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1. Introduction

Let us consider an elliptic problem of the form

0 oU
(1.1) —a(aij(x)a)%f

J

in a domain Q of R? with appropriate boundary conditions. It is known
that, under suitable smoothness hypotheses about the coefficients a;;(x) and
the boundary of the domain (denoted by ¢Q), the classical regularity theory
holds. In particular, if f belongs locally (i.e. on a domain D which may go
up to the boundary) to the Sobolev space H™ (m real > 0) and the boundary
conditions are homogeneous (i.e. equal to zero), the solution belongs to

. 9
Fig. 1
H™" 2 on any subdomain D’ included in D. Moreover, if © is bounded, an
inequality of the type

holds for m = 0, with a constant C which only depends on £, m, and the
coefficients of the equation.

Roughly speaking, let U be a solution obtained by variational techni-
ques belonging to H! (). If the coefficients and dQ are smooth, and f
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belongs to, say, L*(£), the solution actually belongs to H*(Q); moreover, il f
= 0 in the vicinity of a point, the solution is actually of class C™ there. Of
course, more complicated situations occur for nonhomogeneous boundary
conditions: see Lions-Magenes [7] for these questions.

A different situation appears if the coefficients are smooth (constant, say)
but the boundary 0dQ is not, in particular if it exhibits angular points.

Fig. 2

It is easy to see that in such a situation, the local regularity depends on
the angle ¢ of the domain. Indeed, let us take the example of the Laplace
equation with Neumann boundary condition:

(1.3) —AU =0,

ou
on

(1.4) 0 on 02

(in fact the right-hand side is zero in a neighbourhood of the origin but may
be different from zero elsewhere and consequently the solution U under
consideration is not necessarily zero). Let us search for solutions of the form

(1.5) | U(xy, x5) = ru(6)

where (r, 0) are polar coordinates with origin at the angular point. From
(1.3), (1.4) we obtain for u(6)

—u'—atu=0, 0¢(0, ),
(1.6)
=0 for 06=0, 0=0,

and we have solutions of the form

LS L

¢ Q

Of course, the gradient of (1.5) behaves as r*~', and we are interested in
solutions exhibiting a singularity as r — 0, i.e. with Rex—1 < 0. On the
other hand, if the solution exists according to some variational problem in
H!, then u and grad u are square-integrable, and this implies Re 2 > 0. We
see from (1.7) that such solutions exist if @e(n, 2n), i.e. if the domain is

(1.7) u=Acosaf with o=0, +
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concave, but they do not exist if ¢ (0, n), i.e. if the domain is convex. As a
result, the solution which exists according to a variational theory may exhibit
a singular hehavior (i.e. its gradient may tend to infinity at the origin) if the
domain is concave.

A picture of the flux lines (i.e. the lines tangent to grad U) furnishes
some insight into the physical phenomenon: for a concave domain (resp. a
convex domain) the flux lines push to each other (resp. spread out) as
shown in Figs. 3 and 4.

Fig. 3 Fig. 4

The general reference for these questions (some examples of which are
well known in hydrodynamics) are Kondrat'ev [6] and Grisvard [4]. The
principal result ol the corresponding theory is that, roughly speaking,
solutions of the form (1.5) with 0 < Re a < 1 are the only singularities of the
problem, and regularity theory holds with these exceptions. Of course, more
involved situations occur for nonhomogeneous boundary conditions.

The same general theory holds for problems with nonsmooth coeffi-
cients, in particular for transmission problems with piecewise constant coeffi-
cients, in particular for situations as in Fig. 5, where the coefficients a;; of
(1.1) are constant on each of the regions £,, ,.

o r
¢

7] £
Fig. 5

A very particular case of this problem is considered in Sect. 2 and 3
where it 1s shown that for a smooth boundary of the domain, i.e. ¢ = 7 (Fig.
5) with Neumann boundary conditions (corresponding to a free boundary),
the anisotropy of the medium in the regions 2, or Q, may generate singulari-
ties even with a smooth boundary. A conjecture is stated in Sect. 4 about the
existence of singularities in the general case: this constitutes a general
criterion for homogeneous Neumann problems in second order equations,
but it is not proved. An application to elasticity is given in Sect. 5. A deeper
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study of the elasticity system in domains with edges is given in Sect. 6, 7, §,
where it is proved that, in the situation of Fig. 5 with ¢ = n and elasticity
coefficients constant in Q, and Q, there exists an open domain in the space
of pairs of elastic coefficients for which a singularity appears.

