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In the first part of this paper we discuss a number of different methods for
stabilizing nonstandard and inherently unstable Cauchy problems for linear
second order operator equations. These methods have been used extensively
in the literature of the past two decades. A survey ol the literature prior to
1975 1s given in [26]. In Section 4 we deal with questions of global
nonexistence but here much of the work has been done since 1975. Many of
these papers are referenced in the bibliography of Knops [13]. Section 5
deals with continuous dependence results for nonlinear operator equations.
The final section discusses some results of St. Venant type for classes of
second order nonlinear problems in the plane.

The first five sections deal with nonstandard problems for which in
general there is no existence theory. We do not deal with the existence
question in this paper (except for the global nonexistence results of Section 4)
but presuppose the existence of the solution or solutions in question. For the
linear problems, results announced in [13] indicate the possibility of establ-
ishing existence of solution to at least some classes of nonstandard problems
for a dense set of data. Since the data are usually determined by measure-
ment and therefore subject to some error we cannot anyway expect to know
the data precisely. For the nonlinear problems of Section 4 for which we
establish global nonexistence we really prove that if the solution exists for a
sufficiently long time then it must blow up. Whether or not the solution
blows up or breaks down in some other way prior to the predicted blow up
time is in most cases an open question. Ball [2] and Calderer [6] have
established existence up to blow up time in some special classes of problems,
but a general theory is yet to be established.

This research was supported in parl by the National Science Foundation under Grant
NSF MCS 79-19358.



622 L. E. PAYNE

In deriving continuous dependence results for the nonstandard problems
we discuss, it is necessary to restrict solutions to lie in some constraint set.
For instance, we may require that the L, integral of the solution over the
region of definition be uniformly bounded by some constant m over the time
interval [0, T]. This restriction has the effect of making all such problems
nonlinear. In practice one would have to be able to determine the constant m
explicitly. Frequently this can be done by observation, particularly since the
constant need not be a sharp bound.

Uniqueness of solution will follow directly from our continuous depend-
ence results. As we will see the concavity argument which imply global
nonexistence will simultaneously imply uniqueness of solution over the
interval of existence.

We do not attempt to give a complete bibliography of numerous papers
on the topics discussed in this paper. Investigations of St. Venant type or,
more generally, studies of the rate of growth or decay of solutions, have been
going on for well over a century. The work on ill posed problems began
much later, but both areas of investigation are very active at the present time
so that an up-to-date bibliography would be out of the question.

1. Cauchy problems for nonstandard operator equations

In this section we recall several methods that have been proposed in the
literature for stabilizing classes ol nonstandard linear or quasilinear operator
equations. For further information the reader is referred to [26] where these
methods are briefly described and original papers referenced. By way of
illustration we shall treat reasonably simple examples, primarily those that
might arise in elasticity theory. In many cases considerably more general
problems have been treated in the literature.

Let H be a real Hilbert space with inner product ( , ) and norm || {}.
Let D= H be a dense linear subset of H and let M and N be linear
operators which map D into H. We shall be concerned with the following
problem:

2
M%+Nu =0 te(0, T),
(1)
du
u(0) = uy, ‘E {0) = vy

For simplicity we shall assume throughout that M, N and H are independent
of 1. The particular case in which M is the identity operator and N is the
negative Laplace operator (assumed to act on functions in the appropriate
space) would correspond to the Cauchy problem for the ordinary wave
equation.
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We shall assume further that M and N satisfy
(1) M i1s symmetric and positive definite,

(1) N is symmetric,
and that

(i) ue C'([0, T], H).

We could formulate our problem in weak setting, but it would un-
necessarily complicate the illustrations and the same final result would be
obtained in any case. Also the extension to complex Hilbert space can easily
be made and results for more general time dependent operators as well as for
first order operator equations have actually been dealt with in the literature.

The standard problems for this operator equation (1.1) are those for
which N is a positive operator, an assumption usually made in applications
to linear elasticity. We shall, however, be dealing with problems for which N
is either indefinite or negative. Since we shall be considering this specific
problem later on we write down the displacement problem for linear

anisotropic elasticity, i.e., solution vector with components u; satisfying, for
i=1,213

juk =1 6)‘1 ox;

(1.2) u(x,)=0 on a2x[0, T],

& u; 3@ u ) ,
Q(x)_a%— Z —“[Cijkt(x)“'_h:'=0 in 2x(0,7);

Qu;
ul'(x’ 0) =j;(x)a E(x’ 0) = gi(x)s xel.

Here © is a bounded region in R with Lipschitz boundary /Q.

In what follows when we refer to specific examples we shall suppress the
summation sign and understand that summation is to be carried out over
repeated indices. We shall also use a comma to denote differentiation.

