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1. A modification of Sudakov’s lemma and the Cramér-Rao inequality

In 1968 S. Trybula proved in [7] that for the Poisson process (f), t = 0,
with the parameter 4 the joint distribution m; of a random vector (1:, f(r)),
where 7 is a Markov stopping time, is absolutely continuous with respect to
m,, for some A, with the density dm,/dm, . Using this fact, the author
obtained a characterization of efficient sequential plans for the Poisson
process with an unknown parameter 4. In the same article analogous results
for the negative-binomial, gamma and Wiener processes were obtained.
Later, in 1969, V. N. Sudakov ([6]) proved the following lemma, generalizing
the result obtained by Trybula.

LemMmA ([6] or [2], 55-59). Let (2, %, Py) be a probability space and
let £(t), t = 0, be a stochastic process with right-continuous realizations — Py
almost surely for every €.

We assume that &(t) is a sufficient statistic for 3 and the one-dimensional
distribution Py(E(t)e B) of &(t), t 2 0, is absolutely continuous with respect
to the one-dimensional distribution Pso(é(t)e B) and the density function
h(t, x; 8, 9¢) is continuous.

Then for any Markov stopping time t the joint distribution my of (z, £(1))
is absolutely continuous with respect to the joint distribution mg, and

5 (1) = h(e(w, x(w); 9, %),

S0
u=(t(u), x(w)eU = [0, cv) xR
Let us introduce the following notation:

D([0, o)) —~ the space of functions x(-): [0, cv) — R* which are right
continuous and have left-side limits.
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% — the least g-algebra of subsets of D([0, c0)) with respect to which
the coordinate mappings x(t): D([0, ©0)) » R* are measurable.

&, — the least o-algebra of subsets of D([0, o0)) with respect to which
the coordinate mappings x(s): D([0, o)) — R*, s€[0, t] are measurable.

U — a probability measure defined on (D([O, o)), @), depending on the
parameter 3 = (9, 9,,...,93)€® < R"

DermniTION 1. A Markov stopping time is a random variable 1:
D([0, o)) = [0, ov] for which
{x(*): t(x(*))<t}e?, forevery t=0.

Further we also assume that
pe(§x () t(x(") < 0})=1 for every 9€0.

1°. For every ¢, let Z(¢, x(*)), be the mapping from D([0, o0)) to R,
measurable with respect to &, and right-continuous with respect to r — pq
almost surely for every 3e6.

2 By pug, we denote the restriction of ug to the o-algebra &,. Let us
assume that pu,, is absolutely continuous with respect to p,,,, and

d.us.:
d”’&o,l

(x(+) = h(t, Z(t, x()); 9, ),

where h is a continuous function and Z(f) = Z(t, x(-)) is a mapping satisfy-
ing the previous condition.

The problem is what we can say about the joint distribution of the
random vector (t, Z(1)).

3. Let U=[0, w)xR'=TxR,
Ueu =(t(u), z(u)).

%y — the o-algebra of Borel subsets of U.
On (U, 4%y) we define, for every A e 4, the measure my; generated by
the statistics Z and the Markov time 1:

mg(A) = e ({e(): (1)), Z(x(x (). x())e4}).

LemMma 1 ([4]). Under assumptions 1°-3° the measure mg is absolutely
continuous with respect to the measure mgy  and the density function takes the
form:

dm,
dm,

(u) = ht(w), z(u); 9, 3y).
0

DerINITION 2. By a sequential plan we mean the pair (1, f(t, Z(1))),
where t is a Markov stopping time and f: U >R is a % -measurable
function.
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The function f will be called an estimator of a given function g(9). We
also assume that:

() Emf=Esf (1. Z(2)) = g(9),
(i) Engf*= jfz (W) h(u; 8, 9o)dmy (u) < oo for every 9e®,

(m) the function g(9) i1s differentiable and ¢(9) # const. Let us denote:

0 d
Vs (u) = (-‘ﬁlog h(u; 93, 90),...,a—glog h{u; 9, 90)),
1 Vs

0 ¢
Vagz(a—'gl'g(‘g)a-aﬁg(g)): J(9)=EmsV3TI/Ss .

