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§ 1. Introduction

We consider the flow of a one-dimensional reaction-diffusion equation

(1.1) U, = Upet f (1)
on the interval xe(0, 1) with Dirichlet conditions
(1.2) u(t, ) =u(t,1)=0.

Let v, w denote stationary, i.e. r-independent solutions. We say that v
connects to w If there exists an orbit u(t, x) of (1.1), (1.2) such that

(1.3) hm u(r, ) =v, lim u(t, ) =w.

t——x 1=+ %
In this report we consider the following question:
(x)  Given v, which stationary solutions w does it connect to?

To fix the technical setting for our investigation we assume

(1.4) feC? f(O=0, (>0 lim f(s)/s <n

[s] =

As a solution space we consider (cf. [8])

u(t, e X := H*nH}.
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Introducing a parameter «, Chafee and Infante [4] studied the bifurcation
behavior of stationary solutions of

(1.1), Uy = U+ f{u)
with boundary condition (1.2) under the additional assumption
(1.5) sf”(s) >0 for s#0.

Partial answers to () were obtained by Conley and Smoller [5, 16]
using Conley’s index, and by Henry [8] using invariant manifold theory.
Later, Henry [9] solved problem (%) by an ingenious transversality argument.
However, the convexity assumption (1.5) was crucial in all these results. We
present a new approach which dispenses with (1.5) and contains the previous
results. Dropping (1.5) greatly increases the complexity of the problem
because it introduces many additional stationary solutions — the nontrivial
stationary branches of (1.1), are not globally parametrized over « any more.

There are several ingredients to our analysis. The gradient structure of
(1.1) guarantees that all orbits tend to equilibrium via the functional

Vw:= [Gui—F@)dx, F'(s):=f(s),

O ey

d PO
0 V(u(t, )= —E[u, dx

(cf. [8]). Another (discrete) functional is the zero number z. For continuous
@: [0, 1] — R, the zero number z (¢} i1s the maximal integer n < oo such that
there exist 0 < x4 < x; <...<x, <1 with

e(x)e(x;) <0 (0<i<n),

z(0) := 0. By maximum principle arguments [2, 11, 147, ¢t — z(#(t, -)) is dec-
_ reasing along solutions w(t, ) of

(1.6) t = Uy +g(x, ),
(1.2 @, 0 =a(, 1)=0

provided g(x, 0) = O for all x. As an example consider a hyperbolic stationa-
ry solution » of (1.1), (1.2). By “hyperbolic” we mean that zero is not an
eigenvalue of the linearization L at v,

(1.7) Lu:=ug+ f'(v(x)u,
(1.8) u(0) = u(l) = 0.

Let W*(v) resp. W*(v) denote the unstable resp. stable manifold of » [8] and
let i(v) : = dim W"(v) denote the instability index (Morse index) of v. If u i1s a
solution of (1.1), (1.2) then #:=u—v is a solution of (1.6), (1.2) with
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g(x, @) := f(u+v(x))—f(v(x), and z(u(t, )) is decreasing. Using this fact,
it was proved in [2] that

(19) z(ug—v) <i(v) for any uyoe W"(v),
. z(up—p) 2 i(v) for any uge W*(v)\{v}.

As another relation between [ and z we mention
(1.10) iwe{z(v), zw)+1}

for v #0.
For hyperbolic stationary v we define
(1.11) Q(v):= {w|v connects to w # v}
and for 0 <k <i(v) _
v, is the stationary solution # with z(f) =k such that #(0) > |[v'(0)| is
minimal,
v, is the stationary solution ¥ with z(#) = k such that ¥ (0) < —|v'(0)| is
maximal.
With this notation we can state our main result.

THEOREM [3]. Let f satisfy assumption (1.4) and let v be a hyperbolic
stationary solution of (1,1), (1.2). Then v connects to other stationary solutions
as follows.

() If v=0, or if v#0 and i(v) = z(v), then
Q) = {1, 5|0 < k <z(v)}.
(i) If v(0) >0 and i(v) = z(v)+ 1, then
Q)=0,uUR,U 0,

where
Q, = {EkIOSk SZ(”)}:
Q, = {5 |0<k <z(v)}, and either
&y = nlk =z(v)} or
Q4 consists of one or several stationary solutions
w with —v'(0) < w'(0) <v'(0).
(i} If v'(0) <O and i(v) = z(v)+ 1, then a corresponding statement holds
with f(s) replaced by —f(—5s).