In practice it is usually assumed that

(1.3) Cijkl = Ciij (symmetry)
and that
(1.4) Cii (X)W ¥ = ¢ Wi Wij >0

for arbitrary second order tensors y;;. For the time being we shall retain
(1.3) but discard (1.4). This corresponds to the operator N in (1.1) being
symmetric, but not necessarily positive; thus conservation of energy (or non-
increase in energy in the weak setting) does not imply stability. It 1s well
known, in fact, that if N is negative definite one cannot expect stability in the
Hadamard sense.

We now illustrate a few methods that have been introduced to retrieve a
form of continous dependence on the Cauchy data. Since the equations are
linear it will suffice to investigate the question of stabilizing the solution of
(t.1) where u, and v, are regarded as perturbations of the zero data.
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I. The method of logarithmic convexity. This method is based on the
following property of smooth functions F(t) of a single variable. Suppose
F (1) is a positive function of t for t = 0 and log F is a convex function of ¢,
then log F(¢) will lie below the chord which joins any two points on the
curve and will liec above the tangent line to the curve at any point. Using the
standard properties of logarithms and evaluating for specific values of t we
may write these two results in inequality form as

(15 FO<Fe)] " PRI ™™, n<isn,
and
(1.6) F(t) > F(O)exp UF'(OYF (0}, t>0.

Our aim then is to try to choose for our function F(t) some appropriate
norm of the solution u of (1.1).

Before proceeding we remark that conservation of energy may be
expressed as

(1.7) E(t)=K(t)+ V(1) = E(0),
where
(1.8) K(1) = 3, Mw), V(t) £ 3(u, Nu),

and we have used the prime to denote the time derivative. In the elasticity
context K is the kinectic energy and V is the potential (or strain) energy.
To illustrate the method let us choose for some positive constant f§

(1.9) _ F(1) = (u, Mu)+ BQ,
where

(1.10) Q = max(0, E(0)).
Then

(L.11) F'(t) = 2(u, Mu')

and

(1.12) F'(t) =2, Mu')—2(u, Nu).

Using conservation of energy we obtain
(1.13) F'(t) = 4(u', Mu')—4E(0).

Clearly then by Schwarz’s inequality and some simple manipulations it
follows that
FF" —(F')? 4

(1.14) (log Fy' =-—5——> 5
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If E(0) <0 we could in fact replace the right hand side of (1.14) by 0 and
apply (1.5) and (1.6) directly. More generally, however, we may rewrite (1.14)
as

| .
(1.15) Nog [FeX* )" > 0,

and apply (1.5) and (1.6) with F(¢) replaced throughout by F(t)e**#. This
gives in particular

(116) F(t) < [F (O)]l —T [F(T)]I/T eZT(T_:)/ﬁ,

and

(1.17) Fi) > F(oyexP[_(i’f_ﬂOlz)}
B FO)

The inequality (1.16) is not a stability inequality since even though F(0)
involves only data terms there 1s no a prion guarantee that if F(0) is small
then F(t) must remain small in the measure (u, Mu) for 0 <t < T. It will be
a stability inequality however if we suitably restrict our admissable class of
solutions.

We say that function ¢(t) is an element of the set .#, if ¢(r)e H and

(1.18) (¢(T), Mp(T)) < m}

for some prescribed constant m,. Clearly this implies that solutions of (1.1)
which belong to .#, depend continuously on the data in F measure.

By choosing a diflerent form for F one can actually obtain somewhat
sharper estimates than those given by (1.16), (1.17) (see e.g. [26]). However, if
E(0) < 0 we may take =0 1in (1.9) and obtain (1.14) with the right hand
side equal to zero. Then (1.16) and (1.17) together yield

tiT
(1.16) F(O)exp{i(ﬂt} < F() < F(0) [F—(—Tl} .

F(0) F(0)
Thus (1.16) shows that any solution whose initial data satisfy E(0) <0,
F'(0) > 0 and which exists for all time must grow at least exponentially {in F
measure) as t — oo. One the other hand the right hand side states that if
E(0) < 0 and F(T) has at most polynomial growth as T— o then provided
the solutions exists for all time, F (1) < F(0) for all t.

4

II. The Lagrange identity method. The basis for this method is the
Lagrange identity involving two admissible functions u and v, i€,

(1.19) ‘j[(u, Me,, + Nv)—(v, Mu,, + Nu)]dn = [(u, Mv,)—(v, Mu,,)]l'o.
0

We now choose u to be a solution of (1.1) and set

(1.20) vix, n) =u(x, 2t—n).

40 - Banach Center Mublications 15
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Thus r satisfies the same equation as w and the left hand side of (1.19)
vanishes. This leads to

(1.21) 2(u ), Mu' (1) = (u(0), Mu' (20))+(u(21), Mu'(0)).

Integrating (1.21), making a change of variable, and using the boundary
conditions on u we conclude that

21

(1.22) (U(f), Mu(1)) = :lz(“()» Mu(2[))+§(u0, Mug) +3 _H”o, M'“(’?))d'T-
0

Let us now define a set .#, by the constraint

(1.23) max (v, Mu) < m3.