Dy(-) — the variance evaluated at 3.
We can [ormulate the following theorem:

THEOREM 1. If a sequential plan (t, f) satisfies the regularity conditions
which guarantee that

0
0.9 h(u; 8, So)dmg (1) = J——h(u 3, 3o)dmg (1),

U

0 0
—a?i jf(u)h(u; ‘99 ‘90)dm30(u) = J‘f(u)a—'gllogh(ua ‘9a 90)dm30(u),

U U

then
Dyf (v, Z(v) = (Veg) 1 (D(Ve9)". (1)

The equality holds at a particular value of 3 if and only if
f@)=Fs@)J "DV +9(8)  my -almost surely.

DEerFINITION 3. A sequential estimation plan (t, /) for g(3) is said to be
efficient at 9 if (1) becomes an equality at I.

The estimator f is then called efficient at the value 3 and the function
g(9) 1s efficiently estimable at 3.

DeriniTioN 4. A sequential estimation plan (z, f) for g(9) is said to be
efficient if it is efficient at each 3e6.

The estimator f is then called efficient and the functlon g(9) is efficiently
estimable.

24 — Banach Center t. 16
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2. The characterization of efficient sequential plans for an m-state Markov
homogeneous process ([8]).

Let £ = &(1), t 2 0, be a homogeneous m-state Markov process with intensity
matrix A and with intensities 4; for i,j=1,2,...,m (i #j).

Let P(Xo=k)=p,0<p <lfork=1,2,....m; ) p,=1. Denote p

k=1

=(Prs--os P A = 2. Ay. Let Ny(n), i,j=1,2,...,m (i # ), be the number
i

of jumps of the process ¢ from state i to state j in the interval [0, t], let T;(1),

i=1,2,...,m be total time during which the process ¢ remains in state i in

[0,t], and let V¥, k=1,2,...,m, be a random variable defined in the

following way:

Vo 1 if X, =k,
o otherwise.

Denote

0 Ny Ny .. N,
Ny 0 ... Ny,

Noy Npzg . ... 0

T=(T,TL,...,T,), V=V, V..., V). Let 3=(p, A).

The process ¢ generates the measure p, in the space
D,.([0, o)) = D([0, o)) of right continuous functions with values 1, 2,..., m.
Let # be the least o-algebra of subsets of D, with respect to which the
functions x(f), t = 0 are measurable, and let #, be the least o-algebra of
subsets of D, with respect to which x(s), s€[0, t] are measurable. If u,,
denotes the restriction of puy on %, then we have p,, < g, and

d,Ll. m 'k m a0 nj(n m

B iy €X (ig - )'rs) L (t)

dlf‘so ' kl:[ (Pk ) i.;l';[} (’18' ) P [rsZ= 1 ]
iEj r#s

= c(v(t), n(e), 1(1); So)f[ ok H A exp[ — i st (1)),

i,j=1 r.s=1
[E2¥] ¥ #Es

where v, n;(t), t;(t), v, n(t), t(t) are the values of the random variables V,,
Ny;(t), T:(1), V, N(t), T(t), respectively.

Let t be a Markov stopping time with respect to %,. By the modifi-
cation of Sudakov’s lemma it follows that the joint distribution mg of
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(v,

V, N(1), T(7)) is absolutely continuous with respect to the distribution
mg_ for some 9, and
(4]

—=c,n, t;9) [] p* [] APexp(= Y Ast,),
dmg

k=1 i.j=1

rs=1
i+j

rEs
where v,

n;, t,, v, n, t are the values of the random variables V,, N;;(7), T.(1)
V., N(t), T(z), respectively.
Denote g, = fg, gi; = ﬂ
p. 77 Oy
Lemma 2. If f=f(V, N, T) is an estimator of Ef=g(p, A) fulfilling
regularity conditions then
El(pmVi—P V) S 1= Pr Ptk
E[(Nij_‘lij Tf1= Aij g;js
E(pm V=P Vi)* = Pt Pm(Pi+ P,
E[(Pm V= P Vi) (P Ve = Pic Vi) ] = Pic Pic P
E[(Ny;—4; (N — 4, )1 =0, (i, j)#(i',j’),
El(pm Vi— 0 VR (Nij—4; T)] =
E(N;—4; T)* = A,;ET,.