2. Setting the problem and derivation of the equation for u(0)

We consider the half-plane x, > 0 of the plane R*> with Cartesian (resp.
polar) coordinates x,, x, (resp. r, 6).

We consider equation (1.1) with f = 0 and coefficients g;; taking con-
stant values in the regions Q, (ie. x; > 0) and Q, (ie. x, <0), namely

a; =1, az; =1,

¢ for x;, >0,
d; =a =
2 0 for x; <0,

(2.1)

x?
Qz Ql

r
8
Qs 7z A;‘

Fig. 6

where ¢ 1s a real parameter (which, for mathematical convenience, will also
be taken complex in the sequel). It is clear that we have the Laplace equation
for e =0; for € # 0, the part x; > 0 is anisotropic.

The boundary conditions are the Neumann ones associated with the
operator (1.1) on x; = 0:

aU
(2.2) aZia—— =0 for x, =0, with x;, >0 and x, <0.
X

Of course on the line x; = 0 of discontinuity of the coefficients we have the
transmission conditions associated with (1.1) in the distribution sense and U
of class H' locally:

oU
(2.3) (ul=0, [a“a—x.

where the symbol [ ] denotes the jump across x; = 0.
Now, we search for solutions of (1.1), (2.2), (2.3) with the
coefficients (2.1), of the form

(24) U(x,, x5) =r"u(8)

:|=O on x;, =0,
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with 0 < Re a < 1. This gives us an equation for u(6) and boundary and
transmission conditions for 8 = 0, n/2, n. In order to obtain the sesquilinear
form associated with this boundary value problem for u, we recall that the
classical sesquilinear form for U including the Neumann and transmission
conditions is

(2.5) ‘j?a,-j%% %::/dx VVeH(Q)

where the bar denotes the complex conjugate. Then we take
(2.6) Q=1{r,6;rel0, o[, 0€]0,n[},

(2.7) U=ru@®, V=o¢rmvd), 20, o),

and the problem of searching for solutions of the form (2.4) amounts to
finding o such that there exists a nonzero u(6)e H! (0, =) satisfying

{ or‘*u dpv or*u Opv

. 0= [rarjdbien 5 3 T %, o,

0

or*u dpv  Or*u dpv
+au( u dgv o (pv)}

axl axi 6x2 (3xl

for any @e 2(0, o), ve H' (0, n). Performing the change of variables

(29) a_cosea sing 0 6_Sin06+cosﬂa
‘ ox, o r 0 x, o r 00
(2.8) becomes
(2.10) 0= (r[Fe'(n+or 'or)]dr
0

with
(2.11) F = [ la;, (a cos fu—sin Ou’)cos 00

0

+a,, (o sin Bu+cos Bu')sin Ov

+ay, [ sin 28ub+ cos 26u' 0]} d6
(2.12) ® = | la,;(—a cos Ou+sin Ou')sin 67

0

+a,, (x sin Qu+cos Ou’) cos OV
+ay, [« cos 20ut’ —sin 20u' ']} dO

which of course holds for arbitrary coefficients ;. We integrate by parts
(2.10) (or equivalently we consider it as a distribution product) and it

I8 — Banach Center t. 19
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becomes

e 9]

[(@—aF)r lo(r)dr=0 Voe%(0, w),

0
which amounts to

(2.13) ¢—aF =0.