0<ysT

Then if ue.#, it follows [rom Schwarz's inequality that
(1.24)  (u(0), Mu(0))—5(uo, Mug) < 3 (1o, Mug)+4t%(vg, Mvg)''? m,

for 2t < T. This clearly implies a stability inequality on the interval (0, 7/2).
One could of course apply the same¢ arguments but now on the interval
(772, T) instead of the interval (0, T) and in this way extend the stability
inequality to the interval (0, 37/4), etc.

Note that this method did not make use of the energy identity and thus
is somewhat more easily adapted to weak solutions. However, it was
necessary that the equation be autonomous and linear.

Another interesting identity comes from a slightly different Lagrange
identity, ie., for the some u and r

t

(1.25) 0 = {[(ty. Moy, + Nv)+(v,. Mu,, + Nuldy = [(u,, Me,)+(u, No)lfi,.
0

i

If we now define

(126)  K(ty, 15) =3 (w'(r)), Mu'(1,)): Vity, 15) = 3(u(try), Nu(r,))
then (1.25) leads to

(1.27) K, ty)=V(t, ) = K(0, 26)— V(0, 2t).

The above identity is quite useful in equipartition of energy arguments
{21], and together with the energy identity i1t leads directly to Holder type
stability estimates (in the appropriate space) for the kinetic energy and/or the
absolute value of the potential energy.

The Lagrange identity method is generally attributed to Brun [5] who
was the (irst to use it in the context of elastodynamics.

I1I. The quasireversibility method. This method was proposed by Lat-
tes and Lions [20] and has been extensively studied by Miller [23]. Let us
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suppose that not only M and N but also N? map D into H. We further
suppose w to be the solution of the following problem:

Mw,+ Nw+eN?w =0, te(0, T],
(1.28)
w(0) =u,,  wI(0) =y,

where ¢ is some small positive (but fixed) constant. Since N2 is a positive
operator this problem will in many cases be well posed. The quasireversi-
bility method is not a precisely defined method; its aim is to use the solution
w of the well posed problem to construct an approximation to the original
problem.

As a specific example suppose we consider the problem

U gu=0 in Qx(0. T
F+ U= in x(0, T];
(1.29) u=20 on dQx[0, T];

du
U(x, 0) =f(X), E(xv 0) = q(x)

The equation for w is

? .
Y Awsed’w =0 in Qx(0, T);

or?
(1.30) . w=0, Aw=0 on dQx[0, T1;
¢
wix, 0 =f(x), (x,0)=g(x).
ot

Suppose we can solve for w(x, T). We then define ¢ to be the solution of the
well posed problem

¢ :
s +4¢ =0 in Qx(0, T];
(1.31) =0 on dQ2x(0, T];
¢(x, Ty =w(x, T); d(x, 0) =f(x).
o
To check the accuracy of our problem we would form E(x, 0)—g(x) | dx

which should be small il £ is small.

For this particular example everything can be carried out using lormal
power series, but recent work of Ames [1] provides a direct comparison
between the solution of (1.28) (which need not be well posed) and that of
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(1.1). Again [or functions lying in the appropriate constraint classes she is
able to obtain an inequality of the form

(1.32) (h—w), M(u—w)) < Ke'' "D m3VT, K = constant.

If we constrain u and (if necessary) w to lie in the appropriate constraint
sets, instead of the usual type of stability inequality we obtain an inequality
of the following type

(133)  (u, Mu)''? < [Kelt D 2Tyl 4
+ (K (e) [(vo, Mvo)+lugll® +(ug, Mug)+||Nugl|*]} /.

For fixed £ > 0 the second term will be small if the initial data is sufficiently
small. On the other hand K, (¢) will in general tend to infinity as ¢ - 0. One
can say little more without the explicit representation for M and N.

The quasireversibility method presupposes the ability to find a well
posed problem w for which one can extract the necessary explicit informa-
tion. In fact there will usually be a variety of comparison problems that
could be used and one would like to find the “best” one. Even so there is still
the difficulty of deciding what explicit value of £ to use. If ¢ is chosen too
large the first term on the right of (1.33) may be intolerably large, while if ¢ is
chosen too small the second term may become too large. For these various
reasons the quasireversibility method seems to have practical disadvantages
when compared to the two previously discussed methods.

IV. Method of weighted energy. To illustrate this method we shall
apply it to a problem which cannot be handled directly by either of the first
three methods. For simplicity we shall take M to be the indentity operator,
but now we assume N to be time independent and antisymmetric, i.e,

(1.39) (Nu, v) = —(u, Nv).
In the context of the equations of anisotropic elasticity this means that
(1.35) Ciji (X) = — g5 (X).

