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Let A be a [inite-dimensional basic and connected algebra over an algebraically closed field.
Assume that the ordinary quiver ¢, of 4 has no oriented cycles. Let g, be the Tits form of A. If
A is tame, then g, is weakly nonnegative [20]. Moreover the converse has been shown for some
families of algebras [16, 20, 21]. We study the algebras A for which g, is hypercritical, that is, every
restriction of g, is weakly nonnegative but g, itsell is not. We show that for a Schurian, A-free
algebra A satisfying the (S)}-condition, its Tits form q, is not weakly nonnegative if and oniy if
A has a [ull convex subalgebra A4, such that g, is hypercritical. A Schurian, A-free algebra
A satisfying the (S)-condition has a hypercritical Tits form g, if and only if 4 is concealed of
a minimal wild hereditary algebra.

Let k be an algebraically closed field. Let A be a finite-dimeasional, basic
and connected k-algebra. Let Q = Q, be the ordinary quiver of A and let
A = kQ/N for an admissible ideal N of kQ (see [11]). In this work we assume
that Q has no oriented cycles.

In [4] the Tits form q, of A was introduced as the quadratic form g,:
Z9% 7 given by

qa(2) = 2 z(x)*— ) z(x)z(y)dim,Exty(S,, 5,)

xeQo x,yeQo

+ Y z(x)z(y)dim, Exti(S,, S,)

x1yEQ0

where Q, is the set of vertices of Q and S, is the simple A-module associated
with xeQ,. In [20] it was shown that a tame algebra A has a weakly
nonnegative Tits form q, (that is, q,(z) > 0 whenever z has nonnegative
coordinates). The converse of this result has been shown for some families of
algebras [16, 20, 21].

This paper is in final form and no version of it will be submtitted for publication elsewhere.
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Given a quadratic form q: Z"—»Z of the shape

q(z) = Y z()*+ }. a;;z()z(j)
i=1 i<j
and a nonempty subset I = {i,...,i,} ={l,...,n} we denote by ¢’ the
quadratic form gqd,, where d,: Z™ - Z" maps the kth natural basis vector ¢,
onto e, € Z"; q' is called a restriction of q (see [15]). The quadratic form g is
called hypercritical (von Hohne’s terminology) if every restriction of g is weakly
nonnegative but q itself is not. Clearly, a quadratic form g is not weakly
nonnegative if and only if there is a restriction g' which is hypercritical.

In Section 1 we make some remarks concerning weakly nonnegative
quadratic forms. We show that it is easy to decide whether or not a quadratic
form is weakly nonnegative. In particular, we give some characterizations of
hypercritical forms (partly a reformulation of [25]).

We say that A is good if A is Schurian, satisfies the (S)-condition and is
A-free (see [3, 6]). We conjecture that if a good algebra A has a weakly
nonnegative Tits form g,, then A is tame.

In Section 2 we show that a good algebra A has a Tits form g, which is not
weakly nonnegative if and only if A has a convex (good) subalgebra 4, such
that g, is hypercritical. Therefore, if our conjecture is true, there is a criterion
for tameness using the good algebras with hypercritical Tits form similar to
that given by Bongartz for representation-finite algebras [6].

In Section 3 we show that a good algebra A has hypercritical Tits form if
and only if A is concealed of a minimal wild hereditary algebra A (that is,
A = kA where 4 is a quiver whose underlying graph 4 is a hyperbolic
diagram). This result is the hypercritical counterpart of the critical result given
in [14].

Given any matrix A we write A > 0 (resp. A > 0) if all elements of 4 are
nonnegative (resp. positive).

Sometimes we will treat A as a k-category [7], therefore we may speak of
full subalgebras, convex (= path closed) subalgebras,...

The category of finitely generated left A-modules is denoted by mod 4. An
object MemodA is simply called a A-module. The dimension vector of
MemodA is dimM = (dim,xM),.q,.

