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0. Introduction

The purpose of this paper is to give an up-to-date account of the author’s
efflorts to prove the cancellation law for homotopy equivalence of
representations. Although little progress has been made as compared with
the author’s paper [6], some development and simplification of the methods
has been achieved.

Some results presented in the sequel are due to J. Tornehave or A. G.
Wasserman, some other are probably well known.

Up to the author’s knowledge no counterexample for the cancellation
taw 1s known.

1. Preliminaries

Here we give a brief survey of facts, and definitions which we need.

Two real representations V and W of a finite group G are said to be
stably G-homotopy equivalent iff the spheres S(V®U) and S(WPDU) are G-
homotopy equivalent f[or some representation U of G. V and W are G-
homotopy equivalent if and only if S(V) and S(W) are G-homotopy
equivalent, without the need of introducing stabilizing summand U. We will
usually omit “G™ and write just that V and W are homotopy equivalent or
stably homotopy equivalent.

We say that the cancellation law holds for homotopy equivalence of
representations of G if stable G-homotopy equivalence imples G-homotopy
equivalence.

Now assume that for every subgroup H < G we have chosen an
orientation of S(V)" and S(W)¥ (of course, we assume that if S(V)¥ = S(V)¥
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and S(W)* = S(W)X, then the same orientation is chosen for H and K). It is
well known that an equivariant map f: S(V)— S(W) is a G-homotopy
equivalence if and only if deg f¥ = +1 for every H < G: in particular, a
necessary condition for ¥V and W to be G-homotopy equivalent is that
dim V¥ = dim W¥ for every H < G.

For a given choice of orientations, an equivariant map f: S(V)— S(W)
defines a degree function Deg f, Deg f(H) =deg f". If S(V)? =@, we put
deg /¥ =1, so as to obtain the formula deg(f *g)” = deg /¥ -deg g¥ for the
degree of the join of two equivariant maps.

If ¥ and W satisfy the condition dim V¥ = dim W¥ for every H < G,
then it 1s known that there exists an equivariant map f: S(V)— S(W).
Moreover, if H is an isotropy subgroup of the action of G on S(V) (we
denote the lamily of all isotropy subgroups by ISO (S(V))), then the degrees
deg /* taken over all K > H determine deg f” mod (/N (H)/H|), where N(H)
denotes the normalizer of H. Further, given an arbitrary integer k, ' may be
modified so as to obtain an equivariant map f, such that deg ff = deg /¥
for every K which is not conjugate to a subgroup of H and deg f{ = deg /¥
+k|N (H)/H|. (Of course, there is one natural exception to the freedom in
changing f: if S(V)" = S° then deg f* may be equal only to 1, —1 or 0 and
a modification may consist only in a choice from among the three
possibilities and only in the case where |N(H)/H| =1 or 2) This result
concerning the existence of equivariant maps will be the main tool used in
this paper. For the prool see Tornehave [5], Theorem A.

2. Constructing G-homotopy equivalence when a suitable
degree function is given

Let V' and W satisfy the condition dim V¥ = dim W# f[or every H <G.
Assume that the orientations of fixed point sets are chosen as described in
Tornehave [5], § 1. Let D be a function assigning to every subgroup H of the
group G an integer. In order to be the degree function of an equivariant
map, D must sausfy the following obvious preconditions:

1) if H and H’ are conjugate then D(H) = D(H'),

2) if VB =VH" then D(H) = D(H'),

3) if V¥ =0 then D(H) = 1.
If G-homotopy equivalencies f: S(VpU)— S(W@U) and h: S(U)— S(U)
are given, it is not clear whether Deg f/Deg h satisfies conditions 2) and 3)
(counterexamples are easily provided). However, if this i1s assumed, we are
able to obtain a G-homotopy equivalence denoted by f/h. f/h: S(V)— S(W),
such that Deg f/h = Deg f/Deg h, and thus cancel U.

THEOREM 2.1. Assume thar f: S(VOU)—- S(WeU) and h: S(U) - S(U)
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are G-homotopy equivalences. Assume that Deg f/Deg h satisfies the conditions
2) and 3), ie. deg fH/deg h" = deg /' /deg h* whenever S(V)H = S(V)*" and
deg fH/degh" =1 if V¥ =0.