In the remaining sections we illustrate some aspects of the proof of the
theorem. In § 2 we use topological degree theory to show that for any
stationary v, any e {—1, +1} and any 0 < k <i(v) there exists a stationary
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w such that v connects to w and
(1.12) zw—-v)=k, o(w(0)—v'(0)>0.

In § 3 we identify those w to coincide with the v,, v, introduced above.
However, in one case ((ii), i(v) =z(@w)+ 1, k =z(v), 6 = —1) our analysis is
not complete and this accounts for the awkward alternative for Q,. Finally,
§ 4 indicates some further generalizations and open problems.

Acknowledgement. The second author wishes to express his gratitude to
the Stefan Banach Center for all the kind hospitality, and to Renate Schaaf
for her interest and her valuable suggestions.

§ 2. Existence of connections

Let the assumptions of the theorem be satisfied. For a hyperbolic stationary
v we take a small n-sphere 2" in its unstable manifold W"(v), i(t) = n+ 1.
Below, we construct a continuous map

y: Z o S

of 2" into the standard n-sphere in R"*' such that, given uge X" and y(u),
we can reconstruct z (u(t, -)—v) all along the positive semi-orbit through u,.
By a homotopy argument we show that y is not homotopic to a constant,
and hence surjective. Picking u, such that y(uy)) =0e, and w:=
lim,_, . u(r, ) we establish the existence of a connection from v to w
satisfying (1.12). For simplicity of presentation we restrict our attention to
the special case v =0 which does require the crucial arguments.

We construct the y-map. For uyec X, ug # 0, z(uy) = n, with orbit u(r, ),
define r,€[0, o] to be the first time such that the zero number z(u(r, -))
drops to the k-level or below:

(2.12) tee=inf it > 0|z(u(t, ")) <k}, 7,:=tanhre[0, 1].
Note that 0 =1,<1,_; €...<1,. Further we define

(2.1b) @o(to)i=1To, Yolto):=(1—90"?,

and for k> 1, 1, >0,

(2.1c) =T/ W= (1—-90)"2,

(2.1d) o= {;ignu,(t, 0), te(ty, ti—q) i; 2: : i

The sign o, is well defined because u,(f, 0) # 0 for ¢, <1, t;, <t <t,_,, by
the maximum principle. The components of the map y = y(ug) = (Vg, ---» Vu)
are defined as

(2.2) Yo 1= 0o¥o, Ve =0 W Qo Py y -
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In case z(ug) =k <n ie. 0=t,=...=¢ <t-; <...<t, we extend the
definition of y by putting y,,;, =...=y,=0; yo, ..., ¥ are well defined
above.

To illustrate the meaning of y suppose y = ge,, where ¢, denotes the kth
unit vector, o€ {—1, +1}. This implies Yo =... =9, _, =0, g = ... = @,
=LyYy,=1¢,=00,=0 Hence to=...=t,., =00, t, =0 and z(u(t, )

=k, ou,(t,0)>0forall t >0. Let w:=1lim,_, . u(t, -). Then w is stationary
and satisfies (1.12) by the above observations. In general y determines all
te, 0y, and therefore z(u(¢, -)), uniquely.

Let # denote the set of CZ2-functions f satisfying assumption (1.4)
endowed with the strong Whitney topology [10].

Lemma 2.1, y: {ug|z(ug) < n, ug # 0} x #F — 8" is a continuous mapping.

The proof of Lemma 2.1 uses the fact that given uy # 0 with z(ug) <
the set

G:={t 2 0|u(t, ') has only simple zeros}

is open and dense in [0, c0). This fact again follows from maximum
principles (cf. [2, 11, 13]).

Now consider the trivial solution v=0 ol (1.1),.- Let «,:=
(n+1)*n2/f'(0), n = 0, denote the bifurcation points of the trivial solution.
Then i(v=0)=n+1 for a, <a <a,,,, and by 2" we denote a (small)

n-sphere in W*(v = 0).
LeEMMmA 2.2. y: X" — 8" is essential, i.e. v is not homotopic to a constant.