We remark that F and @ defined by (2.11), (2.12) are sesquilinear forms for
u, ve H'(0, ). Our problem is to find & such that there exists a nonzero
ue H' (0, m) satisfying (2.13) for any ve H' (0, ). We now take the specific
coefficients (2.1), where the regions x; >0, x; <0 become 60e&(0, n/2),
Oe(n/2, n) respectively. The form & —oF is written in the form

(2.14) a(e, a;u, v) = a,(u, v)+a?a,(u, v)+zcay(u, v)

+exa, (u, v)+ea’ag(u, v), with

a, (u, v) = [u'v'd0,
(1]

a(u, v) = — fuvdd,
0

2
ay(u, v) = — | sin 20u’v' d6,
0
nf2

as(u, v) = f cos 20(uv' —u'0)do,
0

n/2

as(u, v}y = — | sin 20uvdo.
4]

Of course, the problem of searching for the singularities of the boundary

value problem stated at the beginning of this section is equivalent to the
following one:

ProsLEM P(c). We consider ¢ as a parameter (taking small values, for
instance). For fixed ¢, we search for the values a(¢) with 0 < Re a <1 such
that there exists a nonzero ue H!(0, ) satisfying

(2.15) ag,;u,v)=0 VoeH'(0, n),
where the form g is defined in (2.14).

3. Asymptotic study for small ¢. Existence of singularities
for real, small positive ¢

Before going on, we consider problem P(¢) for ¢ = 0. This amounts to the
Laplace equation in the half-plane x, > 0 with Neumann boundary condi-
tions. We know that there are no singularities. In fact, from (2.15) with ¢ = 0,
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we have

ProBLEm P(0). Find o such that there exists ue H' (0, n) satisfying

n

(3.1) [Wv—a*up)dd =0 VoeH' (0, n),

0

which amounts to

—u’' =a’u for 0€e(0, n),

(3.2)

u'(0) =u'(m) =0,
which for a =1 has the solution (normalized in L%(0, n)):
(3.3) a=1, u=us(d) =2/r) " 'cosb.

We note that (3.2) also has solutions for other values of ? (the eigenvalues of
the Neumann problem), but « = 1 is the only one which is at the boundary
of the singular region 0 < Re a < 1 (the value & = O has only trivial solutions
without physical meaning). Our aim is to introduce perturbation
fore#0in order to obtain corresponding singular a(g). Note on
the other hand that (3.3) is associated with the solution

(34) U(xy, x3) = (2/m)” ! X1

which is a constant flux parallel to the boundary x, = 0. Before studying this
perturbation, let us state the result of this section:

ProrosiTioN 3.1. For real, positive, sufficiently small ¢, problem P(g) has
singular solutions. In fact, there exists a holomorphic branch a(g) for complex ¢
with |e| sufficiently small of solutions with a(0) =1, (da/dc)(0) < 0.

In order to prove this proposition, we write problem P(e) in another
form. Let us consider H'(0, n) contained in L2(0, n) which we identify with
its dual. For small ||, |« — 1], the form a(e, a; u, v) is sesquilinear continuous
on H!, and (2.15) amounts to

(3.5) Ae,a)u=0

where A (g, a) is the operator associated with a(e, a; u, v); it may be consid-
ered either as a continuous operator from H! into its dual or as an
unbounded operator with compact resolvent on L% If we consider the
eigenvalue problem

(3.6) A, t)u = Au

problem P(¢) amounts to finding «(¢) such that 4 =0 is an eigenvalue of
Ale, a(¢)). But, for ¢ =0, « =1, the value A=0is a simple ecigenvalue
(see (3.2), (3.3)). Moreover, the classical analytic perturbation theory applies
(note that the operators A(g, ) form a holomorphic family of class B of
Kato [5] with respect to ¢ and «a), there exists an eigenvalue 2 (e, ) which is
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simple and holomorphic in ¢ and « (and consequently in ¢, a together)
for |e|, |a—1| sufficiently small, taking the value 0 for e =0, a = 1. Our
problem amounts to proving that the equation

