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1. Introduction

Numerical calculations have had an important role in controlled fusion
research since its beginning in the early 1950’s, but the application of
ccmputers to plasma physics has advanced rapidly in the last few years.
One reason for this is the increasing sophistication of the mathematical
models of plasma behavior, and another is the increased speed and memory
of the computers which made it reasonable to consider numerical simu-
lation of plasmas.

The behavior of a plasma confined by a magnetic field is simulated
by a variety of numerical models. Some models used for short times
give detailed knowledge of the plasma on a microscopic scale, while other
models used for much longer times compute macroscopic properties of
the plasma dynamics. All of these models are under continual developinent,
and in the next few years there will be a substantial increase in the use
of numerical models in order to meet the needs of the fusion power program.

Prior to 1973, research in computational plasma physics primarily
consisted of calculations with particle codes nsed to simulate collisionless
plasmas. The primary emphasis of these studies is to contribute to the
understanding of plasma theory, particularly velocity space instabilities
and wave-particle interactions. In order to simulate fusion devices com-
putational plagsma physicists are now developing many new macroscopic
codes. Equilibrium, magnetohydrodynamic, and Tokamak transport codes
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have already given much insight into the understanding of experimental
results, and have aided in the design of future reactors.

For the purpose of discussing the physical models, and also the nu-
merical methods, it is convenient to consider the following categories
of computer codes used to model the physics of fusion devices.

1. Time-dependent magnetohydrodynamics.

Plasma, transport in a magnetic field,
MHD and guiding-center equilibria.
MHD stability of confinement systems.
Vlasov and particle models.
Multi-species Fokker—-Planck codes.

. Hybrid codes.

In a short paper it is impossible to review all of the above topics,
so a brief description will be given of two of the categories, followed by
some examples,

1.1. Time-dependent magnetohydrodynamies. Detailed comparison of
experimental data from pulsed high-beta devices with theory, taking
due account of experimental complications depends on the application
of 2-D and 3-D (two- and three-dimensional) versions of codes analogous
to the 1-D Hain-Roberts code [1]. Most of the physical phenomena
important here lie in the fast MHD time scale (nanoseconds to micro-
seconds). For tokamalk configurations, the corresponding effects occur
on longer time secales-milliseconds; however, the questions of stability
of Tokamak discharges toward MHD modes are very important. One
example of great interest is the study of the early stages of a Tokamak
discharge and the formation and destruction of magnetic surfaces. Here
also the relevant times are on the fast MHD time scale.

The article by Roberts and Potter [2] gives a good review of the
role of MHD computations and discusses methods for the solution of
time-dependent problems. I have also written a review article for In-
formation Processing 71 which congiders both time-dependent and time-
independent [3] problems. Recent research in this area is described in
three review papers ([4], [6], and [6]).

There are a great variety of MHD codes being developed. Within
the fluid theory various degrees of complexity are congidered. The so-called
ideal MHD is an infinite conductivity approximation. The more realistic
models include the transport coefficients, e.g., thermal conductivity and
electrical resistivity, and these can be secalars or temsors ([1], [7]). Two-
dimensional codes are now fairly standard and there are several three-
dimensional codes. In some cases perturbation theory is used and the
equations are then linearized and IFourier analyzed in one or two coor-
dinates.
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The choice of coordinate system varies among these codes. A fixed
Eulerian grid is the usual choice, but Lagrangian descriptions, particularly
using magnetic flux surfaces as coordinate surfaces [5], are proving useful
in certain problems as are particle-in-cell methods [8]. In the work of
Brackbill [4] a moving grid is used which is not a Lagrangian grid.

A variety of difference schemes are being used, ranging from fully
explicit using a Lax~Wendroff or a leap-frog scheme, to implicit methods
employing the ADI scheme or “splitting” (the method of fractional time
steps). In a later section of this paper we shall describe the application
of implicit difference methods to problems in resistive magnetohydro-
dynamics.

1.2, Multi-species Fokker-Planck codes. In the simulation of magneti-
cally confined plasmas where the ions are mot Maxwellian and where
a knowledge of the distribution functions is important, kinctic equations
must be solved. At numnber densities and energies typical of mirror ma-
chines, the end losses are due primarily to the scattering of charged partic-
les into the loss cones in velocity space Ly classical Coulomb collisions. The
kinetic equation describing this process is the Boltzmann equation with
Fokker—Planck collision terms [9]. The use of this equation is not restricted
to mirror gystems. The heating of plasmas by energetic neutral beams,
the thermalization of «-particles in DT plasmas, the study of runaway
electrons and ions in Tokamaks, and the performance of two-energy
component fusion reactors are other examples where the solution of the
Fokker—Planck equation is required [10].

The problem is to solve a nonlinear partial differential equation for
the distribution function of each charged species in the plasma, as functions
of seven independent variables (three spatial coordinates, three velocity
coordinates, and time). Such an equation, even for a single species, exceeds
the capability of any present computer so several simplifying assumptions
are therefore required to treat the problem. In the final section of this
paper we shall discuss the solution to the Fokker-Planck equations in
a two-dimensional velocity space and the coupling to a spatially depend-
ent Tokamak transport code.

