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The bifurcation sequences associated with formation of saddle-connections are studied with use
of renormalization methods. In the systems with a single saddle equilibrium the sequence
converges at the exponential rate whereas in the case of two symmetrical saddle-points the
convergence is superexponential. In both cases the quantitative aspects of the scenario prove to
be entirely determined by the ratio of two real eigenvalues of the vector field linearized near the
saddle-point.

The initial elements of the universal scenarios of transition to chaos are
commonly time-dependent states (periodic for period-doublings [1] and
intermittency [2] or quasiperiodic [3, 4]). This work is focused on the
bifurcation sequences in which the key role is given to even more simple
objects — the non-stable equilibria represented in dynamical systems by
saddle-points. The parameter variation may produce saddle connections
(homoclinic orbits) — captures of unstable manifolds of such points by their
stable manifolds. This leads to creation or destruction of the closed trajecto-
ries — the limit cycles [S]. In presence of certain symmetries more complica-
ted structures may arise. The most known example of this is probably the
formation of the chaotic attractor in the famous Lorenz model [6].

The aim of this note is to study with the help of some (intuitive rather
than rigorous) arguments two bifurcation sequences associated with creation
of homoclinic orbits. The first one occurs in the systems with the single
saddle equilibrium. It bears some features of both the Lorenz [5, 6]
Feigenbaum [1] scenarios and was described earlier [7, 8]. The numerical
renormalization-group (RG) study shows the universality of this route for
symmetrical systems. Then we shall follow the peculiar transformation of the
bifurcation picture in case of a dynamical system with a couple of symmetri-
cal equilibria. In this situation, the bifurcation sequence converges not at a
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geometric rate but much more rapidly. The simplified RG-analysis finds this
unusual behaviour to be due to the fact that the fixed-point of the RG-
transformation which governs the dynamics of such systems is singular.

At the end we use the continuous model — the set of three ordinary
differential equations (ODE) to illustrate the preceding qualitative and quan-
titative analysis of discrete systems.

Bifurcations in the system with a single saddle-point

Consider the system of N (N = 3) autonomous ODE which satisfies the
following conditions in some open set of parameter values:

(a) The system has a fixed point 0.

(b) In the spectrum of the vector field linearized near 0 two eigenvalues
A, and A, with the biggest real parts are both real. One of them (4,) is
positive and other is negative. This means that the point 0 is a saddle-point
with 1-dimensional unstable manifold consisting of the point itself and two
trajectories, which we shall call separatrices.

(c) There exists a transformation under which the system is invariant
and each of the separatrices is transformed into the other one (this symmetry
is typical of many dynamical systems arising in the problems of free thermal
convection).

(d) In the parameter space there is a codimension-1 surface upon which
the separatrices are captured by the stable manifold of the saddle-point; they
return to 0 being tangent to each other and constitute a couple of structural-
ly unstable homoclinic orbits. v

Trajectories leaving the vicinity of the saddle-point return there again.
Their behaviour is dominated by the dynamics upon the “slow manifold” —
the invariant 2-dimensional surface which is tangent in the point 0 to the
eigenvectors associated to 4; and A,. Hence the Poincaré mapping is reduced
to one-dimensional recursion relation which in the lowest order can be
written down as

(1) Xiv1 = f(x), f(x) =(alx]"—p)-sign(x).

Here the coordinate x is measured along the eigenvector associated to 4,; v
= —A,/4, is the so-called saddle ratio, u is the value of x for the first return
on the secant of the separatrix leaving for x <0. The homoclinic orbits
appear when u = 0. The orbits are assumed to be orientable [10] which
makes the factor a in (1) positive (then the proper rescaling of x for v # 1
makes a = 1).

If v <1 then the Lorenz route to chaos [9] via the “preturbulent state”
[11] is observed. We consider the case of v > 1. Here the Poincaré-mapping
has zero derivative at x = 0 and the states arising from the destruction of
homoclinic orbits are stable.
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The growth of u changes the dynamics of (1). The associated bifurca-
tions in terms of the flow are as follows:

(@) At u=(av)'/'~7-(1—v)/v the double tangent bifurcation produces
two stable and two non-stable closed trajectories (cycles).

(b) The stable cycles approach the saddle and at u = 0 coincide with the
separatrices forming the couple of homoclinic orbits. The destruction of this
couple produces stable 2-looped cycle (trajectory twice returning to the
neighbourhood of the saddle-point) which consists of two symmetrical halves.