Proof. We prove the lemma by induction on n. For n =0, 1e. a2y <x
<y, the unstable manifold is one-dimensional and tangent to the first
(positive) eigenfunction @, of the linearization L at v =0. Hence g,
= +signP,(0) = +1 depending on whether we start in direction +@, or
—&,. By (1.9), t, =0, and y = yo = g, 1s bijective, hence essential.

Suppose now the lemma is already proved for n—1. By Lemma 2.1 all
y-maps for ae(a,, a,+,) are homotopic. Hence it is sufficient to prove that y
is essential for « = x,+5, 0 <s < 1, by the homotopy invariance of degree
(cf. [6]). Let i, >...> 4, > ... denote the (Sturm-Liouville) eigenvalues
of the linearization (1.7), (1.8) at v = 0 with eigenfunctions @y, ..., @,, ...,
@;(0) > 0. As s = 2 —a,, increases through zero, 4, also increases through zero
and the dimension of the unstable manifold increases by 1. Let 2" ! resp. X"
denote a small sphere in W'(v=0) at a =a,+s for —1 €s <0 resp.
0<s < 1. Moreover, X"~ can be continued to 0<s <1 to become a
(topological) equator in Xj. Indeed, for 0 <s <1 there is an invariant
submanifold W,_,(v =0) of W'(v =0) with dimension n, tangent to
(P, .... P, >, which consists of those uy with

o)
A PITAS!

e<¢0! s ¢n—l>'
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Take X"~ ! to be a small sphere in W}_,. By [2], z<n—1 on W ,. Again
by [2], uge W*\W,_, implies
u(t, °)
(e, )
To utilize the above observations, let

yei Zi o 8"

= +¢

denote the restricted y-map for 0 <s <1 (z < n on X7 by (1.9),
E:'i L= {“OGZ?I lim u(e, )u(e, ) = i¢n} Uzg_l

r—+— @

the (closed) hemispheres,
Sni .= {(y0> ey yn)esnl iyn 2 0}
the standard hemispheres, and

§* = {(yo, ---» YES"yn =0}
the standard equator. Then

ys: Z: _,Sﬂ,
gt -84,
InT 8,

ARSI Y ab i s

ES
Now y?~! continues through s = 0 and is essential by induction hypothesis
and the homotopy invariance of the degree deg y?~' # 0. Let us consider the

Mayer—Vietoris sequence for y,, [6]:
0 — = Ha i) — o H, (L2 —Hy (2O @ Hpy(2D27)

deg y, deg y,"’

0 —= HalS") —=H,4(S"") —= H, STV @ H, (S

The homology of hemispheres is trivial, the other homologies are just Z,
hence

degy, =degy; ' # 0
and y, 1s essential [6]. This completes the induction step and the proof of the

lemma. =

As was indicated above, y essential implies that v connects to a w such
that (1.12) holds. In general, additional preparations are needed for v # 0.
First we approximate f by generic f,e % such that each f, displays only
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standard saddle-node and (at v = 0) quadratic bifurcations [1, 12, 18]. It is
sufficient to establish connections for these generic f,. Now we consider the
y-maps associated to u(t, -)—v. By exchange of stability, we may continue
spheres 27 and their associated maps y,, even across bifurcation points, along
continuous paths of stationary solutions provided i(v) does not change. At
saddle-node bifurcations we resort to a Mayer—Vietoris argument as outlined
above for v =0. Thus we obtain Lemma 2.2 all along the connected
component of the trivial solution in the (a, v) bifurcation diagram. But all
other components can be connected to («, 0) artificially, if we introduce an
additional homotopy f; from f, = f to some f; satisfying the Chafee-Infante
assumption (1.5) in addition to (1.4). The details will be given elsewhere.

§ 3. Excluding connections

Let assumption (1.4) on f hold and suppose v is a hyperbolic stationary
solution of (1.1), (1.2). Let 6e}{—1,1}, 0<k <i(v). In § 2 we have shown
that » connects to a stationary w such that

(1.12) ziw=v)=k, o(w(0)—2v'(0)>0.

Now we present criteria which rule out certain connections of equilibria.
These criteria are applied to identify w in accordance with our theorem.
Excluding connections boils down to two basic lemmata.

LemMmMa 3.1. Let v, # v, be two stationary solutions of (1.1), (1.2). Then
(3.1) [0 (0)] 2 [02(0)] = z(v, —v2) = z(vy).