Resistive magnetohydrodynamics

In order to achieve the high densities and temperatures required for
a successful fusion reactor, a plasma musi be confined by a magnetic
field for a sufficiently long time. In the attempts to achieve this confine-
ment, the problem of stability has ewnerged as one of the most im-
portant. The most dangerous types of instabilities are the magneto-
hydrodynamie (MHD) instabilities in which the plasma is assumed to
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behave as a conducting fluid and the instabilities involve displacement
of macroscopic portions of the plasma. It is a particular MHD instability,
the resistive instability which is considered in this paper.

Resistivity can destroy the stabilization achieved by the shearing
of the lines of force. In the case of a magnetic field which has shear or
which changes direction, the magnetic energy can be reduced by allowing
the fields to mix and annihbilate. This is prevented by a perfectly con-
ducting plasma, but with finite conductivity an instabilify can develop
in which the magnetic lines of force are torn into “islands”. This type
of resistive instability is known as a resistive tearing mode [11].

There are thrce types of resistive modes: (1) the rippling mode,
which is driven by a gradient in the resistivity and is usually not import-
ant when large temperature gradients are unlikely; (2) the gravitational
mode (g-mode) which is the resistive equivalent of the interchange in-
stability and is important in sheared systems; and (3) the tearing mode,
which is the resistive equivalent of the kink mode and involves dis-
placement of the whole plasma.

The modes grow on a time scale intermediate between the resistive
diffusion time 7, = 4ma?/nc* and the hydromagnetic transit time g
= a(4mp)' B! where a is a characteristic dimension of the plasma layer,
7 18 the resistivity, p is the mass density of the plasma, B is the magnctic
field, and c¢ is the speed of light.

The resistive instability of an incompressible plasma was first sys-
tematically investigated by Furth, Killeen, and Rosenbluth [11]. They
used the plane slab model, in which the equilibrium depends only on y,
the magnetic field is &BTO+EBZD, and 30 = 0. In that paper perturbations
of the form f,(y)exp[i(k, 2+ k,2)--wt] are assumed, and the problem
i3 to solve an eigenvalue prcblem for w, the growth rate of instability.
In order to solve the problem the plasma is divided into two regions,
& narrow inner region about the plane for which the wave vector is per-

pendicular to the zero-order magnetic field (Ic-ﬁﬂ = 0) and an outer
region where the infinite conductivity equations hold. By matching the
solutions within the resistive layer to the outer ideal MHD solutions,
FKR found resistive tearing modes with growth rates, p = wry, pro-
portional to 8%, where 8§ = 7,/7y.

Due to the many possible equilibrinm configurations and the many
approximations necessary to make the problem analytically tractable,
it is usually not possible to analytically describe the general parameter
dependence of the growth rates. In order to obtain results for specific
and wide choices of equilibrium magnetic fields and boundary conditions,

numerical models have been developed to study these resistive insta-
bilities.
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In this paper we assume an arbitrary time-dependence and the problem
becomes an initial-value problem. Two regions are not used, i.e., the
same equations hold throughout the plasma. The initial-value problem
is then solved numerically. This method of solution was developed ([12])
for the linear model simultaneously with the analytic technique and is
described in [13]. The initial-value codes, RIPPLE, use the same basic
equations and assumptions as FKR and are capable of finding tearing,
rippling, and gravitational modes as well as mixed modes.

In order to consider more realistic equilibrium magnetic fields, a cyl-
indrical model, RIPPLE IV, was dcveloped {[131), which also used the
cquations of incompressible mmagnetohydrodynamics. This model has been
cxtensively applied to the study of tearing modes in reversed field pinch
([14]-[18]), and tokamak ([18]) equilibria. Dibiase developed a new
cylindrical model ([18], [19]) which includes the effects of compressibility,
viscosity, and thermal conduetivity along with finite resistivity. This
model has also been applied to the RFP ([15]-[20]).

Reeently there has been interest in the effect of equilibrium flow
on the tearing mode {[21]-[22]). We have developed a new linecar initial-
value code, RIPPLE V ([22]), to study this problem. For this work
we have gone back to the plane slab model using the incompressible
MID equations.

We have also applied the linear slah model to the double tearing
mode ([24]). In this case there are two neighboring singular surfaces, i.e.,

surfaces for which %-B, = 0. If these surfaces lie close to one another,
the modes at each singular surface may interact leading to an enhanced
growth rate,

In all of the above linear models the initial-value problems solved

are one-dimensional, i.e., the zero-order fields are given by By(y) or By(r)
and the perturbed variables take the form

fuly, expli(kyz+k,2)] or filr,t)exp[i(mb+k,2)].

