variable. Defining second order partial moduli of
continuity in L%, ,, as usual (cf. (2)), it is well known (cf. [10], p. 273) that

(10) Em,n(f)p < M[wz (f, 1/(m+ 1), 0)p+w2 (f; 0’ 1/(n+ 1))p]

This estimate is again sharp in the following sense.
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CoroLLARY 2. For any subsequence {(my, m)}en = N* with my, n, = o0
for k = o0 and for any moduli w, Y subject to (3), (4) there exists a counter-

example f,, , € L%, ,. satisfying
, (fw,¢; S, O)p = O(w (SZ)), (07 (fa),&; 0, t)p = O(l/’ (tz))’
Eppnp fou)y #0(@(mg ) +y(nc?) (k- 0).

Proof. Let us first collect some elementary facts concerning the de La
Vallée Poussin means

2k R ]
VNX):= X AWl S (e,

u= -2k
. 1 2x 1, lul < 1,
f (#)1=2— [fe ™ du, Aw):=<42—|u, 1< <2,
To 0, 2 < |uf

of f eL,. It follows that V, f €ll,,_, (:= set of trigonometric polynomials of
degree 2k—1 in x) and

If = Vi fll, SAE,(f),:=4inf {|Ilf —tll,: tx €ll,}.

Correspondingly, for the 2-dimensional analogue

2m 2n .
VDX, )= X X AmA0/n) " (n, v) e+,

u=—-2mv=—2n

22r2r .
(11) Sy = (L) § [ f(u, v)e™ " * dudy,
2n) o0
one has for any felL5, ,, and (m, n)eN?
(12) ”f— Vm.nf”p < IOEm.n(f)p'

To start with p = oo, consider the linear functional T, f = (V,, f)(0)— f(0)
for fe€C,,. It follows that (cf. (1), (10)) \

TS S IV f = Sllo S 4Epmy ()0 < M2 (f 5 1/My) o

To show that the latter estimate is sharp, choose g,(x) = —cos(2m, x) and
U, f =w3(f;7r)e on X =C,,. Since Tg, =1, all the assumptions of The-
orem 1 are satisfied, delivering a counterexample f, €C,,, which one may
normalize by f,(0) = 0, such that

@3 (fo; N = O(w(r?)), lirkrlquP(Vm,‘ Jo) (0> (mg %) > 1.

Upon passing to a suitable subsequence, the analogous argument in y leads
to a corresponding f; (y). With f, , (x, y) = f,(x)+ f, (¥) one therefore has by
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(12) that at least for a subsequence
10E py 1, (ot = W fiots = Vg Sibll o = (Vi Soo) O)
= (Vo S O+ (Vi £,)(0) = 0 (m )+ (ny ).

Concerning the cases 1 < p < o0, choose X = L%,, g,(x) = cos(2m, x),
Urf = wZ(f; r)p, and

T,f= 21_7!,4" Lf )= (Vo /) W)]du, A, := {x €[0, 2n]: cos(2m, x) = 1/2}.

In view of

1 1
T 9 = ﬂA;[.,‘ cos (2my u) du > 2, Meas A, =C, >0,

all the assumptions of Theorem 1 are satisfied, delivering f, € L5, with

0, (fo; M, =0(@(r?), limsup T, f/o(m %) > 1.

k —+ o

Proceeding again iteratively, one arrives at some counterexample

Jouw (X, 9) = fo(X)+ £, (3)
for which by (12) and Hdlder’s inequality

10 Emk,nk (fw,&)p >4 ”fw.& - mG.uk fw.&”l

2
> (511;) I § o= Va LX)+ £, 0)=(V,, ) ()] dxdy
A"k A”'k

1 1
= E(meas A,) T, fot E(meas An) T, fy
> 2C, [0 (m; )+¥ (7 9],

at least for a subsequence of k. =

As a.consequence of problems, posed by J. Favard in 1963 and by S. B.
Stechkin in 1977, Theorem 1 was extended to the following negative result
concerning a comparison of two processes (see [5], [6] for details).

THEOREM 2. Suppose that for R,, S,, T, €X* there are elements g, €X
satisfying (5), (6) and

(13) limsup|Rigil = C, >0,
k—wo
(14) ISk gxl < By, lirjn sup|S;gil/@; = By < 00.
-

18 — Banach Center t. 22
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Furthermore, let \U,: r > 0! < X* be such that (7) holds true. Then for each
o subject to (3), (4) there exists a counterexample f, € X satisfying (8), (9) as
well as

(15) IR fo| # 0(Si ful) (k= 0).