(3.7) A, a) =0

defines a(e) for small ¢ and that (da/de)(0) < O. According to the implicit
function theorem, Proposition 3.1 will be proved if we prove that

oA

di
. -—(0,1) <0, —-(0,1) <O.
(38 20,1 <0, 20,1 <

Let us prove the first of (3.8). It only concerns the operator for ¢ = 0.
From (2.14) we see that the eigenvalue problem

A0, ®)u = Au
amounts to

—u'—2’u=Au, W) =u(n)=0,

and the eigenvalue A(0, a) taking the value O for a =1 is 1(0, &) = 1 —a?:
consequently

dl
39) 20 n=-2.

Let us now prove the second of (3.8). It is a little bit more complicated,
and we shall use the standard perturbation theory (which also furnishes (3.9),
of course). The second of (3.8) only concerns a = 1. The eigenvalue problem
for A(e, 1) then reads

(3.10) Afe, Du(e) = A(e)u(e)

where A(g), u(e) are the corresponding eigenvalue and eigenvector. This is of
course equivalent to finding u(e)e H' such that, Vve H?,

(3.11) a,(u, v)+a,(u, v)+e(as(u, V) +a,(u, v)+as(u, v)) = A(e)(u, v),,.
We then consider the analytic expansions
(3.12) Ae)=0+4,e+A,e2+ ..., ule) =ug+ue+uze’+ ...,

where u, is the eigenfunction of the unperturbed problem given by (3.3) and
oA
. =—(0, 1).
(3.13) 4y =201

In order to obtain an eigenvector u(eg) holomorphic in & we must prescribe
some normalization condition, for instance (see Friedrichs [3] for these
expansions):

(3.14) (u(e), uo) 2 = 1.
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We substitute (3.12) into (3.11) and we expand it in the powers of ¢. At order
1 we have an identity (which corresponds to the unperturbed problem), and
at order ¢

G.15)  a,(u;, v)+ay(uy, v)
= A; (uo, U)Lz—(as (Ug, V) + a4 (ug, V) +as (“o; U)) Vve H'.

But the form a, +a, on the left-hand side is the form associated with the
unperturbed operator A (0, 1); consequently, (3.15) is equivalent to

(3.16) A, )u, = F

where Fe(H') is the element of the dual space associated with the right-
hand side of (3.15). But A(0, 1) has zero as (simple) eigenvalue, and conse-
quently there is a compatibility condition to be satisfied by F in order for u,
to exist, namely the duality product of F with the eigenfunction u, must be
zero (note that A(0, 1) is selfadjoint; this is a form of the Fredholm
alternative; see Sanchez [8], p. 23, if necessary). This amounts to the fact that
the right-hand side of (3.15) must be zero for v = u,. This gives

luoll 2 A1 = @3 (uo, o)+ aq (uo, uo)+as (uo, uo)

which suffices (the asymptotic expansion may be continued, but this is not
useful for our purpose) to obtain, by (3.3),

oA 2
—0,)=4; = ——,
6O V=h=7
which proves the second relation (3.8) and thus Proposition 3.1 is proved.

4. A conjecture on the general case

The (rigorously proved) result of the preceding sections shows that the
problem (1.1) with the coefficients (2.1) and homogeneous Neumann bounda-
ry conditions has a singular behavior for small ¢ > 0 but not for ¢ <O (in
fact, we only know that there are no singularities in the vicinity of « = 1). In
fact, it is not difficult to obtain an interpretation of this result in terms of
convexity or concavity of the boundary with respect to the lines formed by
the refracted rays. We now give such an interpretation which furnishes a
general criterion for the extstence of singularities in the geomet-
ric situation of Fig. 5, with Neumann conditions on Q. This criterion is not
proved, but we give it as a plausible conjecture.