() At u=(av)'/*~-(1+1/v) this solution loses stability and the couple
of symmetrical to each other 2-looped cycles bifurcates from it (the symme-
try-breaking bifurcation).

(d) At pu=a''"" these cycles coincide with separatrices. Here f2(0) =0
and we observe the couple of 2-looped homoclinic orbits out of which a 4-
looped stable cycle is born.

A
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Fig. 1. Transformation of attracting states in systems with single saddle-point

The first steps of the process are sketched in Fig. 1. As the scenario goes
on, two kinds of bifurcation alternate infinitely many times. The first one is
the formation of a couple of homoclinic orbits through which out of two
stable cycles a new one (twice as long) is created, and the second kind is the
symmetrybreaking bifurcation. Both are structurally unstable but become
generic in dynamical systems of considered symmetry.

24 — Banach Center t. 23
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The computations have shown that if v is fixed then the differences
between the successive same-kind-bifurcation values of u decrease showing
asymptotically the exponential law. The explanation of this is in the similari-
ty of high iterates of (1).
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Fig. 2. The return mapping

The Fig. 2 shows the graphs of f(x), f2(x) and f*(x) for u > a'/*~". The
central parts of the graphs are all alike and it is only the scale that differs.
This permits to apply the renormalization methods similar to the case of
period-doublings [1]. (Note that there are no doublings of time period
among the considered bifurcations — period tends to infinity at the bifurca-
tions of the Ist kind and does not change at all at those of the 2nd kind.)

Consider the “doubling operator” I(f(x)) = aff (x/a) where o is the
factor determined from the scale invariance. Let us search for the fixed point
of this operator — the solution of the equation f, (x) = a, f, f, (x/a,) in the
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class of functions
(2) f(x)=(=14a,|x]"+a,|x|*"+ ...)sign(x).

The equation differs from the well-known equation of Feigenbaum—Cvitano-
vic [1] by the sign of the righthand side only. This is quite natural because
they have been dealing with continuous unimodal functions whereas in our
problem f(x) is piecewise-monotonic and discontinuous due to the passing of
the trajectories near the saddle-point. The equation was solved numerically
for various values of the saddle ratio v by the application of the Newton
method to the truncated series (2). Then the operator was linearized near the
fixed point and its spectrum was examined. The calculations permit to
conclude that for all v > 1 the operator has a fixed point in the spectrum of
which only one eigenvalue lies outside the unit disc. It is precisely this
eigenvalue that determines the convergence rate of the bifurcation sequence,
while the value of a, associated to this point describes - the scaling of
trajectories on the attractor near the saddle-point.

The fixed point depends on v. Hence there is a 1-parameter family of
universality classes. The parameter is the value of the saddle ratio v, which
entirely determines all the asymptotic characteristics of the bifurcation se-
quence as well as the properties (scaling, dimension etc.) of the chaotic
attractor. The transition to chaos is associated to the intersection of the
stable manifold of the fixed point which occurs in the universal way.

It was noted in [7] that one may put in correspondence the families of
continuous unimodal mappings exhibiting the period-doubling scenario and
the mappings similar to (1) with its sequence of homoclinic bifurcations.
Formally, the previous also have the family of universality classes with the
parameter being the value analogous to v — the order of extremum. But the
natural smoothness condition immediately singles out the integer even extre-
ma and of them the simplest — the quadratic one. Hence the corresponding
0 =4.6692 and o = 2.5029 are the same for all typical systems in which the
period-doublings take place. On the contrary the discontinuous mappings
like (1) do not specify any value of the saddle ratio. In the usual cases the
structure of the spectrum of the equilibrium (and hence the saddle ratio)
depends on external “physical” parameters (e.g. the Rayleigh and the Prandtl
numbers in thermal convection). On the plane of two such parameters the
quantitative characteristics of the bifurcation sequence may well vary along
the line corresponding to the boundary of chaos.

Systems with two saddle equilibria

In systems of symmetry considered the saddle-point may appear as a result
of direct (supercritical) or inverted (subcritical) bifurcation of the stable node.
In the last case the stable point in the subcritical zone coexists with two
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symmetrical saddle-points, which coalesce with it on the stability border and
transfer to it their- instability.