Then there exists a G-homotopy equivalence ffh: S(V)— S(W) such thar

deg (flg)" = deg f™/deg h"
for every H < G.

Proof. 1t is known that there exists an equivariant map m: S(V)— S(W)
and that it can be modified in the way described in § 1. Let H, be a maximal
element in the set of those subgroups of G for which the equality

deg m¥ = deg f¥/deg h"!

1s not satisfied. We will be done 1if we show that we can modify m so as to
obtain an equivariant map m’ such that

deg m'™° = deg f7°/deg h"®

and degm’® = deg m* for every subgroup K of G which is not conjugate to
any subgroup of H, (because then we can repeat the procedure). To this end,
let us first note that H, is an isotropy subgroup of the action of G on S(V).
This is an immediate consequence of the fact there exists a uniquely
determined isotropy subgroup H such that S(V) = S(V)H0 and the
assumption that Deg f/Deg h satisfies the condition 2). Thus if H were greater
than H,, H, would not be a maximal element, as assumed. To modify m as
required, it is now enough to prove that

degm”™® = deg f7%deg h"° (mod |N (Ho)/Ho|).

Consider the equivariant map mxh: S(VU) - S(W@U). Evidently, for
every subgroup H < G which contains H, as a proper subgroup we have
deg(m= " = deg m" -deg h" = (deg f"/deg h™')-deg h¥ = deg 1.

It follows that deg(m«h)"® = deg f"°(mod |N(H,)/H,|). because the degrees
deg (m * h)¥ determine deg(m+h)"® modulo N(H,)/H, and they are the same

as for the map f But deg(mh)"® = deg m"°-degh"°, and so we have

degm’® = deg f7°/deg h'° (mod |N(H)/Hyl),

as required. This completes the proof of Theorem 2.1.
We will now list some immediate consequences of Theorem 2.1.
COROLLARY 2.2. Assume that f: S(VOU) - S(WBU) is a G-homotopy
equivalence and thar 1SO(S(V®U)) = ISO(S(V)). Then there exists a G-

homotopy equivalence g: S(V)— S(W) such that deg g" = deg f* for every
H<G.

Proof. First observe that S(VOU)! = S(V@U)" if and only if S(V)#
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= S(V¥. It is clear that S(V)" = @ implies S(VU)* = @, otherwise the
isotropy subgroups of the points belonging to S(V@U)" would belong to
ISO(S(Ve@U)), without belonging to ISO(S(V)). If S(V)* = @ then there
exists a uniquely determined smallesl subgroup Hye ISO(S(V)) containing H
and it is known that S(V)# = S(V)"®-H, is then the greatest subgroup of G
having the same fixed points as H. Of course, H,, is also the smallest isotropy
subgroup containing H'. Since ISO(S(V@U))=1SO(S(V)), H, is also the
smallest subgroup in ISO(S(V(—BU)) containing H and H'. It follows that
S(VeUM = S(VOU)' = S(V@U)". Thus we have proved S(V)F = S(V)*
yields S(V@U)T = S(V@U)"'; the opposite implication is trivial.

Let h:=1d: S(U)— S(U). Clearly, Degf/Degh satisfies the condition 3),
since S(V) =@ impliess S(VOU)" =@, whence degff =1 and
deg fH/degh® = 1.

The condition 2) is obtained as an immediate consequence of the [act
that V¥ = V¥ implies (V@ U)! = (V@ U)*'. By Theorem 2.1 there exists a G-
homotopy equivalence ¢g: S(V)— S(W) with degree function Deg f/Deg h: in
other words, degg” = degj" for every H < G.

CororLLary 2.3 (due to A. G. Wasserman). If V and W are stably
homotopy equivalent, then 2V and 2W are homotopy equivalent.

Proof. Let fy: S(V@U)— S(WPU) be a G-homotopy equivalence. Then
fi=Jfoxfo: SVRU)xS(VOU) =S(2(VaU))
S(WeU)xS(WaU) = S2(Wa U))

is a G-homotopy equivalence with a constant degree function Deg f = 1.
Now we apply Theorem 2.1 to 2V, 2W and 2U taking

h:=1d: S(2U)— S(2U).

CorovrLary 2.4. Assume that V and W are stably homotopy equivalent and
Ck+ 1)V and (2k+1D)W are homotopy equivalent. Then V and W are
homotopy equivalent.