Let us consider equation (1.1) with f =0 in the case where the coeffi-
cients g;;(x) take constant values in two regions 2,, Q, of the plane with a
straight interface I" (Fig. 7); there is no boundary for the time being. Let us
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define, for any solution U, the vectors q and p with components

U
4.1 = ,
(4.1) %= T

U )

(4.2) pi = aij'a;; = i 4;;

r

p?
N

p'
2,

% '91

Pig. 7

in fact, q is the gradient of U and p is the associated flux; note that equation
(1.1) with f =0 is

@.3) div p = 0.

Of course, the transmission conditions through the interface I' (analogous to
(2.3)) are

(4.4) [¢.1=0, [p.]=0,

where the indexes ¢, n denote the tangential and normal components to I,
and the brackets denote the jump across I.

Let us study solutions with ¢, p constant in each of the regions Q,, Q,
(we do not consider the boundary 0Q2 for the time being); the corresponding
vectors will be denoted ¢q', 4% p!, p>. We may for instance take as p! any
vector; from (4.2) we obtain the corresponding q' (note that the operator is
elllptlc and thus the matrix a, ; is invertible). Then from (4.4) we obtam q,
and p? and (4.2) easily furmshes the other components of g¢? and p
Consequently, for any given p' we can construct the corresponding p? as in
Fig. 7.

Let us now consider a boundary 0 parallel in 2, and Q, to p! and p?
respectively (Fig. 7). It is clear that the solution corresponding to the given
constant vectors p!, p? also holds in the presence of the boundary 49 for
Neumann boundary conditions, ie.

0
4.5) a,-jaqn,-=0 < p,=0 on 09.
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Now, this solution is, for the general problem with an interface I', analogous
to the solution of constant flux tangent to a straight boundary for the
Laplace equation (see (3.3) if necessary). The boundary 6Q of Fig. 7 plays in
this problem a role analogous to that of a straight boundary for the Laplace
equation. We then may guess (this is not proved!) the existence or nonexi-
stence of singularities in terms of convexity or concavity of the boundary
with respect to the 0Q of Fig. 7 (see also Figs. 3, 4). In fact, as div p =0, if
the field lines of p concentrate (resp. spread) at a point, the value of |p| grows
(resp. decreases) there. Summing up we may state the following criterion for
the existence of singularities which contains the known results for the
Laplace equation and the asymptotic ones of Sect. 3: :

CriTERION (unproved conjecture). We consider (see Figs. 8, 9) two
regions 2,, 2, with interface I and the boundary of the domain formed by
Q,, 2,. We consider solutions of equation (1.1) with constant coefficients on
Q, and ,, subject to the transmission conditions

ou
4.6) [U] =0, [n,- a‘j—] =0 onlr,
ax,.
and the Neumann conditions
U
4.7) ma;—=0 on X, and 2,.
0x;

In order to study the existence of singularities at the origin, we choose that
of the two domains @,, Q, which has opening < m; let it be Q,. Then we
construct a vector p! parallel to X, (Figs. 8, 9). Using (44) and (4.2) we
construct the vectors q', ¢, p? and the line formed by the vectors p', p?
(Figs. 8, 9). Then there is a (resp. there is no) singularity if the angle of the
boundaries £,, £, is more (resp. less) open than the line formed by p', p’.

It is to be noticed that in the case where the two domains Q,, Q, have
openings < m, we may start in two different ways; but it is easily seen that
the result is the same.

Fig. 8 Fig. 9



280 E. SANCHEZ-PALENCIA

5. First application to the problem of edge singularities
in elasticity of composite materials

Equation (1.1) governs classical problems in electrostatics, electrodynamics
and steady (i.e. independent of time) heat diffusion. The applications to these
domains of the results of the preceding sections are obvious. We now give an
application to a class of shear problems is elasticity. This application
deserves some attention because the edge singularities in composite materials
seem to be responsible for the failure of pieces made of composite materials
(or for arising of plasticity regions or damaged regions). The question of
arising of singularities is very controversial (see for instance [1], (9], [10]); in
particular the existence of logarithmic singularities for some shear
components in the edges of composite plates made of isotropic materials
was announced in [2]. Our results show that for some related problems,
anisotropy induces algebraic singularities (i.c. the stress tensor
tends to infinity as r*~! with 0 <Re a < 1).
Let us consider a cylindrical domain of R?® (coordinates x,, x,, x3), Q
x R, where Q is some domain of the (x,, x,) plane and R is the x; axis. We
consider the elasticity system for the displacement vector U:
1
(5.1) (-;_i"_(bijlmelm(w) =0, enU) =§(§)TL{:+(‘;)(§)]:)’