In many toroidal confinement devices it i3 mot possible to specify the
equilibrium fields as functions of onme variable, In tckamaks and other
axisymmetric toroidal devices the zero-order field can be specified by

-130(1', z). To study tearing modes in such ccnfigurations we have devel-
oped a new two-dimensional, linear code, RIPPLE VI, ([23]) in which the
perturbations are of the form f;(r, 2, ¢)exp[ing], » = 1. We use the
incompressible MHD equations to derive a set of eight coupled linear
partial differential equations. For the case, # = 0, we have developed
a 21 axisymmetric linear code (ALIMO), which makes use of field and
velocity stream functions, resulting in a system of four equations.
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The above linear models are discussed in more detail in Section 2.1
of this paper. These codes are used for extensive parameter studies of
prospective equilibria. Stable and unstable regions of wave number space,
growth rates of exponentially growing modes and their mode structure
are calculated. In order to study the longtime, large amplitude behavior
of these modes, and to simulate experimental devices in controlled fusion
research, the non-linear fluid equations must be solved. In general, such
a calculation requires the simultaneous advancement in time of cight
non-linear partial differential equations in several spatial dimensions.

As discussed above, one of the effects of non-vanishing registivity
is the occurance of unstable modes which have no counterpart in ideal
MHD theory ([11]). These resistive instabilities grow on time scales
which can be long relative to the fastest time scales of the system, leading
to severe computational problems. Recently, the evolution and interac-
tion of these modes in tokamalks has been successfully and extensively
studied ([25]-[29]) by assuming an ordering that eliminates the fastest
time scales from the problem and results in & reduced set of equations
for the scalar flux and stream functions ([30]). This allows the calculation
to proceed rapidly for the large values of S, the magnetic Reynolds num-
ber, typical of tokamak discharges., However, certain effects, such as
those due to finite plasma pressure, are exluded. These effects can be
important in controlled fusion devices, such as Reversed Field Pinches
and High Beta Tokamaks.

In Section 3 we describe a two-dimensional, non-linear, resigtive
MHD model ([31], [32]) which retaing all the normal modes of the system.
It is genecral in that the equations are cast in orthogonal curvilinear
coordinates, making caleulations in a variety of coordinate systems possible.
For certain cases, the model employs a transformation to helical coor-
dinates which allows the solution of the three-dimensional equations under
the assumption that helical symmetry is preserved. We present the ma-
thematical model in which the relevant squations are expressed as a set
of consgervation laws. Computational techniques for the solution of these
equations are discussed. The boundary conditions, including the import-
ant case of singular boundaries, are considered. Examples of the non-
linear evolution of tearing modes ([33]) and resistive g-modes ([34]) for
the Reversed Field Pinch are puablished.

2. Linear calculations

2.1. Basic equations and assumptions. We agsume that the hydro-
magnetic approximation is valid, and the ion pressure and inertia terms
are neglceted in Ohm’s law. An isotropic resistivity is assumed, the fluid
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is assumed to be incompressible, and perturbations in resistivity result
only from convection. The basic equations are:

-—

(2.1) —— = curl(v XB)—curl{-—— curlB
ot 4 ’
2.2) divB =0, dive =0,
d; 1 - -
2.3 1lo—-| = curl{—
(2.3) cur (9 dt) cml(dﬁc curl B XB),
(2.4) P 5y =o0
. P n = 0.

In equations (2.1)—(2.3) we consider E = 1?.,—}-1;’: and v = '5;4—-51, where

B, and '13:, are given and the subscript 1 denotes perturbed quantities.
We obtain, to first order, the following set of linearized equations:

(2.5) —a—tl = curl(v, x B, +v; X B;) — yrs curl(n,curl B, 5- n,curl By),
(2.6) divB, =0, dive, =0,

o, - 1 > o
(2.7)  pecurl T +(vy- Vv, | = —4;0111'1 [(Be- V)B;+(B,-F)B,].

2.2, Effect of equilibrium flow on the tearing mode. The resistive
tearing instability of an incompressible plasma is investigated for the
plane sheet pinch in which the equilibrium magnetic field, :E:Bza—k%BzD,
depends only on y. The effect of a non-zero v, is studied. For a symmetrioc
magnetic equilibrium and modes o = a{k}+%k})'* <1 an exponential
growth develops. The growth rate, p = wry, is computed as a function
of u and 8§ = tp/ry, for several values of v,. The effect is to reduce p
for all a, and to reducc the marginal « for instability for values of v, of
the order of the resistive diffusion velocity. For asymmetric tearing,
the effect of the diffusion velocity depends on its sign. The velocity may
have either a stabilizing or destabilizing influence on both the growth
rates and the critical a for instability ([22]).

From equations (2.5)-(2.7), a pair of equations can be separated
which involve only B, and », . The remaining quantities are not needed
for the analysis of tearing modes. We define the following parameters
o = ka, k = (B2+ k%)% v = v,Tx/a where %o = yv,. We now define the
dimensionless variables, u =v/a, T = l/1p, v = BullB, w = —ivy, kg,

o " and define F = (1/kB)(k B, +k,B,). We

=1 6=
= @

7 — Banach Center t, XIII
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have

(2.8) » - [Z:’ —aty| ~Fw— 2t e,

29) o[ 28 wn| = — [ o]+
+F[g:§ _azT,,] _prry,

A difference equation corresponding to (2.8) is obtained by a Crank-
Nicholson scheme. Equation (2.9) is differenced as follows:

1
(210) M [( 52W);1+1 — a2w}‘+1 — ((SE‘W);L 4 ('12?,0;-7']
kY
o (B (ST +
1’ i’ E7) n
+ 4824” (w;‘z-:-ll - w;'L——}-ll 'I"w;n+1 _"w;‘m—l) - %Fj ("Pj ot ¥y )+

+ 315 [(E )t — a2yt - (8 ) — eyl ]

The symbol (6°y)} denotes the usual second divided difference of y
at the point (jdu, ndr), while (6°w)} denotes the third divided difference
of w which is correct to second order and is spread over four mesh widths.
We can use ecither free space or conducting wall boundary conditions
on » and w ([22]).