The results of this section are due to Murray [24].
We introduce a new [unction ¥ (x, t) defined by

(1.36) u(x, t) =ey(x, 1), 4 = constant,

and note that y satisfies the equation

d? d
4 +2A—¢'+Azw+N¢ =0.

(1.37) el i
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For the moment the constant 4 is left unspecified, but an appropriate choice
will be made later on. It follows from the identity

2
(1.38) J(Z—lﬁ ZNW)d '/’+2 %-H ¥+ Ny)dn =0,

0

carrying out an integration by parts and dropping positive terms, that

(139) 1[0, W)+ 260, b(0)] <~ (V6 (0. ¥ (0) +

1
+ 27 (N (0), ¥ (0)+ 2 [y (0), ¥/ (0)+4° (¥ (0), ¥ (0)].

Reinserting u(x, 1), simplifying and dropping the first term on the left we
obtain

1 1 1
(1.40) [lull® < (N, u')+e“'{A—zllvo—iuonJrHuOII"‘+A—3(Nuo, Uo)}-

We now define a new constraint class .#, of functions ¢(x, t} satisfying

sup [INGI* +1i¢lI*] < m3

osI<T

Clearly then for solutions of (1.1} (with N antisymmetric) which belong

to .#5 we obtain (assuming A > 1 in the bracketed term of (1.40)) the
inequality

2

1.41 2 e
(141 lul? < 5 +e2Q,
where Q is a data term.
We now choose
1
(142) h = - log [m3/Q]
in which case
4T3 m2
(1.43) [lul}? < +mT QLT
[logm%/Q]> "

Inequality (1.43) implies a weak logarithmic continuous dependence on the
data for solutions in .#,. '

For special classes ol problems other method may be employed (see e.g.
[26]), but of the four methods introduced, the first has been the most widely
used. It is applicable to first and second order operator equations, applied to
nonautonomous and nonlinear systems, and has been used to study evol-
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utionary problems backward in time. The Lagrange identity method is pretty
well restricted to linear autonomous systems and symmetric operators, but
when it is applicable it is usually quite direct and sometimes requires less
regularity of the solution and data. We noted that with this method no
energy identity had to be employed. It was also observed in [26] that it is
possible sometimes to get away from the Hilbert space restrictions.

The weighted energy method appears to be better suited to higher order
operator equations and to problems in which some of the operators are not
symmetric. John Bell {4] has used this method to study continuous data
dependence for classes of noncharacteristic Cauchy problems for parabolic
equations and for a nonlinear version of the vibrating beam equation with
Cauchy data given on a space like curve. The method has been used to study
the asymptotic behavior of solutions to various well-posed problems and has
also been used in the proof of nonexistence of global solutions to certain
nonlinear problems. It should be observed, however, that in general it leads
to a very weak form of continuous dependence.

The method of quasireversibility appears to have few il any theoretical
advantages over the other methods; however, in specific problems it may
have some practical advantages. We have not up to now discussed the
question of actually finding an approximate solution of our problem. We
shall make a few remarks in this direction in the next section.

2. Remarks on continuous dependence and other types of
data and error bounds

In the context of linear elastodynamics, Knops and Payne [16] derived
inequalities which yield continuous dependence on the elastic coefficients, the
Dirichlet data, the value of the operator and on the geometry of the
spacetime region for solutions lying in the appropriate constraint classes.
They used the logarithmic convexity method, but in some cases the same or
analogous results could be obtained more easily via the Lagrange identity
method. We illustrate with a simple example and show how the method
leads to a constructive procedure for obtaining and approximate solution.
Suppose now that instead of (1.1) the following problem is given

2

; |
Mgr—;+Nu —F(), 0<t<T,
(2.1)

u(0) = uy, u' (0) = vy,
and we wish to compare with a solution u, of the problem

d?u, _
M?'F—Z‘+Nul='1'1(t), 0<t<7;
(2.2)

Uy (0) = ug, u'(0) = 0.
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We could easily treat the more general case in which «(0) # u, (0). but for
simplicity of presentation we treat the indicated special case. Set
wW=u—u,

and consider the problem

d*w _
M-——+Nw = (F—.7), O<t<T,
dt
(2.3)
W(O) = 0, \V’(O) == U()_‘ i"’().

Using the Lagrange identity method we obtain in a straightforward way

(24)  2(w'(r), M(1)
= ((to = To), Mw(20))+ | [(w, (F* - FH)—(w* (F~F)))]dn,
0

where the argument of the unstarred expressions in the integrand on the
right is n and that of the starred expressions is 2t — 5. An integration and use
of standard inequalities leads to the result

(25)  (w(n, M < 3[IM ’_L())|I2HIW” dn]'"* +

21 2t

. - _ . 1/2
+{ =517 = 7|17 dn [ Iwl|*dn]

0 0

We now define a set .#, as follows: a function ¢ is said to belong to
My if

r
(2.6) V18117 dn < m3
0

Thus if 4, and u, both belong to .#, we conclude that

2t
(27 (w, Mw) < my FIM (vo =TIl +2 [ (1 =3 (1.7 = 7 {|*dn) 2.