Proof. By Corollary 2.3 2kV and 2kW are homotopy equivalent. Let
U:=2k(Ve®W). Then V®OU and W®U are homotopy equivalent (because
VU = 2k+ 1) VE2kW, WU = (2k+ 1) W®2kV and the summands on the
right are pairwise homotopy equivalent). Since ISO(S(V)) = ISO(S(VOU)),
we may apply Corollary 2.2.

CoRroLLARY 2.5. Assume that C < Z(G), where C is a cyclic group of

prime order = 3. Let f: S(VRU)— S(WDU) be a G-homotopy equivalence.
Assume that V€ = U = 0.

Then there exists a G-homotopy equivalence ¢: S(V)— S(W) such that
deg [ = degg” for every H <G.

For the proof we will need the following [lact.
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LEmMMa 2.6. Assume that C < Z(G), where C is a cyclic group of prime
order p=3. Let f: S(V)— S(W) be a G-homotopy equivalence. Assume that
VS = 0. Then the degree function Deg f is uniquely determined.

Proof. This fact is well-known; it is a simple consequence of the result
mentioned in § 1. Obviously, for every subgroup H < G, V¥ and W¥ are
representations of C and f¥ is a C-homotopy equivalence. Thus deg f# is
determined modulo |[C| by deg f*"~° and this is equal to 1, because V-
=0. But deg /¥ may only equal 1 or —1, so it is in fact uniquely
determined, because the difference between these two values is smaller
than |C]. '

Proof of Corollary 2.5. We will use induction on the order of G. Assume
that there exists any G-homotopy equivalence ¢: S(V)— S(W). Then
g xid: S(VeU)— S(WaU) is also a G-homotopy equivalence. By the above
lemma, Deg f = Degg *id, whence Deg f = Degyg. Let h:=1id: S(U) - S(U).
We want to show that Deg f/Deg h = Deg f satisfies the conditions 2) and 3)
of §2. The implication V¥ =0=degf¥ =1 is clear: f¥ is a self-C-
homotopy equivalence of U and we apply Lemma 2.6. Il G = C, the
condition 3) is trnivially satisfied, and by Theorem 2.1 there exists g with
required properties. Assume that the corollary is true for groups of order less
than |G|. Let H and H' be subgroups of G such that V¥ = W#'. We have to
show that deg f# =deg f#'. It is enough to consider the case H < H’,
because there exists an isotropy subgroup H, of the action of G on S(V}
containing both H and H' and such that V¥ = V"0 = V¥ If (H'UC) is a
proper subgroup of G, then by the inductive assumption there exists a
(H' U C»-homotopy equivalence and, so noted at the beginning of the proof,
its degree function must be equal to Degf restricted to subgroups of
(H'" U CY; in particular, we have deg /" = deg f"".

Now assume that (H U C) = G. We may assume that V and W is a
minimal homotopy equivalent pair, i.e. ¥ and W cannot be written as
Viev,, Wi®W,, where V; and W, are homotopy equivalent (if this were
the case, we might decompose V and W into sums V,@®...®V, and
Wo®...0W, obtain homotopy equivalences ¢,,...,g, and take g
‘=g, *...%¢,). Then V and W ([actorize into representations of G/H  and
hence they are homotopy equivalent by the inductive assumption. It remains
to apply Theorem 2.1.

CoOROLLARY 2.7. Assume that G contains a normal cyclic subgroup C of
odd order such that C;(C) is contained in a certain normal subgroup H < G of
odd index in G. Assume that the cancellation law holds for H. If V and W are
stably homotopy equivalent and satisfy the condition V€ = W€ =0, then V and
W are homotopy equivalent.

Proof. An easy application of the Mackey irreducibility criterion shows
that ¥V and W are induced [rom H. Consequently ind%res, V =(G:H)V,

19 .- Buanach Center Publications
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ind$ resy W = (G:H) W. By the assumption on H, resy V and resy W are H-
homotopy equivalent. But it is known that the representations induced from
homotopy equivalent representations are homotopy equivalent: thus (G:H) V
and (G:H) W arc G-homotopy equivalent and (G:H) is an odd number, and
we can apply Corollary 2.4.