The implicit nature of the difference scheme involves solving a large
linear system of equations at each time step. This system can be expressed
as Mamt' = 2", where u*t! = (..., with wit, ...) and 2" contains the
known values %}, w}. Since none of the coefficients in (2.8) and (2.9}
vary in time, neither does 3. At the start of each run after M is generated,
it is decomposed via Gaussian elimination into a product of a lower and
an upper triangular matrix, M = LU. The matrices LU are stored over
M, and at each time step we necd only solve two triangular systems by
back substitution.

2.3. Cylindrical models. The linear model given by equations (2.5)—(2.7)
can be applied in cylindrical geometry in order to study specific diffuse
pinch configurations. The equilibrium is given by By(r) = éBoD (r) +
—I—éB,D(’r), v, = 0, and 5, = n,(r). These functions are chosen to describe
a particular experiment, and the stabilizing effect of the location of the

conducting walls (&2,) with reference to the singular surface can be de-
termined.



NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS IN PLASMA PHYSICS 99

We assume perturbations of the form f,(r, t)exp[¢(mb+-%,2)]. We
can find a consistent system of four equations involving the components
B, ; Bo,y vy, %, and an equation for 5,. These equations are solved by
an initial-value code, RIPPLE IV, using numerical methods analogous
to those of the previous sections.  _

This code has been applied to the study of tearing modes in reversed
field pinch equilibria ([14], [18]). An analytic example of such an equi-
librium is the Bessel Function Model (BFM) given by By = J,(r) and
B, = Jo(r). The effects of viscosity and compressibility on these modes
can also be studied with the cylindrical code, RESTAB ([19]).

2.4. Toroidal model, n = 0. In axisymmetric toroidal devices, such
ag tokamaks with non-circular minor cross-section, the zero-order fields
can be specified by

(2.11) B, = 1B, (r, 2) + @B, (r, 2) + 2B, (r, ).

To study tearing modes in such configurations we have developed a linear
code, RIPPLE VI, in which the perturbations are of the form f,(#, 2, #) X
X exp[ine]. R

In equations (2.5)-(2.7), we consider the case where v, = 0, 4, = 0,
and 5, = constant. Equations (2.5) and (2.6) then yield four equations
for BY, Bf , By, B; where the superscripts denote the real and imaginary

parts of the complex perturbations. The equation for Bﬁi is typical

6Bf ook 2, ool

1 __ _77_0 Ry _i_ A § 21 _

(212) —% = 22 L(BR) By~ — By, o+ By
Bey n_ B
o 1 oz %

where

I 1 0 [ ou 72 . 0% u
(2:13) W= %] 7" o

As in previous sections we take the curl of equation (2.7) and use equation
(2.6) to obtain

a V> 1 - - - -
(2.14) ~0 (V) = z;curlcurl [(By*V)B,+ (B, V)B,].
Equation (2.14) yields four equations for fvfl, /ufl, fuf:, 'ugl. The eight equa-
tions can be summarized in the following

8B}
i — f,(BE, BE, X, ol 0]),

at Tl’ Zl’ Tl’ 21’ "1

(2.152)
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6BR

(2.16a)

__f2 21’ Tl’ 217 fuzl)

BE, BL, BX, B),

r11 ZI’

R R
8 o 2 Equ{‘l’ U 2 6’021]
(2.17a) E{[L(%H— . e = fal

(2180 2 (L] = (B, B, BE, BL).

The operator L is defined in equation (2.13) and the functions f; are
functions of the first-order variables indicated and their derivatives, as
well as functions of the zero-order variables (not shown). Additional
equations (2.15b)-(2.18b) for the imaginary components are similar to
(2.15a)—(2.18a). Equations (2.17) and (2.18) are non-standard in form
and f;, f, involve derivatives up to third order in ¢ and =.

The initial-value problem given by equations (2.15)—(2.18) is solved by
implicit finite-difference methods as in previous sections. In the (5, = con-
stant) case that we are considering, equation (2.16ab) does not contain
B,,, s0 we first solve for BJ, B implicitly using v%, v;%, v; from the
preceding time step. We then solve equation (2.15ab) in a su:m_laJr manner
but using the new B, . The velocity equations (2.17ab) and (2.18ab)
arc then solved separately implicitly using time-centered difference
equations, analogous to (2.10), making use of the predicted B, , le already
computed from (2.15ab) and (2.16ab). Since the cight equations are solved
separately, we provide for a correction cycle using the new velocities
n (2.15ab) and (2.16ab) and then the corrected fields in (2.17ab) and
(2.18ab). The correction cycle can then be iterated to satisfy a conver-
gence criterion. In praetice the correction cycles have not been needed.