4]
Clearly this is a stability inequality on the interval [0, 772] for solutions in
My,
We indicate now how the use these results to obtain error bounds in the

approximation of the solution u of (2.1) by a function ¢ € C'([0, T), H) which
also satisfies ¢ (0) = uy. If ue.#, then clearly

(2.8) [ lu—@li*dn < 2[m3+ [ lpli* dn].
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Thus from (2.5) we obtain

1

2t
(29)  (u—¢. Mu—¢) <[mi+ [ iI>dn] 2| ||M (vo— ¢ (O +

pA] " 2 12 112
-2 |
+4 (j) (r 2) | dn] i

The right hand side of (2.9) is the product of two terms the second involving
only the approximation of data terms. Thus one might think of using a
Rayleigh-Ritz procedure to make the data term small. As we select more
terms in the Rayleigh—Ritz procedure the second factor will decrease, but the
first factor will almost certainly increase. Thus in any Rayleigh-Ritz pro-
cedure in which we add a givgn set of functions one at a time in a definite
order the right hand side is likely to be minimized after a finite number of
terms and the addition of more terms will only make the error worse. If we
choose a diflerent set of functions the same phenomenon will occur but
possibly the optimal number of terms will be different and the magnitude of
the error terms different. Also if we change the order in which we adjoin
terms the optimal number may again be different, but the qualitative
behavior will be the same.

A
F-M" T —N
4 dr? ¢

3. Linear elasticiy 1 exterior regions

Although we could consider nonlinear hyperelastic problems we shall restrict
our attention in this section to the problem defined by (1.2) where, however,
the region of definition is Q*’x(O, T]. We have used the notation

(3.1) Q* = RY/Q.

Normally we would expect to have to impose some hypothesis on the
behavior of u;(x, t) as |x| — oo, but we shall merely suppose that the solution
does not grow too fast as |xj — oc. If the ¢, satisfy conditions (1.3) and (1.4)
the problem has been well studied in the literature (see e.g. [13]) but we wish
to relax condition (1.4). The full details of the derivation of the results
described below will be given in a forthcoming paper by Knops and Payne.
We assume the boundary and initial conditions to be those given by
(1.2) with Q replaced by Q*. We assume that c;;, satishes the symmetry
hypothesis (1.3) and we further impose the following conditions:

(3.2) (@ u;, u;;, u; are O(e¥™) as |x| - ao for some positive k;
(b) There exist positive constants R and ¢, such that
CiimWii Vi Z CoVij ;. Vi and ¥V x such that |x| > R;

(¢) u; is piecewise smooth in Q* x [0, T).
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In order to kill off the possible growth at infinity we introduce a weight
function

l’ le s Rl’
33 =< D rilxl -
(3.3) w{|x|) o ki~ Ry X| > R, > R,
and define F(t) as follows:
'
(3.4) F()=§ je""’ w(|x))u;u;dxdy+k, Q,

0
where 4 is a constant to be determined, k, is a positive constant and Q a
positive definite data term which vanishes when f; = ¢; = 0. The logarithmic
convexity method yields (after a careful manipulation of inequalities)

(3.5) F(t) < o [k;y?:[a—all/(ao—cl)[F(Il):rao—a)/(ao;a“,

0 ail
where ¢ =y5'¢ %, 3, and y, are computable constant and ¢, satisfies
0<t<t;<T This is clearly a stability inequality in the appropriately
defined constraint class.

It is still an open question whether some condition of type (3.2b) is
necessary to insure uniqueness and continuous dependence.

If the nitial data are suitably restricted (and here the role of A becomes
important) then it is possible to obtain sharper upper bounds and meaningful
lower bounds for the quantity
(3.6) Fi()= fo(x))uudx.

fig

4. Global nonexistence of solutions

Considerable attention has been given in the recent literature to the question
of global nonexistence of solutions of classes of nonlinear problems. One is
interested in wether or not a solution can exist for all time, whether it does
exist for all time, and in case it can be shown that the solution cannot exist
beyond a time t,, whether the solution fails to exist by “blowing up” or
whether existence fails in some other way. An account of much of the work
in this area prior to 1975 is given in [26] and the references cited therein.
More recent work is referenced in [13]. We refer also to the very recent
results of Glassey [8], John [11], Kato [12] and Sideris [30].