The Auslander-Reiten quiver of A is denoted by I' ,, the Auslander—Reiten
translation by 7.

For notions and notations not explicitly given the reader is referred to
[117 and [23].

1. Some remarks about weakly
nonnegative quadratic forms

1.1. We start recalling some facts about the Tits form of an algebra. Let
A = kQ/N be as above. Let Q, be the set of vertices of Q and Q, the set of
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arrows. The trivial path of the vertex xeQ, is also denoted by x. Let
L < | Jx.yego y¥Nx be a minimal set of generators of the ideal N. For each couple
X, Y€, we set {(x, y) = cardinality of LnyNx. In [4] it is shown that the Tits
form q,: Z%°—Z is given by

2,2 = Y z(x)= 3 zx)z(p+ 3 (x, y)z(x)z(y).
xeQo (x—=>v)eQ, x.yeQo
Let A, be the (symmetric) matrix associated to q,, that is, q,(z) = 3(z4 )
(z' denotes the transpose of the —row—matrix z). We get a bilinear form
(w, 2}, = wA ,Z".

1.2. By ind A we denote the (variety) of all indecomposable A-modules of
k-dimension d. Following [9], we say that ind, A is parametrizable if there is
a finite family M,,...,M_, of A-k{x]-bimodules such that M, is a finitely
generated free right k[x]-module and every module N €ind A is of the form
N =~ M;®yx(k[x]/(x—4)) for some ie{l,...,s} and iek.

The algebra A is called tame if ind, A is parametrizable for every de N. In
[20] the following result is shown:

PROPOSITION. If A is a tame algebra then q, is weakly nonnegative. m

Although the converse 1s not true [5], 1t holds for some “good™ classes of
algebras:

(a) Tilted algebras [16]: let A be a tilted algebra; then A is tame iff g, is
weakly nonnegative.

(b) One-point extensions of tame concealed algebras [20]: let A, be
a tame concealed algebra not of type A,, and let R be an indecomposable
Ag-module; then AG[R] is tame iff q,,z) 1s weakly nonnegative.

(c) Iterated tubular algebras [21].

Therefore, the problem of knowing whether or not g, is weakly non-
negative imposes itself. In the remaining part of this section we give some
(maybe well-known) criteria for a quadratic form to be weakly nonnegative.

1.3. A unit form [15] is a quadratic form g: Z" > Z of the shape

q(2) = ), z()*+ ) a;z(i)z(j).
i=1 i<j

The unit form gq is called critical if every restriction of q is weakly positive
but g itself is not. By a theorem of Ovsienko [197 (see also [23] and [15]) we
know that a critical form g is nonnegative and the radical radg = {ze Z":
q(z) = 0} is of the form Zz, where z, is a vector with positive coordinates. We
call z, the positive generator of radqg.

For any nonempty subset I = {i,, ..., i,} we get the restriction g’ = qd,:
Z" - Z. For a vector ze Z™, we also write z° = d,(z) (the completion by zeroes).
By A, we denote the (symmetric) matrix associated with g, that is,
q(z) = 4(zA,Z'). We write (z, w) = z4,w".
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If I={1,...,n}—{i} we write ¢ instead of ¢".
PROPOSITION. Let q be a unit form. The following are equivalent:

(a) g is weakly nonnegative.

(b) For every restriction q' of q, if q" is critical with v the positive generator
of radq’, then v°4, > 0.

Proof. (a)=>(b). Assume q' is critical and voAq has its jth component
“negative. Then 0 < 20°+e¢;€Z" and q(2v°+e) = 49(1°)+2(v4,€}) +1 < 0.

(b) = (2). Assume (b) and let g be a counterexample with minimal n. Let

0 < z be such that g(z) < 0. As g is not weakly positive, there i1s a critical

restriction g'. Let v be the positive generator of radq’. We can find a number

0 > aeQ such that 0 < z+av” and (z+ av®)(j) = O for some je {1,...,n}. Then
(b) is satisfied for ¢¥ and ¢'’(z+av®) < av®4,z' <0, a contradiction. =

COROLLARY. The unit form q is weakly nonnegative if and only if 0 < q(z) for
every ze[0,12]".