The code, RIPPLE VI, has been tested using the one-dimensional

equilibria, Bg(r), described in the preceding section. The equilibria tested
were the Bessel F'unction Model, the Pitch and Pregsure Model ([35]),
and the Peaked Tokamak Model ([36]). Tearing mode parameter studies
of these models have been run ([4], [8]) with the RIPPLE IV code and
good agreement was obtained with carlier results.

2.5. Toroidal model, n = 0. The axisymmetric lincar MIHD code,
ALIMO, treats the special case n = 0, i.e. where the perturbations are
of the form f;(r, 2, ¢). It is convenient to express the zero-order fields as

e . 1 dy, 1 By,
2.19 By(r =7r|—-— B
{ ) oft 2) 7( ” az)'l"(P o T (,r a,')
where B, and y, are given, and v, is the usual poloidal flux function.
In equations (2.5)-(2.7) we consider the case where v, = 0, n, =0, but
7o 18 not necessarily constant, The field and velocity perturbations are
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expressed by

2.20 B t =% — ——

(2.20) 1{7y 2, 1) v( - az)“’B""l*z(r 67‘)
- . 1 dp - {1 dp

2.21 Y N=rl—"" ik

(2.21) 1(7) 2, 1) ?‘( . az)+¢vq,1+2(r az)

where v, ¢ are the perturbed poloidal flux function and velocity stream
function, respectively. Equations (2.5)~(2.7) yield the following

(2.29) X _ Mo gx, 1 [0% %p O Oy
oz or or oz’

—6? 411:
25 o :“‘1“[ a (% (q‘B"l)+ a ( 9B, ]_
| ar \r  or 2z \19 5z

1 I:a"/’n 61’9’1 Gy av?’] dpy Ve + aBWo op (aB?o B‘Po) a‘P]
w - ’

r | éz or or oz oz 7 oz or or " g2
(2.24) oy —_ 1 [_ By, By, n dyp, 0By, B oy, Be, N
at dmo,r oz or or Oz gz ¥
+ ano aqp _ ano + B';’O a,"u]
cz Or or v 1z |
0 A* 1 A* 2 A*
o) 29T - o[BI SRV,
ot dmo,r 0z or ar Oz
2 6% * a(A*yJﬂ) E)y; (A y)) aw
ST _ Oy 2 oy
+ ¥ Oz ¥ or Oz + oz + Yo 52 +
0B, 0B
1 Po
+21~(B¢0 7 + = Bq,])]
where
6 {1 dy 621.0
2.26 A*¥p = r— | = L
( ) =71 67'(7‘ a;-) "

The numerical scheme used to solve equations (2.22)—(2.25) is anal-
ogous to that of the preceding section, una.tions (2.22) and (2.23) are
solved implicitly for ¢"*!, Byt using ¢" and v;,. These predicted values
of "*! and B are then used in time- centeled 1mph01t difference equa-
tions for equa,tlons (2.24)~(2.25), in order to obtain ¢"t! and v;'. Equa-
tions (2.22)—(2.23) can then be solved again using a time-center ed scheme



102 J. EILLEEN

to obtain corrected values of ¢"*!, Bg;“, which are then used to solve
equations (2.24)-(2.25) once more.

ALIMO has also been applied to the BFM cquilibrimm discussed
in Section 2.3.

3. Nonlinear calculations

3.1. Mathematical model. As described in Section 2, the resistive

MHD equations relate the electromagnetic fields J:'_f/ and E to the fluid

velocity o and the thermodynamic variables (the pressure p, the mass
density ¢, and the specific internal energy e). They may be combined

into a set of conservation laws for the magnetic flux density B, the fluid

momentum density 93, the mass density p, and the total energy density
4 = 0v*+B*+pe. In order to make our model applicable to a variety
of coordinate systems, we assume a metric of the form ds* = hlda}+-
+ hada; + hida;, where ®,,0,, and 2, are orthogonal curvilinear coor-
dinates with scale factors h; = h,;(w,, #,). Then the relevant equations
may be written as

oB? 1 ;)

3.1 = hyhahyo™
(5.1) 9 Tl aaF (itatadT)
(o0’ -1 9 " KA
3.9 — Badva i il nl:
(3.2) a1 Wik agF laleTT) FT {nicj’
do -1 d
(3.8) 9 hyhyhy Eﬁ(hlhzha 2",
ou -1 &
3.4 —_— = —— (hyhohyf*
(3.4) o gk ar (Melal)s
where ¢ are the contravariant components of the antisymmetric tensor

S = B% — 0B + —Z; (V_i? — Vf?""), 7% are the contravariant components of

the symmetric tensor T = pv0 —BB +3(p--B)I, ov" are the contravari-
ant components of the momentum, f* are the contravariant components

= - -> = 9 - — - -
of the energy flux F = (u-++p) +(B*I—2BB)-v +—§(B-VB—|7B-B),

8 = tpfry and we have invoked the summation convention. The Christof-
fel symbols appearing in (3.2) arise becaunse of the dependence of the
unit vectors on the coordinates, and are defined as in Morse and
Feshbach [37].
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As digcussed in Section 2, the unstable eigenmodes of a cylindrical
plasma are in general functions of (r, 8, 2). To describe these perturbations
in our non-linear code, we must reduce the dimensionality of the problem
from three to two. This is accomplished by applying the coordinate
transformation ¢ = mb+k,z to the fully three-dimensional equations.
The equations in this coordinate system have been detailed elsewhere [33].