J

satisfying

(5'2) biﬂm = blrm'j = bjum,
biimemei; = 7llell? Ve symmetric.

Then, if the coefficients b;;, are such that

(5.3) bij3,=0 for all i,j, n equal to 1 or 2

we may search for solutions of (5.1) where the displacement vector U has
only the component U, nonzero, and U, = U, (x,, x,). The elasticity system
(5.1) then becomes

0 oU, .
54 —a;——)=0 Q
(54) x, (a, y 6x,-) in
with the coefficients a;; = by;;;. Of course (54) governs the shear stresses
55 _ U, _ U,
(5.5) 013 = a“hﬁx,- > 023 = 4y ax,

with summation for i =1, 2, and (5.4) reads

60'13 60'23

(5.6)

=0
(3x1 aX2 ’
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and consequently the Neumann condition

2 6U3 2
(5.7) Y n; Gy~ = 0 < ) no=0
i,j=1 Xi i=1
on the boundary amounts to the condition that the lateral surface of the
cylinder is [ree.

As an application of the results of Sect. 4, which are of course rigorous
in the case of small anisotropy (Sect.3)., we consider a composite in the
framework of the present section, formed by two parts ,, Q,. If there is
anisotropy, it is easily seen by using the criterion of Sect. 4 that if the [ree
boundaries AB, A'B’ are normal to the interface I, there is always a
singularity, either at O or at O’ (in Fig. 10 the singularity appears at 0). But
this may be avoided by taking [ree boundaries not normal to I' (Fig.11).

Of course, this is a very particular problem of elasticity. We have no
results for the general system of elasticity, but the preceding examples show
that when anisotropy is involved, there is little chance to have no singulari-
ties all over the boundary.

A A
X A Al Xz A Al
2 2
0 /p 5% o' 0 //P 52, o'
1"‘ 2} \‘P' Q
B g 8 a8’
X'I' X o

Fig. 10 Fig. 11

6. Further study of the elasticity system in cylindrical domains

In Sect. 5 we proved that, for a particular elasticity system and for the
displacement of the form (0, O, U,), there are singularities. Now we perform
a perturbation of the coefficients and we prove that, if the perturbation is
sufficiently small, a singularity still occurs. Thus we prove the existence of
an open domain in the space of coefficients (in fact ol pairs of
coefficients, as we have a system of coefficients in Q, and another in Q,)
such that singularities do appear. This shows that for arbitrary
coefficients, the probability of arising of a singularity is not zero (for some
definition of the probability associated with measure).

We consider, as before, an elastic body filling the half-space x, > 0 of R?
(coordinates x;, x;, x3) and we shall search for solutions U = (U,, U,, U,)
with U = U(x,, x,) independent of x,. The half-space = {x, >0} is
formed by two quarters of the space, Q,, Q,, with different coelficients
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(see Fig. 12). The elasticity system (5.1) with d/0x; =0 becomes (the e;
are defined in (5.1))

x)

£, Lo

T 7 ey

Fig. 12
do,, 0oy, _0
dx,  0x, ’
0oy 0oz
(6.1) ox, + o, =0, g;; = bijtmelm(U),
o3y 003,
=0
0x, * 0x 4 ’
or equivalently
i _ 0
05 B

with Latin (resp. Greek) indices = 1, 2, 3 (resp. 1, 2), with the boundary and
interface conditions

(62) Giﬂ ’Tﬂ = 0 on aQ,
(6.3) [U1=0, [opml=0 onl,

and the coefficients b;;, constant on each of the regions Q;, Q,.