3. The case of groups containing a normal p-torus

It i1s obvious that if ¥ and W are stably G-homotopy equivalent then, for
every subgroup H < G, V¥ and W are stably N(H)-homotopy equivalent
representations of N (H). It follows that ind¥,, V" and ind§,, WY are slably
homotopy equivalent (representations induced [rom homotopy equivalent
representations are homotopy equivalent, see tom Dieck [1] p. 251). If,
moreover, the induced representations are irreducible then they are
subrepresentations of V and W, as follows from the Frobenius reciprocity
law. This works particularly neatly in the situation described in the following
theorem.

THEOREM 3.1 Let V and W he stably homotopy equivalent representations
of a group G such that V¥ =W" =0 for H<G, H# 1. Assume thar G
contains a non-trivial normal p-torus P =(Z,)", n =2 2. Then there exists u
subgroup P’ of index p in P such thai V" £ 0 and for every such subgroup
ind%p, VP and ind$p, WY are siahly homotopy equivalent subrepreseniations
of 'V and W. If, moreover, the cancellation law holds for N (P')..then ind§p, V"
and ind§p, WY are homotopy equivalent subrepresentations of V and W.

The proof amounts to checking that the representation induced from
any irreducible subrepresentation of the representation V¥ of the egroup
N(P’) 1s an irreducible representation ol C. For details see the author’s

paper [7].

4. On changing the stabilizing summand

In an attempt to prove the cancellation law inductively for some group
classes closed under the operations of taking subgroups and quotient groups
it has appeared convenient to reduce the inductive step to the case of stably
homotopy equivalent representations V and W such that V¥ = wH =0 for
every HQG, H#1 (V, WeRO(G, f) in the notation used by tom Dieck
[17: the character f indicates that V and W are the sums of faithful
irreducible representations). The reduction is easy and well known (cf
Traczyk [7]): If V¥, WH 20 for H < G, H # 1, then V¥ and W are stably
homotopy equivalent representations ol the quotient group G/H and the
inductive assumption (induction is on the order of the group) guarantees the
cancellation law for G/H. It is clear that V,; and Wy (the orthogonal
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complements of V¥ and W¥) are also stably homotopy equivalent; for if
VAU and WQU are homotopy equivalent then VU ®@WH and WoU@VH
are homotopy equivalent. But VOU®WY = Vy@(V¥FeWwHi@U) and
WoUe V! = Wye(VP@W"@U), the summands in brackets being equal.
We may repeat the procedure until fixed point subspaces of all normal
subgroups are split off.

It is not so clear if the adherence to RO(G, f) may be also imposed on
the stabilizing summand U. If U =U", H <G, H# 1, one can try to use
Theorem 2.1 to cancel U. It seems to be a natural choice for h: S(U) — S(U)
to take h:=f" (where [: S(VOU)—-S(W®U) is a G-homotopy
equivalence). But it is not clear if the function Deg f/Degh satisfies the
necessary conditions. To avoid this obstacle we will prove the following

TuroreM 4.1, Let V and W be stubly homotopy equivalent representations
of a finite solvable group G. Assume that V¥ = W =0 for every H <G,
H # 1. Then there exists a representation Y such that V®Y and WBY are
homotopy equivalent and Y* =0 for every H<G, H # 1.

Proof. Let H,, ..., H, be the set of all minimal normal subgroups of G.
It is enough to find a stabilizing summand Y such that Y™ =0 for each i.

We will use induction on the order of G. It is clear that the theorem is
true for abelian groups, because the cancellation law holds for abelian groups
(Kawakubo [3], Theorem 2.5). The group {H,. ..., H,) is abelian. It {ollows
that cither there is a p-torus p =(Z,)", n > 2, contained in it. or it is cyclic,
Assume the first possibility. We will make an inductive step, using a shghtly
different but obviously equivalent version of the theorem:

Suppose that V and W are stably homoropy equivalent representations of
G. Then there exists a representation Y such thar VY and WDY are
homotopy equivalent and that Y? +# 0 only for those normal subgroups of
G (possibly for which V1 0.

Now assume that the theorem ts true for all groups ol order less than
|G|. We may restrict ourselves to the case where V and W are a minimal pair
of stably homotopy equivalent representations of G; we may also assume
that V# = WH =0 for every H<G, H # 1. Then by Theorem 3.1 there
exists a subgroup P’ < P of index p in P such that V =ind§,p, V¥, W
= ind§p, W" and V¥, W are stably homotopy equivalent representations
of N(P'). Of course, N(P') # G, because V was assumed to have no fixed
points with respect to non-trivial normal subgroups of ¢ and P’ is a non-
trivial subgroup.