The property of having biasymptotical trajectories may be also transfer-
red. We shall see that near the segment of the border to which the line of
formation of homoclinic orbits comes from the supercritical zone one can
find recombinations of invariant manifolds of the couple of saddle-points in
subcritical region.

How can one obtain the return mapping? The usual technique of
linearization of equations in the neighbourhood of the saddle-point cannot
be employed here because the eigenvalue associated to the unstable direction
vanishes at the border. Hence the corresponding equation on the slow
manifold must include the nonlinear terms; for symmetry reasons this will be
the cubic one. Then the slow manifold equations become

x. = j’l X+ x3,
€) ,

zZ = )»2 ¥4
and the linearization of global segments of the trajectories near the separatri-
ces produces the expression

24 —A42/4y
4) Xiv1=f(x), f(x)= (a (x ljc_l l) —u)sign(x)

where pu is the first return of the separatrix leaving to the left from the
saddle-point (or from the left saddle if there are two), the eigenvalue 4, is the
parameter along with pu and the stability border is given by A, = 0. The
relation (4) describes the dynamics near the single saddle-point for 4; > 0 or

near the set of the stable node x =0 and two saddles x = +./—4, for 4,
<0.

When u = —/—4, the outer separatrices return back producing ho-
moclinic orbits; when u = \/—_}.1 there are saddle-connections of another
kind: f2(+./—4,) = F /—4, — each separatrix goes to the other saddle-
point and together they form the heteroclinic contour.

This part of the parameter plane is sketched in Fig. 3. The subcritical
loss of stability of the equilibrium takes place on the ordinate axis. The lines
u=0(; >0)and u= - \,/—_ll mark the formation of pairs of homoclinic
orbits and the line u=./—4,; — of the heteroclinic contour. For 4, <0
besides the separatrix going outwards each saddle-point has another one
which goes to the node. Therefore at one side of each of the bifurcation lines
(up from the lower and down from the upper) the destruction of saddle-
connections is accompanied by the death of the periodic state — all
trajectories in the saddle neighbourhood (except its stable manifold) belong
to the basin of the stable node.
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Fig. 3. Formation of saddle<connections near the line of neutral stability

As we move farther into the subcritical zone, we may omit the nonlinear
term in the equation on the slow manifold and we get the more simple
expression for the return mapping

() Xie1 = f(x), f(x)=(a(x|—d)’—p)sign (x)

where v is the saddle ratio of symmetrical saddle-points. This mapping is
defined for |x| > d, where d is the half-distance between the saddle-points.
The interval (—d, d) together with its preimages under (5) corresponds to the
basin of the node (the-trivial attractor). The trajectories never return to the
saddles from this interval and hence the return mapping is not defined here.

On the stability border the saddle ratio is infinite and in the nearby
strip it is greater than 1. The analysis of (5) showed that for v > 1 the
following bifurcations are observed with the growth of pu;

= for p=pu, < —d the double tangent bifurcation occurs producing
two couples (for x <0 and x > 0) of stable and non-stable fixed points of (5)
associated with 1-looped cycles in the phase space:

— for u = —d the stable cycles disappear in the homoclinic bifurcations
and their basins are adjoined to the basin of the node.

The further growth of u leads to the infinite sequence of 3 kinds of
alternating bifurcations. The 1st one is the creation of a stable cycle from the
heteroclinic contour. Two stable cycles bifurcate from this cycle in the 2-d
kind of bifurcation (the same symmetry-breaking as in systems with a single
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saddle-point). At the bifurcation of the 3-d kind these cycles disappear
through the homoclinic bifurcation. The first transformations of attracting
trajectories are sketched in Fig. 4.
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Fig. 4. Transformations of attractors in systems with the node and couple of saddle-points

In the parameter intervals between bifurcations of the lst and the 2-d
kinds there are two attracting states (the node and the stable cycle). Between
the values of the 2-d and the 3-d kinds one sees three attractors (the node
and the couple of stable cycles) with basins separated by the stable manifold
of the non-stable cycle. Between a bifurcation of the 3-d kind and the next
bifurcation of the 1st kind only the trivial state — the node — is attracting.

On this way the length of attracting closed trajectories grows: each new
one arises from a heteroclinic contour, which consists of twice as many turns
as any of the homoclinic orbits ending the previous 3 steps of the sequence:
It should be noted that each 3 steps add a new non-stable cycle to the space.