Proof. This follows from the proof above and the fact that z, (i) < 6 for the

coordinates of the positive generator z, of ragq’ of a critical form g’ (see [15,
19]). m» '

COROLLARY. Let q be a unit form which is not weakly nonnegative. The
following are equivalent:

(a) g is hypercritical.

(b) For every restriction q' of q, if ¢' is critical with v the positive generator
of radq’, then there exists some i€ {1,...,n} such that IL{i} ="{1,...,n} and
(v% e) < 0.

Proof. (a) = (b). By the Proposition there is a critical restriction g’ with
o the positive generator of radg’ satisfying (w° ¢, < 0 for some je{1,...,n}.
Again by the Proposition, J = {1,...,n}—{j}. If v()=0, then J =T and
v=o. If v(j) #0, we get

0> v(j)(w° e) = (@°% v°) = ) w(H(° e).
i=1
Hence, there is some ie{l,...,n} with (¢% ¢) <0. It follows that
I={1,....n}—{i}.
(b)=(a). If a proper restriction g’ is not weakly nonnegative, there is
a restriction ¢’ with J < I such that g’ is critical, a contradiction. m

1.4. The following result provides yet another combinatorial description
of weakly nonnegative quadratic forms.

PROPOSITION [25]. Let q: Z" — Z be any quadratic form. The following are
equivalent:

(a) g is weakly nonnegative.
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(b) For any principal minor B of A,, either detB = 0 or the adjoint matrix
ad(B) of B has at least one negative element. m

We are indebted to W. W. Crawley-Boevey for pointing out the paper [25]
to us. The main step in Zel'dich’s proof ds the following:

LeMMA [25]. Let q: Z" - Z be a hypercritical quadratic form. Then g is
nonnegative for every ie{l,...,n}. =

1.5. We, get some other characterizations of hypercritical forms. The
equivalence (a) <> (c) below is mainly a reformulation of 1.4 (in particular, it
holds for any quadratic form).

PROPOSITION. Let q: Z"— Z be a unit form. The following are equivalent:

(a) q is hypercritical.

(b) There is a vector z,e ZL" with q(z,) < O and for every vector ze Z" with
g(z) <0 we have z 20 or 0 > z.

(c) ad(A4,)) =0, det4, < 0 and for every proper principal minor B of A,,
detB > 0.

Proof. (a) = (b). As g is hypercritical, by 1.3, there is a critical restriction ¢
of ¢ with v the positive generator of radg’ and a je{l,...,n} such that
(t°, e) <0 and IU{j} ={1,...,n}. |

Let zeZ" be such that g(z) < 0. If z(j) = 0, then ze Z1°. Assume that
z(j) > 0. Let i # j and let aeQ be such that (z+av®)(i) = 0. By Lemma 1.4,
0 < q(z+av°) < a(z, v°) = az()(v° ¢)). Thus a <0 and z(i) > 0.

(b) = (a). If g is not hypercritical, there is a vector 0 < z but not 0 < z such
that q(z) <0. Let j be any index with z(j)=0. Choose neN with
nq(z) < (z, e)—1. Then

gnz—e) = n*q(z)~n(z, e)+1 < 0.