THEOREM 2. For a sequential plan (t, f(t, V, N(7), T(1))) satisfying the
regularity conditions we have

Df > Y plgh? (z P+ Y g").
k=1

i,j=1
i#j

Equality holds at a particular value of (p, A) if and only if f is a linear

function of w, and w,;, mg  almost surely, where

Pm Uk — Dk Um T
Wk =, Wi] =
P Pm Aij
So we can formulate the following corollary.

CoroLLARY. If T is a Markov stopping time, then a nonconstant estimator

[ =f(v,n, 1) is efficient for Ef =g(p, A) at (p, A) if and only if there exist
constants a,, b;;, i,j =1, 2 m; k=1, 2

,...,m, not all equal ro zero, and a
constant ¢ such that

m— 1

m
Z ay (P Uk — P Om) + Z bi;(n;— At +c
k=1 Bj=1

i)
Jor almost all (with respect to mg,) points ue U

f(v,n, )=
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Let

A; =(}“i1"-',’1i.i—1r Ai,i+1a-'-"1im)-
In the sequel we assume that g is a function of only A; and m > 2. Without
loss of generality let i = 1.
Two distinct values, A =(A%Y,...,A{)) and A? =(13,..., 1?2), are
equivalent with respect to g(A4,) if g(A{") = g(A?).

THeEOREM 3. If for a Markov stopping time t there exists a nonconstant
estimator f which is efficient for a function g(A,) for two values of A, which are
not equivalent with respect to g(A,), then there exist constants a,,...,d,, P,
not all zero, and y #0 such that

m
a;n;;+pt;+7y=0 mg-almost surely.
j=2

J

THEOREM 4. Let P(T, > 0) = 1. Let us assume that for a Markov stopp-
ing time 1 there exist constants a,,...,0,, fi, not all zero, y # 0, such that

m
ajn;+pt;+y=0 mg -almost surely,
Jj=1

then for almost all ue U either

Moy tMieat - TR = ! (2)

for some positive integer |, where (6(2),...,6(m)) is a permutation of
(2,3,....,m) and k is an integer, 2 < k <m, or

t,=a  for some a > 0.

Let © be the time at which line (2) is first attained for some k =1, 2,...,m
and some positive integer I Such a plan we shall call an inverse plan.

Let T be the time at which the line ¢, =« i1s first attained for some
a > 0. Such a plan we shall call a simple plan.

THEOREM 5. The following functions are efficiently estimable ones:
a) for an inverse plan with some k, | and ¢

ay i oyt .- +oy A4 a(h)+ﬂ_
Aoyt oo + A1

g(4,) =

b) for a simple plan
g(Al) = a2]‘12+ +amllm+ﬂ-
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3. Sequential plans for the birth and death process ([5])

Let (2, #, Pg) be a probability space and &(¢), t > 0, the birth and death
process satisfying the following conditions:

P (E(t+41) =i+ 1E(1) = i) = Aa; At + o(41) > 0,
Po{E(t+4d1) = i—1|&(t) = i) = ub; At +0(41) > 0,
Pg(E(t+dr) =it klE(r) = i) = 0(4r) > 0, k> 2,
Py(E(t+At) = ilé(t) = i) = 1 —(da;+ ub;) At + 0 (4t) > 0,
Py(C(0)=n)=1,
Ps(é(t+At) < Q|£(0) = 0) =0
for every 3 = (4, pe @ < (0, ) x(0, ov), where a; > 0 for every i > 0, and
by =0, b; >0 for every i > 1. In the case g, = 0 we assume that
Py(E(t+4t) > 0¢&()=0)=0  forevery 9€8.

We also assume that almost all realizations of the process have only a
finite number of jumps in the interval [0, t], t > 0. The process £(¢), t = 0,
generates the measure g, in the space (D, ([0, o)), 7, ), where D, ([0, o))
is the space of right continuous, integer-valued functions with unit jumps.
The measure ug, is absolutely continuous with respect to Hg,. and

iﬂs.r
dlu.go.l

= (B(1), D(1), Py(1), P3(1);90)- A9 P exp[ — (AP (1) + P (1))],

where B{t) — the number of births in the interval [0, t], D(r) — the number
of deaths in the interval [0, 1],

Pl(t)=zai7;(t)a P2(1)=Zbi7;(t)

with 7;(t) — the total time during which the process remains in the state i in
the interval [0, t].
Let us denote
Z(1)=(B(), D), P, (1), P,(1)).