By the inductvie assumption applied to the group N (P’) there exists a
representation Y, of N(P') such that V7 @®Y, and WP @Y, are N(P)-
homotopy equivalent and that Yf! # 0 only for those normal subgroups of
N (P') (possibly) for which (V) # 0. In particular, Y," = 0, (of course, H, is
a normal subgroup of N(F’); this is normal in the whole G and it is
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contained in N(P’), because is commutes with P’). It follows that
ind§ p, (VT ®Y,) and indyp) (WP @Y,) are G-homotopy equivalent: hence
V®Y and W®Y are homotopy equivalent, where Y :=ind%p, Yo. But it is
clear that Y" =0 for i=1,...,n, and this completes the inductive step.

5. The cancellation law for supersolvable groups
and for products of a 2-group and an odd order group

We now show some applications of the methods described in the preceding
sections. First we give a proof of the cancellation law for supersolvable
groups. This result (due to J. Tornehave), although known to specialists, has
not been published yet.

TueoreM S5.1. The cancellation law holds for homotopy equivalence of
representations of supersolvable yroups.

Proof. We use induction on the order of G. To begin with, recall that the
cancellation law holds for abelian groups. According to § 4, it is enough to
consider stably homotopy equivalent representations V' and W of a non-
abelian group G such that V¥ =W" =0 for every H<QG, H# 1. We
assume that the cancellation law holds for all proper subgroups of G. It 1s
well known that there exists a normal abelian subgroup A < G such that
C;(A)=A. If A is not cyclic then G contains a non-trivial normal p-torus,
and V and W are G-homotopy equivalent by Theorem 3.1.

IT A is cyclic then G is an extension of the form | - A —- G - G/A4 - 1,
wherc G/A4 acts effectively on 4 (here we use the condition C;(A4) = A). Let
U be a representation of G such that VU and WU arec homotopy
equivalent. By Theorem 4.1 U may be chosen so that U” =0 for every
H <G, H # 1. We shall show that il K is a subgroup of G such that no
normal non-trivial subgroup ol G is contained in K, then KeISO(S(V)). An
easy consequence of the Mackey irreducibility criterion is that every faithful
irreducible complex representation of G is induced [rom A. It follows that if
X 1s an irreducible subrepresentation ol V then either X or 2X is induced
from A. In both cases it is clear that K e ISO(S(X)), whence K eISO(S(V)).
Consequently ISO(S(V)) =1SO(S(V®U)) and U can be cancelled, by
Corollary 2.2.

Remark. Let us consider the class of such solvable groups G for which
therc cxists a normal subgroup N with abelian Sylow subgroups such that
G/N is supersolvable. Of course, all subgroups and quotient groups of G also
belong to this class. It can be shown that every group G in this class has the
property that was crucial for our proof for supersolvable groups, namely,
there is a normal abehan subgroup A < G such that C;(A4) = A. It follows
that the cancellation law holds for all such groups G (this result is also due
to J. Tornehave).
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The lollowing theorem is.an improvement of the result of the author’s
paper [6] in which 1t was shown that the cancellation law holds for odd
order groups.

THEOREM 5.2, Let G be a product of a 2-group and an odd order group.
Then the cancellation law holds for homotopy equivalence representations of G.

Proof. As usual we restrict ourselves to the case where ¥ and W are a
minimal pair of stably homotopy equivalent representations of G and V¥
=WH" =0 for every H <G, H # 1. We already know that the cancellation
law is true for abelian groups and 2-groups and we assume it is true for
groups of order less than |G|.

Let us first consider the case when G contains a cyclic normal subgroup
C of odd prime order. _

If Cis central in G, we may apply Corollary 2.5 and infer that ¥V and W
are homotopy equivalent.

Il C is not central in G, then C;(C) is a normal subgroup of odd index
in G (because C commutes with Sy/,(G)). and we may apply Corollary 2.7.

Now assume that G contains a non-trivial normal p-torus P =(Z))",
n>=2 Then we may apply Theorem 4.1. This completes the proof.
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