(a) = (c). Since ¢"” is nonnegative for every ie{l,...,n}, it follows that
det B > 0 for every proper principal minor B of 4, (see [9]). If also detA4, > 0,
then g would be nonnegative. Therefore det4, < 0. '

Let ad(4,) = (v},...,vs) with 1,(j) < 0. Let 0 < ze Z" be such that q(z) < 0.
There exists a number 0 < aeQ such that (z+av)(j) = 0. Then by 1.4,

0 < q(z+av) < a(z, v)+a*q(v)
= az(i)det A, +a*det A wdet 4, <0,
a contradiction. Thus ad(4,) = 0.
()= (a). Since detB > 0 for every principal minor of A, it follows that
q" is nonnegative, i = 1, ..., n. Since ad (4,) > 0, by Frobenius’ theerem [12],

there exist a number 0 < r and a vector 0 < z # 0 with ad(A4,)z' = rz'. Then
rq(z) = rzA,z' = z4,ad(A,)z' = detA,zz' < 0. Thus ¢(z) <0. =
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2. Good algebras with weakly
nonnegative Tits form

2.1. Let A = kQ/N be as in the introduction. For every x € Q,, we denote
by P, the indecomposable projective A-module associated with x, that is,
P, = Ax. The module P, is said to have a separated radical if the supports of
any two nonisomorphic indecomposable summands of rad P, are contained in
different connected components of the subquiver @, of Q obtained by deleting
all those vertices j such that there exists a path from j to x. If all the
indecomposable projective A-modules have separated radical, then A is said to
satisfy the (S)-condition [3].

The algebra A is said to be Schurian if dim, yAx < 1 for each couple
x, yeQ,. It is said to be A-free if there exists no full subalgebra A’ of A such
that A" =, kQ’ where the underlying graph of Q' is A (m = 1).

In this work we call an algebra A good if it is Schurian, A-free and satisfies
the (S)-condition. The following facts about good algebras are relevant:

(a) A representation-finite algebra A is simply connected if and only if it is
good [3].

(b) A simply connected, Schurian, A-free algebra is good. Therefore the
study of a large class of algebras may be reduced to the study of good algebras
using covering techniques (see [1, 18]).

(c) If A 1s good, the opposite algebra A°P is good.

(d) If A" is a full convex subalgebra of a good algebra A, A’ is good [6, 8].

(e) If A is a good representation-infinite algebra, then A contains a full
convex subalgebra which is tame concealed of type D, or EP (p=6,7o0r8)[5,
6, 14].

2.2, The aim of this section is to prove the following:

THEOREM. Let A be a good algebra. Then the Tits form q, is not weakly
nonnegative if and only if there is a full convex subalgebra A, of A such that q ., is
hypercritical.

The “if” part of the statement is clear: the quiver 0, of A, is a full
subquiver of Q (= Q). Let I be the set of vertices of Q , ; then g, = ¢ and g,
is not weakly nonnegative.

The “only if” part will be shown after some technical lemmata.

23. LeMMA. Let A = kQ/N be a good algebra. Then Q does not admit full
subquivers of the form shown in Fig. 1.

Proof. Assume that A is a counterexample with a minimal number of
vertices. Consider a full subquiver of Q as in Fig. 1 such that x is maximal in
the order in Q given by the oriented paths. By minimality, the full convex hull
of a in A is A itself (notation: A = [«]). Since P, has separated radical, we get
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Lol
W\

Fig. 2

Fig. 2 with m,Ax # 0. Since se[a], there is a path from s to y, and we get
a contradiction with the maximality of x. =

2.4. The following lemma is similar to [15, 3.3].
LEMMA. Let A = kQ/N be a good algebra. Assume in Q we have a walk

Xo o x, L —xe_ Bx s=2

5?
(where the edges o; are arrows in some direction) satisfying:

(@) There is a path (= oriented walk) from x, to x;.
(b) There are no arrows connecting x; and x; if |i—j| = 2.
(c) lx;, x;) =0, for every {i, j} # {0, s}.

Then the walk has the shape

a) az ds
XO >.\’| *...—>x5_1—>xs.

Proof. Assume the result fails and let A be a counterexample. Therefore,
there is a full subquiver @' of Q with 0 <5, <s, < ... <§5_; <5, =35, 1 <t
odd, of the shape shown in Fig. 3 and satisfying:

1) There is a path xy =y, 2oy, £ .. Aoy =x, rz 1.