The convergence law of this sequence differs from the exponential one
(observed in the systems with single saddle equilibrium). Computations have
shown that the progression is formed not by the differences (u,4; —p,) of
consecutive bifurcation values of the same kind but the logarithms of these
differences:

© lim In(fys 1 — o)

n—o ln(ﬂn_l‘l'n— 1) - %(V) >
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(We must note that an analogous relation was obtained in [12] from
numerical analysis of the mapping with two extrema.)

The explicit formulae in case of v = 1 (piecewise-linear mapping) provide
%(1) =2 that is (#p4+1—pn) ~ (U,—M.—1)*> and the sequence of bifurcation
values converges much more rapidly than any geometric progression.

This fast convergence hampers the numerical studying of (5). After few
steps the interval between the bifurcation parameter values becomes too
small to be resolved within the computer precision. The asymptotical converg-
ence law is not established yet and the estimates of the dependence x(v) are
rather crude.

To explain this feature of systems with two saddle-points we consider
the dynamics of RG-transformation. This is the very same transformation
I(f (x)) = aff (x/a) which was used above in the case of single-equilibrium
systems but now it acts on the functions of another kind

(7 f) =(—1-d+a;(x|—d)*+a,(x|—d)*> + .. )sign(x)

defined for |x| = d. The scaling factor a is now determined from

_ fd)+d
fd+d

This recursion law transforms the function into another one with the
“undefinedness interval” multiplied by a. The fixed-point associated with the
single-equilibrium systems refers to the case d = 0. The spectrum analysis in
this situation yields another relevant eigenvalue (in addition to ). It is equal
to a,(v) — the value of the scaling factor (8) in the fixed-point — and is
associated to the perturbations which generate the “undefinedness interval”.
The dynamics proves to be two-parametrous with the distance between the
saddles being the second relevant parameter.

Because of this crossover the fixed-point shows the asymptotic dynamics
only of the systems with zero distance between the saddles (that is with one
saddle). The systems with small but finite distance behave similarly to them
only at first stages of the scenario, but further on the convergence rate
exhibifs unlimited growth.

To evaluate the asymptotical dynamics we shall employ the truncated
RG-analysis, retaining in the expansion (7) only the lowest order terms

©® f(x) = (—1-d+q(x|—d)")sign(x).

(8)

(This truncation becomes asymptotically correct for v —»1))

The RG-transformation generates certain dynamics on the (g, d) plane:
it transforms the function with some initial values of q and d into another
function with (generally) altered g and d. The dynamics is governed by
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recurrent relations

d;

di+1 =__q.-—2di—1’
(10) , .
Giv1 =vqi (q;—2d;—1)""".

If the initial values g, and d, > 0 are chosen on the accumulation line of
the bifurcation curves family then, upon iterating (10) the values of g; and d;
will grow on. In terms of the variables b =g~ ! and u = d~! the transform-
ation (10) becomes

u,-—2b,-—u,-b,-
Uiy =7 p—

bi1+v u; v—-1
bi+1 - v (u,-—Zbi—u,-b,-> '

The point Q (u = b = 0) is the singular fixed point of the transformation
(11). Consider the dynamics in its neighbourhood Q,. For most of the small
perturbations the application of (11) kicks the system out of Q,: the next
value of u will not be small. The systems close to the stable separatrix W, of
Q (i.e. those for which (11) can be performed in Q, many times) must at any
moment satisfy the condition u = 2b. Then it is easy to verify that u;,,
~ul*1 and the systems which belong to W, approach the point Q

(11)

superexponentially: u; = u’(;i where
(12 x=1+1/v.

The systems close to W, move away from it and the law of departure
yields the convergence law of the bifurcation sequences. Let u; = 2b;+ ¢;
where ¢; is small. Having performed (11) one sees that ¢;,; = ¢;/b; — the
decline from the separatrix grows superexponentially;

3) 0, = @o-C"IC, C>1

which gives the relation (6) for the differences between the successive bifurca-
tion values of the parameter.
The same asymptotic law describes the scaling on the attractor. The

characteristic length is here the distance from the saddle ¢, = f2"(d)+d. For
large n we have ¢,,; ~ ¢} that is

(14) &, = (BEo)/B.
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Numerical investigation of bifurcations
Here we present an example — the system of ODE’s which exhibits the
described bifurcations. The equations
X=—-0X+0Y+06DY(Z—-R),
(15) Y=RX-Y-XZ,
Z=XY-bZ

»

were derived in [13] for the description of thermal convection in the
horizontal layer of fluid which is put into the oscillating vertical gravitational
field. Here D (D > 0) is the intensity of vibrational modulation, the par-
ameters o, R and b have the same meaning as in the Lorenz model (which is
Eq. (15) for D = 0).