Most of the methods used in the literature to establish global nonexist-
ence merely tell us that if a solution exists for a sufficiently long time then it
must in fact blow up. The principle method employed in this study has been
the concavity method or some variation of it. It is a method of second order
differential inequalities similar to the logarithmic convexity method intro-
duced in the previous section. Since this method is by now reasonably well
known we merely sketch i1t here.
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The idea of the concavity method is simple. We merely note that any
sufficiently smooth concave function ol ¢ which is initially positive and whose
initial slope is ncgative must reach the value zero in a finite time. This means
that if we can construct from solutions of nonlinear problems a positive
definite function, F(t) satislying F'(0) > 0 and (F™%)" <0, then the solution
cannot exist for all time. (Here x is an arbitrary positive number))

In [14] (see also [13]) the concavity method was used to investigate the
question of global nonexistence of solution of the following problem in
nonlinear hyperelasticity

2 A0
e(x)f';%"-=f‘-("w) in Qx(0, T);

) A
(Xj (u,"j/

{4.1) u, =0 on 0Qx[0, T},
A

. cu;
ui(x’ 0) =jia _(:!f_(x’ O) =4

where the strain energy function W is taken to be a function of the
displacement gradients.

For classical solutions energy is conserved, i.e.,
(4.2) E(f) =} foujuidx+ | Wdx = E(0).

Q 2

For weak solutions it is customary to postulate an energy inequality

4.3) E(t) < E(0).
It was shown in [14] that if W satisfies the hypothesis
oW
(4.4) ”u,._,.i——z(uza) dexso
Ou; ;
[0}

for some a > 0, then the [unction F(¢) defined on weak solutions of (4.1) by

(4.5) F(D) = fouudx+p(t+1,)

Q

for positive constants B and t,, satisfies

(4.6) FF'—(1+a)(F) = =2(1+22)(2E(0)+ B) F ().
Thus if E(0) <0 we may choose f = —2E(0) and conclude
(4.7) (F7%)"<0

for r inside the existence interval. It is now possible to choose t, so large that
F'(0) > 0 and obtain the following two inequalities:

a . tFO) [
(4.8) F(r)sF(O)[l-i—T(Fa(T) 1)J
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and

’ -1
(4.9) Fe(1) > F*(0) [ 1 —a—'mJ :

Inequality (4.9) shows that the solution must fail to exist at some
t; < F(0)/aF’(0). On the other hand (4.8) shows that if the solution exists up
to time ¢, and blows up at t =, then for t <,

(4.10) Fe(h) < F“(O)[I—ILJ_ |

1

The question of whether or not a solution does exist up to blowup time
and actually loses existence through blowup has received little attention in
the literature although some special problems have been considered by Ball
[2] and others (see relerences cited in [13]).

An inequality of type (4.7) can also be derived in cases when E(0) > 0
(see [14]). Other criteria for nonexistence have been given in the literature
(see the references cited tn [13] and [26]).

The above result indicates that we should not expect a Holder type of
stability result on arbitrarily large intervals for perturbations of the null.
solution in the Cauchy problem of hyperelasticity unless it is possible (o
suitably restrict the form of W. For instance it is known that if the potential
energy satisfies a “potential well” property in the appropriate measure then
stability is assured, but as illustrated by examples of Ball, Knops, and
Marsden [3] and Knops and ‘Payne [17] the existence of a potential well
seems to be rather the exceptional situation. For additional results see Knops
[13] and papers cited therein.

It should perhaps be pointed out that if at some time 1* it is possible to
determined by measurement, observation, or otherwise that F(t*) < A then
clearly t* must be less than t; and (4.8) will imply stability of the null
solution. In fact we would obtain from (4.8)

[ t (F*(0) -1
(4.11) F2(1) < F*(0) 1+F( —1) .

M

In the nex section we shall discuss criteria for establishing continuous
dependence on the data for solutions of (4.1).

5. Continuous dependence on the data in nonlinear hyperelasticity

In this section we wish to discuss some of the meager results on continuous
dependence on the Cauchy data for solutions of the nonlinear problem (4.1)
if we do not impose the hypothesis W > 0. For the case in which

W
(5.1) WiV > oWy 'f’ij, Yij

CUu; ; Gy
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and W is a sufficiently smooth function of its arguments, it is well known
that in the class of C? functions in Q x(0, T), the solution depends con-
tinuously on the Cauchy data. This follows directly from the energy iden-
tity. Let u; and v; be solutions of (4.1) corresponding to different initial data
and set

(5.2) ¢ = u;—v;.