2) I(x;, x;) =0, for any two vertices x;, x; connected by a path in Q"

Among all the subquivers of Q with these properties we choose one with
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Q"

Xq Xs, Xsp_y

‘ /
X5, 41
s, 2 sy, +1
x xsf_' -1
\ . . - )
- . .-
e
a
s, 42 S¢
s,
Xs1

X5, =X
Fig 3
minimal number of vertices. Then 0 < s,, 5,-; < s and the full convex hull A’ of
Q' in A has as quiver the union of Q' and of a quiver Q" with unique source x,,
unique sink x, and such that Q'nQ"” = {x,, x,}. As A’ is again good (2.1), we
may assume A = A"
Since x,,_, -, and x, are connected in Qx,, _,, by the (S)-condition we get
the situation of Fig. 4 with m;Azy # 0 £ mNz, for i = 1,...,a. Therefore,

Z0=Xs, 4

— \\J
N

z =‘xsf_1—1

Z

[ \Y

z =m Xg =My
Fig. 4
there is some je{l,....[} such that I(x, ,, z)#0 and the path
Xs,_, = Zg—2Z;~...—z; cannot be contained in Q. Assume z,=x,_,,
Zy,....2, are iIn @' and z,,, is not.
d_.
xp Zp=Xst -0

Y;\ /\ VA
\ / /@,_W

X5 *s¢-2

Fig. §

We consider the quiver Q of Fig. 5 which satisfies:
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1) There is a path x,— ... =»z,,, since A = A",
2) l(x;, x;) = 0 for any two vertices x;, x; connected by a path in @ (that
I(z,, z,+1) = O follows from 2.3).

By construction Q has less vertices than (', a contradiction. =

2.5. Let A, be a tame concealed algebra and let v be the positive generator
of radg,,. Let R be an indecomposable A,-module. Consider the one-point
extension A = A,[R]. For the new vertex x in Q, we get radP, = R.

LEMMA. With the above notation, R is a preprojective Ay-module if and only
if (1% e), <0.

preprojective, then gldim A < 2. Since e, = dim P, —dim R, we have
1

®° e), = Y (—1ydimExty(S,, V) = —dimHom,,(R, V) < 0.

i=0

Conversely, assume that (v°, e,), <0. Since gldimA,[R] < 3 we get

2
0> (°, e, = Y0°()( Y (—1)dim Exty(s,., S,)
y i=0
> i(—l)‘dim Exti(S,, V)
i=1

= — \i (— 1)'dim Ext!,(R, V)

i=0
= —dimHom (R, V)

and therefore R is preprojective. =

2.6. We get a first insight into the structure of good algebras A with
hypercritical Tits form.

LeEMMA. Let A be a good algebra with a hypercritical Tits form q,. Then
there is a full convex subalgebra A, of A which is tame concealed and
an indecomposable Ay-module R such that A has one of the following forms:
A = A,[R] (one-point extension of A, by R) and R is A,-preprojective, or
A = [R]A, (one-point coextension of Ay, by R) and R is A,-preinjective.

Proof. By 2.1(e) there is a full convex subalgebra A, of A such that A, is
tame concealed. Then q,, is a critical restriction of q,. If v is the positive
generator of radq, , by 1.3, there is a vertex x satisfying (v°, e,), < 0 and
Qo = (@4.)0 U {x}. Therefore, x is extremal in Q.

Assume that x is a source in Q. By the (S)-condition, R =radP, is

Ay-indecomposable. Thus 2.5 says that R is A,-preprojective. The other case is
dual. =
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2.7. Proof of 2.2. We just have to show the “only if” part of the result. So,
assume that g, is not weakly nonnegative. There is a restriction g% of g, which
is hypercritical. By 1.3, there is an index yel such that for J = I—{y}, the
restriction ¢’ is critical and if v is the positive generator of radq’, then
% e), < 0.