R ]
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Fig. Sa

The parameter plane D-R consists of three zones (Fig. 5a). In the first of
them the trivial solution X = Y =Z =0 is globally stable, in the second it
becomes the saddle-point with 1-dimensional unstable manifold and in the
third it is stable with respect to infinitesimal perturbations. The border
between the second and the third zones is the line S of inverted bifurcation
where the couple of saddle-points bifurcates from the trivial solution.

Let us fix the traditional values ¢ =10 and b =8/3 and integrate
equations (15) numerically for various R and D. The line R, (D) corresponds
to the formation of the pair of homoclinic orbits of the trivial solution (it
starts from the known point R (0) = 13.926...). For D small the saddle ratio
is less than 1 on Ry(D) (just as in the Lorenz system) and the Lorenz
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scenario evolves (the lower boundary of the region of attracting chaotic
states i1s shown by R, (D)). The value of v on Ry (D) grows with D monotoni-
cally. To the right from the point G v > 1 and we observe the bifurcation
sequence described in the first part of this paper. If one moves along the line
corresponding to some constant value of v then the sequence {R,(v)] of
intersections with the curves of formation of 2"-looped homoclinic orbits
converges asymptotically at a geometric rate. This rate coincides within
numerical accuracy with the value of &(v) obtained for the same v by RG-
analysis. (For more details concerning equations (15) and this bifurcation
sequence see [8] and [13])

The above analysis predicts homoclinic and heteroclinic bifurcations of
the couple of saddle-points near the intersection of R, (D) and the instability
border S of the trivial solution. This region (the rectangle B from Fig. 5a) is
shown in Fig. 5b more distinctly.

0,05 0,06 0,07 0,08 D

Fig. 5b

To the left from S one sees the curves of existence of 2"-looped
homoclinic orbits of the single saddle-point — the lines R, which accumulate
to the line R,. From the points where these lines stick to S couples of
bifurcation curves a, and g, come out to the right marking the formation of
2"-looped homoclinic orbits and 2"* !-looped heteroclinic contour respective-
ly. Moving further to the right we approach the line R,(D) on which the
saddle ratio again becomes equal to 1. Here the curves of 2"*!-looped
homoclinic orbits and 2"*!-looped heteroclinic contours merge and intervals
of existence of non-trivial stable states shrink. To the right of this line
homoclinic orbits never appear whereas the destruction of heteroclinic con-
tours leads to the creation of non-stable closed trajectories. Computations
have shown that in this parameter region trajectories with any initial
conditions are eventually attracted to the stable trivial solution.
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To evaluate the convergence of the bifurcation sequences for fixed v one
can use either the differences between the bifurcation parameter values
(relation (6)) or the spatial characteristics of trajectories (relation (14)). The
results of integration show that these estimates are in accordance with each
other as well as with the data obtained from the numerical examination of
the mapping (5). The following table gives the values

In Ap-1—04,- 3
(16) X, = a,—a,_,
In ap_2—0y-3

ap_1—4a,-;

calculated for various v; we see that they are not too far.from those
predicted by the formula (12).

Table

1
v Ky My Xs Ke 14+-
v

1.000 1.3983 19302 19445  2.0057 2.00000
1.250 1.6598 18740 1.7683  1.7587 1.80000
1.333 1.6691 18663 1.7374  1.7036 1.75000
1.500 1.6702  1.8331 1.6942  1.6203 1.66667
1.750 1.6648 17746  1.6407  1.5404 1.57143
2.000 1.6581 17276  1.5930  1.4858 1.50000

All this demonstrates the important role the saddle equilibria can play
in transition to complicated dynamical states. The universal quantitative
aspects of global dynamics appear to be entirely determined by the local
value which is comparatively easy in computation — the ratio of two
eigenvalues from the linearized problem of the stability of equilibrium.
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