3.2. Computational techniques. Our basic equations form a set of
Eulerian conservation laws in two spatial dimensions. When finite differ-
ence approximationg are introduced it proves convenient to do so in
such a way as to maintain the conservation properties of the original
differential equation. Appropriate spatial difference approximations for
scalar (3.3), (3.4) and vector (3.2) conservation laws are obtained in
a straightforward manner by the application of Gauss’ law to a compu-
tational cell. To obtain a conservative scheme for a pseudovector con-

servation law, aﬁ)/at = V x@& (e.g., (3.1)), we must apply Stokes’ theorem,
We introduce temporal differencing by means of the Alternating Direction
Implicit (ADI) method. The final set of difference equations may then
be written as

At , At
(3.5) [1——2— (D,+S)] g — [1+ 7(D2+D12+S)] o,

V|
(3.6) [b? (D2+S)] Ut = [1+-2—t~(p1+pm+3)] e

o

where U” represents the state of the system at time {,, D, is a finite differ
ence operator in the ith coordinate direction, D,, represents the mixed
derivatives, and 8§ represents the Christoffel symbols.

Since the operators discussed above are in general non-linear, each
step of the ADI algorithm represents a set of M xJ (where M is the
length of U and J is the number of mesh points in one direction) non-
linear algebraic equations to be solved on each row of the mesh. These
equations must be linearized and solved iteratively, We write ( fg)®
= 1fUt=0g0 ¢ g0-1fO where f'~Y and g%~V arc considered as coefficients
in the first and second terms, respectively. When equations (3.5)-(3.6)
are linearized in this manner, the resulting system is block tridiagonal,
and may be written in the form

3.7y —AGY- U, +BEY-UN-CGY - UY, =Dy, i=2,8,...,1-1
subject to the boundary conditions

(3.8) G- UY =H, U{+d, and G U, =H, UD, ,+d;
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at the left-hand boundary, and at the right-hand boundary respectively.
(3.7) may be solved by the well-known algorithm U{) = E,-U{, ;4 F;
where E; and F,; are defined recursively in terms of the boundary con-
ditions. A similar solution can be defined when periodic boundary con-
ditions are imposed. In that case U} = E,-Uf),;+8; U, +F; where
E, S, and F are also determined recursively. Further details may be
found in [32].

Once the golution has been advanced to a new time level, the coeffi-
cients appearing in (3.7) are updated and the procedure is repeated until
the solution converges to within a given tolerance. The time step is adjusted
according to the number of iterations required for convergence. If con-
vergence cannot be achieved within a specified number of iterations,
the time step is decreased. Conversely, if the solution converges rapidly,
the time step 1s increased. Thus the code always uses the largest possible
time step to maintain the desired accuracy.

3.3. Boundary conditions. The boundary conditions on field (B)
and flow (3) variables at a perfectly conducting boundary are well known.
For the thermodynamie variables p and %, we have found it convenient
jn some cases to impose boundary conditions which require that mass
and energy be conserved. For example, if x, is taken as the coordinate
normal to the wall, a scalar density is advanced according to

dosy 2
a (Mhohy), A_m,

Uhhan)T—Jm .

J

For example, the finite difference approximation to the continuity
equation (where F, = gv,) is —C(pvy)3+ '+ o%t! = O (gv,)3! + %, with
O = At(hyhg)y_ypf(hylighy);(A_ms);. The coefficients appearing in this
equation become elements in the boundary condition matrices G and H.

The problem of numerically advancing the solution at the origin
of coordinates (r = 0) is a difficult one, for unless symmetry conditions
exist there is no natural boundary condition to be imposed at this point.
For ingtabilities characterized by azimuthal mode number m = 0, we
can pose the problem in (7, 2) cylindrical coordinates. In this case we can
apply a modification of the conservative boundary conditions discussed
above, where axial fluxes are included in a straightforward manner.
When m?> 0 no axial symmetry exists; one of the independent variables
is an angle (), and the origin represcuts the same point in space for all
values of this coordinate.