LemMa 3.2, Let v, W, w be three distinct stationary solutions such that
w'(0) is between v'(0) and w'(0). Assume

(3.2) z(v—w) < z(w—w).
Then v does not connect to w.

The proof of the first lemma involves a phase plane analysis of the
Hamiltonian system which describes stationary solutions of (1.1). In fact the
v,-trajectory cannot lie outside the v,-trajectory, and v, (x) intersects v,(x)
precisely once between any two consecutive zeros of vj (x).

The proof of the second lemma is indirect. If u(¢, -) connects v to w, then
z(u(r, -)—w) is decreasing and hence constant by (3.2). This implies sign (v’ (0)
—w'(0)) = sign(w'(0)—w(0)) (cf. the definition of &, in (2.1d)) which is a
contradiction.

We illustrate the contribution of these lemmata to our theorem for case
(i), v'(0) >0, i(v) =z(v)+ 1.

First suppose 0 <k <z(v) and ¢ = —1. Then z(v—w) # z(v), hence
lv'(0)] < |w'(0)] by contraposition of Lemma 3.1. By v'(0) >0, ¢ = — 1, this
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means
(3.3) w0 < -v(0), zw=z(w—v)=k.

On the other hand, v connects to w. Therefore w is the stationary solution
satisfying (3.3) with maximal w'(0), i.e. w =,, by Lemma 3.2. The case ¢ =
+1 is analogous.

Now suppose k =z(v) and ¢ = + 1. Then 0 < v'(0) < w'(0), v connects
to w, and w = 1, by Lemmata 3.1, 3.2 as before. However, the case ¢ = — 1 is
quite different this time. If w'(0) < —v'(0), then w = v, as above; moreover, v
does not connect to any stationary w with w’'(0) between v'(0) and w’'(0), or
else z(w) € z(v) and using Lemma 3.1

z(v—w) < max(z(v), z(W)) =z(v) = z(w) = z(W—W)

which contradicts Lemma 3.2. If —2'(0) < w'(0) <v'(0), we are unable to
identify w by the means above. Hopefully you will not accept our apologies
and try 1t yourself.

§ 4. Generalizations

We try to drop assumptions or sharpen our conclusions. Consider assump-
tion (1.4) first. Certainly f(0) = 0 may be perturbed by an f-homotopy f; to
f(0) # 0. We briefly indicated such a procedure at the end of § 2, keeping
f(0) =0 there. A more thorough account is given in [3]. Dropping
liTnf(s)/s < n? may force some stationary branches of (1.1), to become
unbounded for finite «. If 3, or v, happen to have escaped that way, we will
observe a trajectory u(t, ) with z(u(t, )—v) =k in W*°(v) which becomes
unbounded - possibly in finite time.

Our approach does not teli anything geometric about the “number™ of
trajectories connecting v to w. This problem was solved by Henry [9], also
without convexity assumption (1.5). Assume some additional regularity of f,
and suppose v and w are hyperbolic, v connects to w. Then the set of
connecting orbits

C(v, w):= W' (v) n W (w)
is a manifold of dimension
dim C(v, w) = i(v)—i(w);

in fact W"(v) and W*(v) intersect transversely. The case of v, w 1solated but
not necessarily hyperbolic is also analyzed in [9]. Using this information it
should be possible to work out the connections of any isolated, not necessa-
rily hyperbolic v.

We may change the boundary conditions (1.2) to Neumann or mixed
type conditions. Then the zero number z(u(r,)—v) remains a decreasing
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functional and the topological considerations of § 2 apply cum grano salis. In
§ 3, Lemma 3.1 becomes false, e.g. for Neumann conditions, and we have to
use some other ordering of stationary solutions, e.g. by their boundary values
v(0). This should yield results similar to our theorem.

Again, we emphasize that we were unable to determine the connections
in 2, more precisely. We have some additional but incomplete information
in various special cases. Each alternative of 2, does occur for distinct choices
of f. An explicit class of nonlinearities /' where our theorem describes all
connections is revealed in [15], cf. also [17].

Finally, nothing global is known for higher dimensions of the space
variable x or ol u (systems). We lack an analogue of the zero number z{¢).
Within the class of rotationally symmetric solutions in a ball, the problem
seems tractable. However, introducing polar coordinates this is essentially the
one-dimensional case again.
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