To indicate multivariate applications also in this case, let the partial best
approximation E, ,(f), (and similarly E, ,(f),) be defined as the best
approximation of f (x, y) eLL5, ,, by trigonometric polynomials of degree n in
v with coeflicients, depending on x (cf. [10], p. 33). Obviously,
E, ,(f), < E,.(f),. In the converse direction one has that for p=1, o

(16) Enn(f)p < AlEp, o (f)p+ E 5 0(f),]l0g(2+min im, nj),

whereas for 1 < p < x the log-factor may be replaced by an absolute
constant (see [1]; [11]; [10], p. 34). In fact, it was shown in [8], [9] that (16)
on the diagonal m = n is sharp for p =1, 2. Let us illustrate how the latter
assertion can be seen in the light of Theorem 2.

To this end, let us start with the familiar inverse results (cf. [10], p. 350)

o (f31/m, 0), <(M/m) Y. Ey o(f)y,  ©1(f30,1/n), < (M/n) 3 Eq,(f),-
u=0 v=0

These together with (10) (with w, replaced by the first moduli w,) imply for
m = n that the weak-type inequality

(17) E,..(f)y SM/n) Y [E, 0 (f)p+Ewu(f),]
u=0

holds true. Much in the spirit of the problem, posed by S. B. Stechkin in
1977 (cf. [2]). one may then ask whether (17) can even be strengthened to an
estimate of (the more direct) type

En,n(f)p S Mf [En.w(f)p+Eoo,n (f)p]

for certain classes of not too smooth functions f, in other words, (16) for m
- 1 should hold without any log-factor. As already mentioned, the answer is
ncgative for p=1, oc (and positive for 1 < p < ).

CoroLLARY 3. Let p=1 or p= w. For each decreasing nullsequence ¢

= ¢! there exists a counterexample f, € L5, ;. such that

En.n(j;)p = 0(8"), En.n(f;)p # 0(8211)’

limsup- ErnlJo >
n-% L[Eno(f)ptEca(f)p]logn

Proof. It was shown in [8] that for p=1, co there exist elements
g,€1,,,. thus E, , (g,), = 0, satisfying (5) as well as

(H\" Ex.n(.‘/n)p IOg h S Bl’ En,n(gn)p > C2 > 0
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For example, for p =1 one may choose

1
et(2n+l)y elu(x y)
. Gnlx, y) = og n ,.Zln

To apply Theorem 2, set R, =T,=U,,, = E,, and

Sof =[En0(f)p+Epn(f)p]logn.
Obviously, (6), (13) follow by (18) as well as (14) for any {¢;} since, e.g.,
S;gx =0 for j>2k. Moreover, (7) holds true with o (l/n) =¢2, ¢, = ¢}
since
ligll, (1 o2
Ul/ngk < %0 for n> 2k < Cymin\1,¢ /82k|
Therefore Theorem 2 for w(r) = r'/? delivers the assertion. =
Let us finally discuss the negative results, given in [7] in connection

with double conjugate Fourier series, in the light of the followmg extension
of Theorem 1.

THEOREM 3. Let a, T be strictly positive functions on (0, ) and |¢,) < R
be a sequence, strictly decreasing to zero. Let w, Y be strictly increasing moduli
of continuity satisfying (3), (4). Suppose that for linear T,€X* there are
elements g, € X such that for N, > 1

(19) llgllx < N, (keN),

(20) N,o(p) =o0(1) (k= 0),

(21) limsup T, g, = C, > 0.
k—+

Furthermore, let (U: s >0}, {V: t >0 = X* be such that
(22) |Usgil < Mmin {1, a(s)/cpk, (keN,s >0),

(23) IVigl < Mmin |1, 7(t)/,}  (keN,t>0),
where a,:= Y~ (w(py)) (thus also strictly decreasing to zero). Then there
exists a counterexample f,€X such that

(24) . U, fol = O(w(a(s)) (s =0+),
(25) WV, fol =0 (x(®) (t—0+),
(26) limsup T; fo/w(¢,) = C, > 0.

k —~ a0

Proof. First of all, g,, as well as —g,, satisfy (24), (25) in view of (4), (22),
(23). Therefore, if (26) already holds true for +g,, there is nothing to prove.
But if (26) does not hold true for +g,, then

- T,
limsup—— < —limsupn( gn) _ lim inf %97

k- w((Pk) koo 0(@y) k- w((Pk)
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Hence without loss of generality one may assume that

(27) ITgl = o(w(gw) (k —o0)

for all geG:=spanlg,: keN]. Now one may successively construct a
strictly increasing subsequence k;} = N such that