By the modification of Sudakov’s lemma it follows that the joint distribution
my of (r, Z(1)) is absolutely continuous with respect to m,  and

dm,
dmg

(1) = c(b(u), d(w), py (u), p2{u); o) A°™ '™ exp[ —(Ap, (w)+ up; (W)]
0

= h(u; 3, 3).
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THeoREM 6. If © is a Markov stopping time, then under the regularity
conditions we hate

E, {?— P, (r)] —0, E [?— P, (r)] _o,

B 21
Ey [%—Pl (r)] = 3 EaB(),

o[-

12 o 2 #2 P 2
Dyf(r, Z(1)) = EB() (59(9)) +ESD(T) (6#9(9)) :

This inequality becomes an equality if and only if

and

0 A2 0
S = ((ﬁg(g))EsB(r) alogh(u, 3, So) +

0 w0
+ (59(9))5553]% h(u; 3, 35)+g(9) mso-almost surely.

Tueorem 7. If (r,f(t, Z(r))) is ‘an efficient plan for g(3), then there
exist constants o, B, y,, 2, ¥y for which

ab(u)+ Bd(u)+ 7y, py(W)+ 9, p2(u) + 3 =0 my -almost surely,
with a2+ # 0, f2+v3 2 0.
We also conclude that only

(9)_ko+kllu+kzl+k3u
I gt Lt

is an efficiently estimable function.

ExampLEs. a) Let by =0, g, >0,
T,o (x()) = inf {z: Z.: a; T.(t, x(*)) = to}.
Then
EyPy(t,y) = to and Dy Py (1,,) = 0.
Let g(9) = g(4). We have
EgB(z,,) = Ao and Dy B(z, ) = Ato.-
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If the estimator f(r,, Z(z,,)} is efficient, then it takes the form
S (1 Z(t) = 1 B(z, )+,
and
g(h) =c Mo+,

is an efficiently estimable function.
b) Let

Teo(xC)) = inf {1 B(t, x(*)) = xo}.
Then

EyB(t,)) =x, and DgB(z,,)=0.
Let g(9) =g(4). We have

Xo

X
EgPi(t) == and DyPy(ts,) =73

So, if the estimator f(t,o, Z(r,o)) is efficient, then there exist constants ¢, ¢,
such that

f(rxoﬂ Z(txo)) =<y Pl (T.ro) + C2

and

. Xo
g(d) =c¢, 7"‘02
is an efficiently esttmable function.
c) Let us take a; = b;, ag = by =0,
1o (X () =infit: B(t, x(:)+D(r, x()) = xo/,
where xo < n. Then we have
Eg[B(tz)+ D(12)1 = xo,  D3[B(r:))+D(zz )] =0,
P, (T::O) = PZ(‘E;O )

1 A y
Ey Py(tyy) = At X0, Eg B(ty,) = Fyy Xo> E¢D(1;) = T
A
E B 1 D 1 = 1 ,
s [B(tx,) D(15,)] Gt Xo(xg—1)
DSPI(T;()): xO-

(A+ p)?
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Let

1
S (tag, Z{13p)) = — Py (13).
Xo

This estimator is efficient for the function

1
A g =—.
g(4, W Tt

4. Sequential plans for a Markov process with migration ([3])

Let us assume that there is a flow of homogeneous objects entering a certain
system A and each of the objects in the system may emigrate in one of the n
directions B,,...,B,. We also assume that the incoming objects form a
Poisson flow with intensity a. Further, if an object is in the system A4 at a
time ¢t > 0, then it can emigrate during time (¢, t + At), independently of its
entrance time, in the direction B;, j=1,...,n with the probability B; At
+o(4t). By V(t) let us denote the number of objects which entered the
system during the time interval [0, t). Let W;(r) be the number of objects
which emigrated during this time in the direction B;, j =1, 2,...,n, and let k,
be the number of objects present in A4 at the time t = 0. Let I = {0, 1, 2,...}
and T = [0, c0). Next, let us denote W, (t) = ko + V(1) and let 3 be the vector
(o, Byn..-. B)e® (0, wo)"*!