Now consider

b, [ ¢, (oW oW
(5.3) JJ [anz—(au'_—;_)]dxdq=o,

n

where W is the strain energy function with argument u;; and W the strain
energy function with argument v, ;. Integrating the last term by parts and
using the mean value theorem we arrive at the expression

(5.4) J(x) =3 [ Lodin Din+ Bijia @i, di, 1 dx
o

H
= J(0)+3 ] | Bijur &ij duadx dn,
0

2
2

F— evaluated at some intermediate value
iJ k,!
o

. ¢ )
between u; ; and v; ;. Assuming ‘*_rBij"' to be bounded then it follows that for
C

where B, is the value of

some constant k, (5.4) leads to
t

(5.5) J(@)<JO)+k [J(ndn
(1]

which integrates to give
(5.6) J(1) < J(0) €,

a continuous dependence inequality.
It is also possible to derive a continuous dependence result for the case
in which

PW

(5.7 au” Bty ViV < —c ¥y ¥y, Vi,

if we again assume that u; is a C? function in Q x(0, T).
In this case we define

(5.8) F(1) = fo¢:pidx+pJ(0)
2



STABILITY AND GROWTH OF SOLUTIONS OF VALUE PROBLEMS 637

and form
.
(5.9) F(t) =2 [o¢ G dx,
0 ot
510 F(1) = Ca e e,
(5.10) ® 2UQ a 2daxj [a“i-f &‘-dex
Q 2

(0, O, [
= 2 Q“?‘ —¢— dx_2 Bl'jil ¢l'.j ¢k.{dx.

2 o
Using (5.4) we obtain
¢
(5.11) F'(r)=4 JQ%?‘ :: dx—4J(0)—§ J J\Bijkl &i,j b, 1dx
o 0 0

. 0.
= 4 J‘Q a::l (j(,)dt)l dx—4J(0)+2k1 J J‘BU“ ¢i.j ¢k'tdx.

2 0 0

To bound the last term on the right we integrate (5.10) and obtain

t

" ¢, O,
(5.12) F'(t)—F’(0)=2J. 0 ;' (;I:' dx—zjjBijkld’i,jd)k.ldx
0

2 0 n

ne

]
=z —2 J\Bijkl O Pradx.

00
Thus
09; )
(5.13) F”;4J¢de—4J(0)+2le(0)—2k1F’(t),
0
(5.14) FF'—(F')> = =2k, FF' +[2k, F'(0)—4J (0)] F (1).

If the coefficient of F (r) is positive it may be dropped. If it is negative we
write

[4J(0)— 2k, F'(0)]
BI(0)

(5.15) FF'—(F)* » —2k, FF — F2(1),

or

(5.16) (In FY’ > —2k, (In Fy —7.
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We now introduce the new variable o by
(5.17) g=¢ 2V

and rewrite (5.16) as

2

2
(5.18) = Hog [F(r)e 1] > 0.

This implies that
(5.19) F(n) < O.)’/(4kf) [F(O)](cr—a1)/(l —oy) [F(T) O_l— y/4k‘1"](1 - @)} —a,),

where 0, = ¢ 2T, Inequality (5.19) displays the continuous dependence on
the data for solutions which lie in the set .4,

Of course it 1s much easier to derive inequalities which will imply
stability of the null solution. For instance if we impose the following
constitutive hypothesis on W

‘W

iAo
’ ;.

(5.20 2W —-u =0,

then the logarithmic convexity method yields stability of the null solution for
solutions in .#,. On the other hand if W satisfies

W
(5.21) AW+, 3 0
(u;
we find by direct integration that
(5.22) Vowjudx < Jofifidx+1 | of;gidx+ 2t E(0),
(8] Q (4]

where E is given by (4.2). Results of this type are well known.

There is almost nothing in the literature on the Cauchy problem for the
nonlinear equations of elastostatics, i.e.,

L4

(5.23) = (; -)=o in 0
(-]xj' ('Ll,-_j

u,=f on X
cw

n=g¢g, on X
J i ’
5“;.1'

where X is a connected portion of the boundary /Q of non zero measure and
n; is the jth component of the unit normal. Even for the linearized equations

the literature provides little in the way of explicit stability inequalities,
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A particular nonlinear case of (5.23) has been considered by Knops and
Payne [18], namely

¢
EX_(Q(G) ap (X) “i.r) =0, xe Q2

k

(5.24) u, =/ on X,
el@apui,m =g, on L,

where

(5.25) O = Qu Ui r Ui g

and g is assumed to satisfy

1} o(s) >0 for s >0;

3

i) Jo(rde < sg(s),
0
and ¢;; is a positive definite matrix for xe Q.

By introducing a suitable [amily of smooth surfaces parametrized by a
parameter x (0 < x < 1), the authors derived an inequality which implied
stability of the null solution in a subregion £, for solutions in the appro-
priate constraint set. They imposed a rather severe constraint set restriction,
ic.,

13 {
(5.26) sup ,ga_) A i, Ui gl < A3 | o(o)u;u;dx <k,
Xef2q ,Q(G) g:)l
where the A;’s and k are constants. The proof used a logarithmic convexity
argument with a playing the role of t.

Note that the linearized version of (5.24) does not correspond to
classical linear elasticity, and in fact the method of logarithmic convexity
cannot be applied directly to linear anisotropic elasticity without making
further assumptions on the c¢;;;, assumptions that do not appear to be
realistic. It is possible that the weighted energy method is applicable to a
more general class of problems than that considered in [18], but to the
authors knowledge this latter method has not been used in nonlinear
elastostatics.