(28) Ny, ., 00, ,) < lo(o),
m-—1

m-1
(29) > O (@ )/ 0x; < O (@) 0k, > W (o /ax; < W (o,) o,
=1

j:

m-l
(30 T Jtl S (@) B0 fuoy:= ¥ 0(04)a,€G,
Jj=1
BH 1T, )xw(s,, ) < @(@,)/m,
(32) nmgkm = Cz— l/m,
upon using (20), 4), (27), (3), (21), respectively. Then by (28)
(33) Y w(¢kj)< Y w(¢kj)Nkj<2w((Pkm+,)
j=m+1 ji=m+1

so that fo:=32 1 @ (@1 ) gy is well-defined in X. Suppose that s > 0 is such
that 0 <o (s) < ¢, . Then there exists meN such that ¢, . <0(s) < @,
and therefore by (22), (29), (33)

[Us fol < Z MU(S)CU(%)/(P& +M Z w((Pu)

j=m+1
< 2M [0(5) 0 (@1,)/ 91, + © (P, )] < 6M0 (3 (5)).
If s >0 is such that o(s) > ¢,,, then

[Usfol <M Z w((l’tj) < 2Mw(‘Pk1) < 2Mw(o(s)),
j=1

\

thus (24) in any case. Since w(¢,) = ¥ () by definition, (25) follows anal-
ogously. Finally, since T, is linear, by (30)+33)

T Jo 2 0(ou,) T, 9k, — | Tk, 1| = | T (fo— Sl
2 0(¢i,)(C2—1/m)— (@ )/m =T |lx Il fo— fullx
2 0 (@x,) (C2—=2/m) =T |Ix- 20 (s, ,)
= 0 (@) (C2—4/m)

so that all the assertions are established. m
Let us deduce one of the typical negative results of [7] as an application
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to Theorem 3. To this end, consider the Fejér means

(Omnf)(x, ¥):= i i (I—M)(I—M)f (u, v) et

U= —m V= —n

of the double Fourier series of feC,, ,, (cf. (11)) in connection with the
(partial) conjugate function

70690 = S0, )i 5 (L (et )= f (c-+t, ]ot /2

Let Cpax: ='f€Copa: f ECZ,, 2n). For 0 <a, B <1 it was shown in [7]
that

(34) 0 (f35, 00 =0(%, (0,0, =0(*
imply
NomnS —f llc =0(m 2+n"*logn) (m, n - o)

and that for any sequence {Am}, decreasing to zero, there exists a counter-
example f, eCz,t 2x Satisfying (34) but

I|6m,n fa.ﬁ - j;.ﬂ”(‘ # O(A'm) + o(n—ﬂ log n)'

In fact, upon.letting m — oo the existence of a counterexample f, , eC;,,,z,,
was established satisfying (34) but

10 .0 fup — fuglle # 0(n~? log n),

(aoo,nf)(x’y):= i (l—l'v—l)f( v)el'vy,

- 1 2" .
f (x,v)i=— | f(x,v)e "dv.
2r o7

It is the latter result which now may also be obtained as an immediate
application to Theorem 3.

CoOROLLARY 4. Let w, Y be strictly increasing moduli of continuity satis-
fying (3), (@), and suppose that o (1/k)|logy ™" (w(1/k) = o(1). Then there
exists a counterexample f,, , €C,, . such that

wl (fw,ﬁ; t’ 0)00 = O(V’ (t)), 0)1 (fw,&; 09 s)oo = O(w(s)),
16 0.0 forw = firbllc # 0(@ (™" [log ¢~ (@ (1/m)]).
Proof Consider the Banach space X = C2,t 2= With norm ||f|lc-:= || fll¢
+|Ifllc and the test elements (with a, := ¥ ~!(w(1/k)) and p, eN such that
P < l/a. <p+ 1)

Px

gk(x9 y) = Z

u=1

sin yx

eV = hy x(X)hy i ().
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Clearly, g, €ll,, , and
P

g,:(x, y) = h:,k (x) h2,k )= Z

u=1

lgdle < 2/7,  ligalle < Cllogay

COS ux

ik
ey,

so that (19) follows for N, =Cl|loga]. Obviously, the functionals
Uss Vte(CZi!,Zﬂ)* given by

Usf =01(f;0,9%, VNf=w(f;t 04
satisfy (22), (23) with a(t) =1(t) =t, @, = 1/k since, e.g.,
Vigk = llhaullc @y (hy x5 1) < min {2]{hy klic, ¢l sllc}-
Moreover, (21) holds true since for the linear functionals
TS =(f =04 f )0, 0)/llog ey

one has the estimate

fogad Zin > 2”0
Therefore Theorem 3 may be applied which completes the proof. =

Let us finally mention that also the negative results given in [7] for the
limiting cases « =1, f =1 (thus (4) is violated) may be deduced from a
general theorem upon employing the present analysis together with the one
claborated in [12], [13] (see also [6]).

Ti gk = hy x(0) (hyy— 04 ha i) (0)f|log o] =
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