Let (2, %, Py) be a probability space. Let us consider a homogeneous
Markov process

£(0) = (Wolr), Wi(t),.... W,(1)),  teT

defined on (2, %, Py). The values of this process we shall denote by x
= (W, Wis..., Wp).
We assume that the process £(¢), t e 7, satisfies the following conditions:

a) Py(£(0) =(ko, O,...,0)) =1,
b) the transition probabilities are of the form

Py (E(t+At) = yE(t) = x)

[ aAt+o0(4t) if x=(wg, wy,..., w,) and
y=(wo+1, wi,...,wp),
> kB; At+o(4r) il x=(wg, wy,...,w,) and
= 9 =t y=(W0! wla"'ij—ly Wj+15wj+la-'-swp|),
j=1,...,n,
1—(x+ ) kB)dt+o(4r) if x=y,
j=1
L o(4) otherwise,
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n
where k = wy—

Z w; denotes the value of the random variable
j=1

K()y=W,)- ) W@
j=1

determining the number of objects present in the system at time ¢
¢} Py(K()=0)=1 for every t > 0.

Our problem is to estimate the intensities «, f;,..., fi, or their functions,
using the observation of the process &(¢), teT From the Skorokhod
theorems ([1]) we have u;, < g, and

d . v(t) n
d;i:s;', (x( ) = (&%) CXP[—(a—ao)f—jgl (B;— Bo;)

n WjlD v(t)

<k 35 o S 1 ()7

1 r= i=1 BOJ
where v,’s are the arrival times

0<v; <...<vyyy <,

and o;’s are the exit times in direction B

0<ojy <...<0Gjwm<t, Jj=1...n
Let us denote

W(I) = (wl (t)’ RS ) W,.,(f)),

wijtt) o
S(t X( )) k(l)t+ Z Z Gﬂ_ Z Ves
=1 r=1

ﬂ= i Bja ﬁ0= Z": ﬁo;’

and

Z(t, x(*) = (v(8), w(n), S(t, x(-))).

The function S determines the overall time spent in the system by the objects
which arrived during the time [0, ¢) or were in the system at the time r = 0. So we
can write

v{r) n wjlh)
o e = (£ sl ~@=a--poste <00 11 (57

0jf

=c(t, Z(r, x(*)); %) " exp[ —at—BS(t, x(-))] l—[ ﬁ,’m.



378 R. MAGIERA and R. ROZANSKI

From the modification of Sudakov’s lemma we have

s (u) = c(u; Sp)a"™exp [ —at (u) — Bs(u)] ﬁ ﬂ;_"i("’_

dms,, i=1

The Cramér-Rao inequality takes the form

Z B;ilg; (%

j=1

Dsf (x, Z(1) > % (49 +- S

The equality holds at a particular value of 9 iff

9o (®)
Eot [V(r)—ar]+EBS()

flr, Z(9) = Z gi(H[W;(r)—B;S(1)]1+g(3).

ExampLEs. a) Let
D (x(-)) = Ty > 0.
For this stopping time

c
S =S V(T +e
0

is efficient for g(#) =c,a+c,.
b)

@ (x(-) =inf {t: v(t) = v,},

where v, is a positive integer number.
For this stopping time

f(z) — T(2)+C
Yo
is efficient for g(93) = c¢,/a+c,.
c)

™ (x(-)) =inf{r: S(t, x(*)) =S¢}, S0 >0.

For this stopping time

1 n
fO == ¥ W) +d
So j=1 '
is efficient for g() = ) ¢;B;+d.
j=1

d)

k
@ (x()) =inf {r: Y wa (1) = me},

i=1
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where m, is a positive integer number, 2 < k < n, ¢ 1s a permutation of the
set {1,2,...,n}. For this stopping time

k
fm = i Z ¢ Waa (7(4))+d
My =1
is efficient for
k k
9 =(Y ciBat) Y Bow) ' +d.
i=1 i=1

) (x () =inf {1 w;(t) = Iy},

where t, is positive integer.
For this stopping time

9 =A@+,
V]

is efficient for g(%) = c,/B;+¢,.
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