Scalar quantities, such as ¢ and %, must have unique values on axis
for any direction of approach, i.e., as we are near #= 0 on any ray = con-
stant, these quantities must approach the same limiting value. In polar
and helical coordinates this is also the case for B, and gv,. Evolutionary
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equations for such quantities may be found by integrating the appro-
priate equation over a small cylindrical cell of radius A2, yielding the

equation
—2 = A .
ot ndr Z Ot

i

The ADI method decouples the spatial mesh by proceeding in partial
time steps, so that on the partial step in which radial terms are treated
explicitly, this equation can be used directly. On the other partial step,
I must be treated implicitly, thus coupling the solution for all rays (lines
for which 6-constant) at r = 0. This difficulty is avoided by noticing
that # will in general be non-linear and will contain derivatives of .
After linearization and discretization, we can write

m 4l n41 ni-1
1’1‘.3/2 = Piui,z +Qug " +R;.

The coupling is now removed by reordering the recursive solution on the
interior of the mesh as

(3.9) il = eyuiih ey 4 =2,3,..,J
i.e., we define the solution from “left to right”, instead of “right to left”.
We then arrive at

(3.10) it!

At o, M
= {1 + xAr 2 Aat(Pif’i.2+Q:')} '{’“’u _HZ AB-{(Pifi.2+Ri)}

as the expression for the secalar 4 at the origin. The complete solution
is thus obtained by sweeping all rays from the outer boundary to the
origin to determine e;; and f;; recursively for j=j4-1, j—2,...,2,
applying (3.10) and then using (3.9) to obtain the interior solution.
When m? > 1, we know that components of vector guantities must
vanish at the origin. However, modes with m =1 are characterized by
gross motion across the origin, and we use the uniqueness of the car-
tesian components to advance vector guantities at » = 0. The general
form for the equation describing the evolution of a vector quantity is

i

oV 16 = 148G oH -
e A B, B
ot y or (r2) » 00 0z + i

where 1_:‘, 5, and I—i: are the veetor fluxes of I_f), and 5 represents possible
Christoffel terms. We assume that the Cartesian representation of V
can De obtained by the transformation V, = a-V. Then the Cartesian
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components of ¥V evolve according to the equation

v 1 8 > 18 = 8 da -
Ve _ =L e F) - =2 (a-B)— — (a )+—" H—a-Vf
ol P or 3

(3.11)

—
where we have assumed a to be independent of r, and have used @-0

= —(1/r)da/d06 5 which, indeed, serves as a definition of ¢. YWhen trans-
formation to helical coordinates is performed, equation (3.11) becomes

aVc = —ii (a'a'F)———fr——a—[a-(G—l—rsz)]—l—kz
4

3.12
( ) ot r or

da =

— H—g'V
20 @ Vi
which points out the reason for allowing e« to depend explicitly on the 2
coordinate. Proceeding in a manner similar to that used for scalar quan-
tities we arrive at the equation

oV,
81:r ‘n‘A? S‘AB % W”"z

where W = F —%, Ar AT |4 4 (4r4) Vf, and we have used the fact that,
for polar coordinates, da/30 = a-A where 4,, = (—1)"(1 —4,,), 1,8 =1, 2,
A self-consistent solution can now be defined in a manner analogous

to that prevmusly described. When we use the hneanzatlon Wf;*,;

= P; V”“—}—Q, V"+1—I~R we arrive at V’”’:l (I+8)- -(Vﬁ0 —T) where I
is the identity matri ix, and

S =

Z 40,0, [Py By o7 + Q4]

7:11?

T =

m Zdea [P, Fiy+R,].

The polar components are then obtained by inverting the transformation
for each ray, and the interior solution is then found as described pre-
viously.

4. Fokker-Planck /Transport model for beam driven Tokamaks

Neutral beam heated Tokamaks [38] are characterized by a warm Max-
wellian background plasma, whose evolution can be described by a set
of macroscopic transport equations, and one or more energetic species
which are quite non-Maxwellian, whose evolution should be represented
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by Fokker—Planck equations. The coupling of these systems is by means
of particle and energy sources in the multispecies transport equations
and a Maxwellian target plasma in the multispecies Fokker-Planck
equations.

The Fokker-Planck/Transport (FPT) Code [39] models the time-
dependent behavior of such a system. The model agsumes the existence
of an arbitrary number of Maxwellian warm ion species which are de-
sceribed by their individual densities n,(g,?) and by a common tempera-
ture profile T';(g,t) where g is the average radius of a flux surface. The
electrons are deseribed by a separate temperature profile 7', (p,?) and
their density is determined by quasineutrality. The energefic species are
represented by velocity space distribution functions f,(v, 8, ¢, t), where v
is speed and 6 is pitch angle. Since the magnetic flux surface shapes will
tend to change more slowly than the macroscopic plasma parameters,
it is a valid approximation to allow the transport and collision processes
to proceed through a sequence of magnetohydrodynamic equilibria. The
poloidal flux ¢, which determines the radial coordinate p, is thus obtained
from Ampere's law.

4.1. Fokker~Planck equations. We assume that the distribution
functions are azimuthally invariant in velocity space (about the direction
of the magnetic field). This assumption reduces the velocity space from
three to two dimensions.