Before going on, we note that (6.1)6.3) is associated with the classical
sesquilinear form of three-dimensional clasticity, i.e. the fact that we search
for solutions depending only on x,, x, modifies 2, but not the structure of
the form:

b(U, V)= _‘.bijlm em(U)e;(V)dx,
2

(6.4) .
Neumann and jump conditions < U, Ve H'(Q).

Indeed, from (6.1) by multiplying by ¥(x,, x,) and integrating over Q we
have, on account of (6.2), (6.3),

m
A

Y
=)
=

2 J

0y g,
(6.5) { ax‘V,dx !) V.dx };a,ﬁaxﬂdx
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Conversely, the computations (6.5) may be performed in the opposite sense,
and we see that (6.4) is the corresponding sesquilinear form as we claimed.

7. Unperturbed and perturbed system

We define an unperturbed system in the framework of Sect. 5, i.e. we define
the (unperturbed) elasticity coefficients b;;,, (x) such that b, is zero when-
ever i, j, m are in {1, 2}. But this does not determine the unperturbed system
for our purposes. We also take

(7.1) 53:'31' = 4

where the a;; are the coefficients of an elliptic equation with a singular
solution, for instance

¢ (small, >0) if x, >0,

(7.2) ayp=ap =1, a;:(x)= {0 if x; <0,

and for the coefficients involving x,, x,, we take the coefficients correspond-
ing to a “two-dimensional” isotropic elasticity in x;, x,; this gives

53131 =1, 53232=1’
Eo {s (small, >0) if x; >0,
13270 if x;, <O,
by333 >0, bya3, >0, bys11 >0,
53313 =0, 53323 =0,
51131 = 51132 = 51231 = 51232 = 52231 = 52232 =0,
biiny = 2u+24 =byss,,

[ o

1122 = 4, 5121222%

b111z = 52212 =0.

Remark 7.1. It is easily seen that, by joining the coefficients which are
obtained by the symmetries (5.2), we have all the coefficients. In addition,
with appropriate values of the coefficients marked > 0, the unperturbed
coefficients satisfy the positivity condition (5.2): indeed, they may be obtained
as a small perturbation (in &) of an isotropic elasticity (it suffices to take
bysy33 =2u+24, b33, =35, =4 and 2u=1 to be consistent with the
assigned values b,,3; = b353, = 1).

Now let ¢;j;,,(x) be any coefficients (constant on each of the regions Q,
" Q,) satisfying the symmetry properties in (5.2) (but not necessarily the
positivity condition). Let n be a small (real or complex) parameter. We
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consider the perturbed coefficients

(7.3) bijim(x) = Eijlm (%) +1¢; jim (x)
which for small n satisfy the positivity and symmetry conditions (5.2).

Now, we establish an uncoupling property of the unperturbed
system. We consider solutions of two forms:

(74) (1) Ulxy, x)=(Uy, Uy, 0, (2 Ulxy, x3) =(0, 0, Uy),

with, of course, the unperturbed coefficients 5,-1-,,,,. It is easily seen that in case
(1) we have g3, = 63, = 0 (and 03, # 0, independent of x5, but this is of no
importance) and in case (2), 6,, = 6, = 65, = 0. Consequently, in system
(6.1)(6.3) there is an uncoupling between the first two components and the
third one. Of course, the third component (and the third equation) is
associated with the problem of Sect. 5, which has a singular solution (i.e.
with 0 < Rea <1), and components 1, 2 are associated with a plane-
deformation elasticity problem with isotropic constant coefficients in the half-
plane, which has no singular solution, since the standard regularity theory
holds for it. Then the singular solution for U, with U, = U, = 0 constitutes
a singular solution for the whole system, and zero is a simple eigenvalue for
it. We thus have

—~

ProprosiTION 7.1 The unperturbed system (6.1}H6.3) with coefficients b
is such that, when searching for solutions of the form

(7.9) U(xy, x3) =r*u(0)

ijlm

with 0 < Re o < 1, it has a simple solution, i.e. there exists an o such that the
corresponding eigenspace for u(0) is one-dimensional. In addition, the conside-
red value of a is real.