Using 2.4 we may repeat the argument in [15, 3.4] to get g% = q,,., for
some tame concealed algebra A’. Observe that the quiver Q,. of A" is a full
subquiver of Q@ and if A" = kQ ,/N’, then dimyN'x = dimyN x for x, ye(Q ,.),-
We distinguish three situations:

(a) A’ s not full convex in A. In this case there exists a proper full convex
subalgebra A, of A such that g, is not weakly nonnegative; the result follows
by induction. The proof of this claim is done by an easy inspectton of the list of
tame concealed algebras using the following remarks:

(1) If there is a path x = x, -2 x; — ... 2 x, = y with x, ye(Q, ), and
no x; (ie{l,...,s—1}) in Q,, then there is a walk in Q, of the shape

X=yo<—y1<—...<—yp—>yp+l—>...-’yq‘—yq+l<—...<—yt=y

and with I(y,, y,) # 0. Moreover, there is only one path joining y, and y, in
Q,.. This is checked in each case using 2.4 and the (S)-condition.

(2) In the cases allowed by (1), the result is shown using 1.3. Here we give
a typical example: let A be given by the quiver with relations shown in Fig. 6.

4

/

3
[}
1

NS

L

SN
/

8

/

9 .
Fig. 6

Let J = {1,2,...,8,9}. Then g7 is a critical form given as ¢} = g,. for the
tame concealed algebra A’ = A/A(10)A4 which is not full convex in A. But
A, = A/A(9)A is convex in A4 and g, is not weakly nonnegative (since for
I={1,2,...,7,10} we get q4, critical and if v is the positive generator of
radqh,, then (v° eg) = —1).

(b) Let Q7 be the full subquiver of Q with vertices in I. Assume that Q' is
convex in Q. Then consider the full (convex) subalgebra A, of A with quiver Q'.
Clearly, ¢! = q,,.

(c) A'is full convex in 4 and Q' is not convex in Q. Since (v°, e), <0, we
may assume the existence of an arrow y =y, % x, with x,€J.
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Without loss of generality we may assume that A’ is cofinal in A, that is, if
teJ and there is a path from ¢ to s in Q, then seJ. Applying the (S)-condition
we find a sequence of arrows y;, 25 x;, and vertices s;;,...,5;,., M, .., M

(I<r,g4)fori=0,...,m (see Fig. 7) satisfying: s;;, m;;eJ, y,eQ,—J and

. \ §
X; =%y Si2 ses Sir Yitr
l l lai+1
. . . X
my mn, -1
Fig. 7

m;;Ay; #0. If we choose a maximal sequence with these properties, then
Ju{y,} is convex in Q. Therefore, if (v° e, ), <0, we are done (case (b)).

Assume that (29, e, ), = 0. For each i =1,...,m, let R; be the unique
indecomposable A’-module which is a direct summand of Hom ,(A’, radP,)
satisfying R;(x;) # 0. Then Hom ,(R;.,,R)#0 for i=0,...,m—1.

By construction, A,, = A'[R,,] 1s a full convex subalgebra of A. Thus
(t°, ey, ), =0 and by 2.5, R,, is not A’-preprojective. We conclude that R, is
not A’-preprojective.

Let e =) re0o-wopep X and A = A/AeA. Then A" is a full convex sub-
algebra of A and A = A'[R,] where R, =radP, and P, is the indecom-
posable projective A-module associated with y, (observe that R, is possibly
decomposable). Clearly,

0> (0%, e,)4 = (%, e,)1.

Therefore, by the argument given in 2.5, there is an indecomposable direct
summand R’ of R, which is A'-preprojective. Since there is an arrow y, % x’
with R'(x') # 0, we may start with x, = x". But then we get Hom ,.(R,, R"} # 0
and R’ cannot be a preprojective A'-module. This contradiction finishes the
proof. m

2.8. The following consequence of 2.2 shows that in fact there is a close
relation between weak nonnegativity of g, and tameness of A.