The Fokker—Planck collision term for an inverse-square force was
derived by Rosenbluth, et al. [40] in the form

1 {3, 18 o*g,
41 — =
(41) r, ( ét ), (f“ ) 2 o, av; (f'J v, az;j)
where I', = 4nZie*/m2. In the present work we write the “Rosenbluth
potentials”

Zb 2 I} ] ’
2| Indg [ £ (o) 0 - 010,

’ Z 2
(4.3) b= Y ity My (Zb) lnfla,,ffb(v’)lv—v’l"ldv’.
b

(4.2)

My 2

The functions g, and &,, defined by (4.2) and (4.3), can be represented
by expansions in Legendre polynomials [10]. Summation is over all
species.

Equation (4.1) in (», 6) coordinates, written in conservative form, is

1n
1(af,\ 1 4G, 1 6H,
r,\al/,

(4.4) vt v p25ind 04
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where

i

d aa
Ga “_"'Aafa—l_-Bct'a_cu fﬂ f f

— F,
+C, T and H,=D,f,+E, + 7 0

The coefficients which involve derivatives of g, and 2, are defined in
[10], [39]. Equation (4.4) is integrated using the method of splitting,
or fractional timesteps. We first advance

1 9, 1 8@,

(4.5) T, & o o

using an implicit difference algorithm and then advance

1 9, 1 O0H,

(4.6) I, a  osin6 @6

in an analogous manner. Equation (4.5) is differenced as follows:

n41 4]

J‘aAt - 2@, A'v
L[ Bl B (721
v Av; 1 Av;_yp
+ 1 02j+1(f’?+1,f+1 —fF—l.j-l-l) . OZ_’P—-I( ';:-1,_’!'—1_ 1?1—1._'1'—1)]
202 o, 240, 216,

We see that the terms of mixed second derivative type may not be written
fully implicitly if we wish to maintain a tri-diagonal form. Equation
(4.6) is integrated in a similar manmner, with the roles of » and 0 reversed.
We have also used the ADI algorithm for the solution of the Fokker—
Planck equation [9], and we have a version in which equation (4.4) is
differenced fully implicitly including the mixed second derivative and
the resulting algebraic problem is solved by the ICCG method [41].

4.2. Transport equations. The spatial independent variable for the
transport model is ¢ = (V/2*R,)!%, where T is the volume within the
flux surface and R, is the major radius of the torus. YWe can consider

an arbitrary number of warm ion species, each described by an equation
of the form

on, 1 9

4.8 = ——
(4.8) 7 2 72 (el,) +f (84, + cpfp)dv-d(a, D).

The term 77 is the particle flux for species “a”, and depends on the plasma
transport model used ([39], [42]); S,, repr csents the transfer of low energy
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particles from a hot speecies to its corresponding background; ¢, is an
inverse charge exchange time.

The electron density is determined by quasi-neutrality and T, (p, %) is
governed by

(4"9) i(gﬂ’aTc’,) = z TQa Qd i Ver 7zaTe/%e+<JtpE¢>;

al

@, is the electron energy flux ([39], [42]); @, represents energy transfer
between ions and elecfrons; @,, represents heating of electrons by ener-
getic species “b"; 7, is the electron energy confinement time, and {(J,,)
is the Ohmic heating term where { > denotes a flux surface average.

The warm ions are all assumed to be at the same temperature ([42]),
and their temperature is determined by

(410) (WT) = (QQ)+Q4+Q+2Qab+

1 -
3T D) [ oot cu)dvs(a, b);

a,b

@, 1s the ion energy flux; @, and @ represent energy transfer between
particles; @, is the heating of species “a” by energetic species “b”, and
the last term represents the energy transferred from the hot species to
the warm plasma because of particle transfer from the energetic species
to the plasma.

The form of the flux terms is ([39]):

on oT; oT,
4.11 I — D, —L 4+ Dt D¢
( ) a 02 ﬂb a + a + a 69
on AT or
419 = VLd_i LIt ppe—e
F T, aT
(4.13) ZMd Mot S e T
a0 dg

where “b” is summed over warm ion species. If we substitute (4.11)—(4.13)
into (4.8)-(4.10) we see that we have a coupled system of one-dimensional
diffusion cquations which are solved by standard implicit difference
technigues which are discussed in [43], [44].

In addition to the transport equations (4.8)-(4.10) we have the
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Fig. 1. Distribution funection, f(e, v, 6), versus » and 8 at g = 0 for hot deuterium
(counterstreaming beams) and the sum of hot and cold deuterium. Contour plots
of the same distribution function in (v, v) space
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equation for the poloidal magnetic field which is changing in time

0B ¢ 0
414 £ = — —{(RE
(4.14) = T 5 BB
I, is the flux averaged toroidal electric field. Equation (4.14) is solved
with (4.8)—-(4.10) as part of the transport section of the code.

4.3. Applications. As mentioned earlier the FPT code is used to
model the behavior of beam driven Tokamaks ([39]). The code is par-
ticularly suitable for studying reactor operation with counterstreaming
ion beams (CIT). In this work a simplified transport model is used ([45]).
This model has also been applied to counterstreaming deuterium beams
in the PDX Tokamak. Fig. 1 shows the distribution function of the hot
deuterium plasma formed and also the sum of the hot component and
the warm background plasma distribution functions.
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