8. Perturbation in 7. Existence of singular solutions

We study the properties of the implicit eigenvalue perturbation in order to
prove that for small 5, the perturbed problem with coefficients given in (7.3)
does have singular solutions. In general, for coefficients depending only on 6,
we start from (6.4) and we take

U=ru@®, u@e(H'(0,n),
V=0@v(0), ¢e2(0,®),ve(H (0, n)?,

and performing the change (2.9) as in Sect. 2, we arrive at a form a(y, «; u, v)
which is sesquilinear and bounded on (H')* and holomorphic in 7,  (i.., for
fixed u, v it 1s a holomorphic function). Let us admit for the moment
that the form a satisfies a coerciveness condition of the type

(8.1)

8.2) a(n, u; u, wy+Aui?, > cllull?,
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for some 4, ¢ and 5 (resp. a) sufficiently small (resp. close to the value a,
corresponding to the unperturbed coefficients 5). Then a is a form of type (b)
of Kato [5]. As the imbedding H! = L? is compact, the standard perturba-
tion theory holds for eigenvalues, and as 0 is a simple eigenvalue of the
problem with n =0, « = a,, the eigenvalue A(n, a) exists and is holomorphic
for |n|, |x —a,| sufficiently small, and the problem amounts to the study of the
equation

8.3) An, a) = 0.

Of course, the derivative ¢4/0u for n = 0, a = a, is different from zero since it
coincides with the corresponding value for the coefficients b, where it is
different from zero for small ¢. Thus (8.3) defines a(#) which is holomorphic
and takes the value o; for n=0. As 0 <a; <1, a(y) also satisfies this
inequality, and we obtain

ProposiTioN 8.1. For |n| sufficiently small, the perturbed problem has
singular solutions.

In order to complete the proof, we have to prove (8.2). Because of the
holomorphy it suffices to prove that the unperturbed form (i.e. for n =0, a
= a,) satisfies (8.2). Moreover, as the solutions (U, U,, 0) and (0, 0, U,) are
uncoupled, the associated form a(0, x, u, v) is the sum of the forms corres-
ponding to (u,, uz, 0), (v,, v2, 0) and (0, 0, u;), (0, 0, vy). The latter is coer-
cive on H' by Sect. 2. Thus it suffices to prove that the form corresponding to
(uy, Uz, 0), (vy, s, 0) is coercive on (H'(0, n))>. Moreover, as we have at our
disposal the term A of (8.2), we may only consider the terms containing first
order derivatives with respect to 6 (i.e. for this computation, we only consider
in (2.9) the terms containing d/d6). Moreover, as the problem in the plane x,,
X, is a standard plane elasticity problem, the sesquilinear form (6.4) takes the
form (for some c¢;, ¢, > 0)

f(cren (U)e; (M dx+e, e (L)eys (V) +cg 5, (L) ey (V))dx,
0

and this gives, with (2.6), (2.7) and the change (2.9) (where, as explained
before, we only consider the terms containing ¢/df), for U =

fe1(sin 6)* (v1)* + ca(cos 6)* (v3)* +3 2 (cos 07, —sin 073)* dO
0

> Inf(cy, §¢g) [([104]% +]v3]* —Isin 20] |v)][v3])d6
0

> c3 [(jv1]? + |v2|*) dO
0

for some ¢5 > 0, and (8.2) follows.
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Remark 8.1. Proposition 8.1 deals with a single parameter n when. the
coefficients c;;,,(x) are given (see (7.3)). It is clear that we may take these
coefficients to be constant on €, and Q, and the corresponding values of the
coefficients as parameters. This proves the property announced at the
beginning of Sect. 6 about the existence of an open domain in the space of
pairs of coefficients giving a singularity.
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