6. Results of St. Venant type

The original St. Venant problem involved the comparison of two elastostatic
fields in a cylinder with traction free lateral surface subjected to end loadings
that were diflerent but had the same resultant [orce and moment. St. Venant
conjectured that if the cylinder is sulficiently long relative to the diameter of
the cross section then away from the ends the two felds will be nearly
identical. This conjecture as stated is imprecise, but numerous attempts
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have been made through the years to attach precise meaning to the conjec-
ture and prove its validity, first in the context of classical elasticity and later
in various nonlinear settings. Perhaps the first to establish and prove precise
versions of the theorem for classical elasticity were Toupin [31], Knowles
[19] and Roseman [28]. The earliest precise versions for nonlinear elasticity
were due to Roseman [29]. For more recent resuits see the review papers of
Gurtin [9] and Fichera [7] and for noncylindrical regions see Oleinik and
Yosifian [25].

In this section we wish to report on some recent unpublished results of
Horgan and Payne on rates of decay of solutions of some two dimensional
problems defined in a strip region. For St. Venant type results in related
problems see Horgan and Knowles [10] and papers cited therein.

Let 2 now denote the semi infinite plane strip, x >0, 0 <y < b. We
consider the following boundary value problem

[Q(qz)u,i],i =0 in Q, ‘I2 = |grad u[z’
(6.1) u(x, 0) =u(x, by =0,

b
: 5, Ou
lim J‘Q(q‘)u-{---dy = 0.
x-r o cx

0
For the moment we do not specify the boundary condition on x = 0. Clearly
such a problem could arise in two dimensional nonlinear elastostatics.

In what follows we shall not assume that the equation is necessarily
elliptic, but merely make the hypotheses that on appropriately defined weak
solution of (6.1), the quantity E(0O) defined by

x b
(6.2) E = | [q*elg>)dydx
00
exists, and that o satisfies either
(6.3) 0 <m<o(q’) < M+kq?o(g?,
or
(6.4) 0<m <o '<M +K q%0(q)).

Here the quantities m, M and K are positive constants.
We establish the foliowing result.

THEOREM. If a weak solution of (6.1) exists and satisfies (6.3) or (6.4) then
it is possible to compute in explicit constant C such that

x b
(6.5) E(x)= | 42 0(q) dydt < CE(0)e™ 2xms/My),
x 0

(If (6.4) is satisfied the constants in the exponential are m; and M)).
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In many examples (for instance the minimal surface equation) it is
possible to choose m = M (or m; = M,). In this case we retrieve the same
asymptotic behavior for E(x) that we would obtain if ¢ were constant, i.e., if
u is a harmonic function.

It is easily seen that condition (6.3) (or (6.4)) does not imply the
ellipticity of the equation. It does, however, imply that the equation becomes
elliptic for g sufficiently small.

If (6.3) holds and the boundary condition on x =0 i1s given by

(6.6) 0 =S

then one can easily compute

5
>

(6.7) EO <>

so that if (6.7) is used on the right hand side of (6.5) we obtain an explicit
inequality for the decay rate of E(x).

If instead of (6.3), inequality (6.4) holds and the boundary condition
x =0 is given by

(6.8) u=g() on x=0,

then it is possible to obtain the inequality

b

b [[dg)\?
(69) E@s_—(ﬁ)@
wm; | \dy
0

We have considered an example in which the solution decays to the null
solution as z — oc. Let us now consider an equation for which the solution
tends to the solution of a one dimensional problem. Let u be the solution of

le(gPud;+gu, y)=0, O0<x<L, 0<y<b;
(6.10) u(x, 0) = u(x, b) = 0;

Cu
X

where again ¢° = |grad u|? and, ¢ and g are assumed to satisfy

3

(6.11a) 9<0, Vu 0<y<bh,
u

(6.11b) 0=m>0, 0 =0, 0 < Kop.

Here K is some positive constant.

4] — Banuach Cenler Publications 15
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We wish to compare the solution of (6.10) with that of

le(pHtT+g(e, =0, O0<y<b;

(6.12)
_ v(0) =v(h) =0,
where p? = (v')%.

Setting
(6.13) W=u—r
and
ay b
(6.14) E(x)= | l Lo (p)+ (g w,w dydL,

it i1s possible to establish the following result:
b

(6.15) E(x) < CE(O)exp {—~amz(3 | o(pPdy) '],
O

for some constant C which depends on K, m, E(0) and the solution of the
one dimensional problem. If u satisfies the initial condition (6.6) then the
estimate (6.7) holds for E(0). The assumption ¢’ > 0O insures that equation
(6.10} 1s elliptic.

Additional comparison results relating solutions of second order elliptic
problems to analogous problems in one dimension are given in [27].
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