PROPOSITION. Let A be a good algebra. The following are equivalent:

(a) q, is weakly nonnegative.
(b} For every full -convex subalgebra A, of A such that A, is a one-point
extension or a one-point coextension of a tame concealed algebra, A, is tame.
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Proof. (a) = (b). Since A, 1s full convex in A, q,_is weakly nonnegative. By
[20], A, is tame.

(b) = (a). If g, is not weakly nonnegative, by 2.2 there is a full convex
subalgebra A, of A such that g, is hypercritical. By 2.6, A, is a one-point

extension or a one-point coextension of a tame concealed algebra and by [20],
A, should be wild. =

2.9. For good algebras we get an improvement of [20, 1.3].

PROPOSITION. Let A be a good algebra. Assume that ind; A is parametrizable
for every d < 61. Then q, is weakly nonnegative.

Proof. Assume that g, is not weakly nonnegative. By 2.2 there is a full
convex subalgebra A, of A such that g, is hypercritical. It is enough to show
that ind A, is not parametrizable for some d < 61.

By 2.6 we may assume A, = A'[R] where A’ is tame concealed and R is an
indecomposable preprojective A’-module. Let v be the positive generator of
radg,. and let ye(Q,), be such that R =radP,.

Let (V,) be a family of indecomposable simple regular A’-modules such
that dimV, = v for every Aek and V, i‘»Vu for 2 # u. Then we may choose
morphisms 0 # ¢, e Hom ,.(R, V)), for every ick.

The A, = A'[R]-modules can be written as triples (V, W, ¢) where V is
a A,-module, W is a k-vector space and ¢: W — Hom ,.(R, V) is k-linear. For
each couple 4, uek we define the A, -module

Vio = (V,®V,, k, (95, 0,): k—Hom (R, V) x Hom (R, V,)).

It is easy to show that V,, is indecomposable and Vluf»V,l.#. for
{4, u} # {X, u'}. Therefore ind, A, is not parametrizable for

d=2 Y ov(x)+1.
xe(Q ado

If A" is tame concealed of type Ep (p =6,7,8), then a simple calculation
shows d < 61. If A’ is tame concealed of type D,, using the fact that g,z is
hypercritical we get n <8 and d <29. m

3. Algebras with hypercritical Tits form

3.1. In this section we prove the following result.

THEOREM. Let A = kQ/N be a good algebra. The jollowing are equivalent:

(a) q, is hypercritical.

(b) A is wild, but for every vertex yeQ,, the quotient A/AyA is tame
concealed or representation-finite; if A/Ay A is tame concealed, then y is extremal
in Q.

(c) A is concealed of a minimal wild hereditary algebra A, that is, A = k4
where the underlying graph A of 4 is a hyperbolic diagram. Moreover, A is a tree.
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This theorem corresponds to that shown by Happel and Vossieck in the
critical case. The assumption that A is good (or something similar) is necessary
in our theorem as the following example of Kerner [17] shows:

- Let A = A,[R] where A, is the path algebra given by the quiver of Fig.
8 and R is the indecomposable regular A,-module of Fig. 9. Then A satisfies (b)
but it is not concealed and g, is weakly nonnegative.

N LN

Fig. 8 Fig. 9

3.2. An algebra A = kQ/N is said to be minimal wild if A is wild but every
quotient A/Ay A is tame (ye @,). If A = k4 is a minimal wild hereditary algebra
and 4 is a tree, then A4 is one of the diagrams of Fig. 10 (which are called
hyperbolic tree diagrams; here, D, has n+2 vertices and n < 8).

A good algebra A satisfying (a) (to (c)) will be called a hypercritical algebra.
This differs from our previous terminology: in [20], a good algebra A satisfying
(b) was called a wild hyperbolic algebra (equivalence with (c) would also justify
this name).

o/ \o
Es o—o—I——-o—o—o
|
E, .——.——O—T—C——O—o——o

Fig. 10
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The possible frames of hypercritical algebras (using the characterization
(c)) have been classified independently by Lersch and Unger.

3.3. We need some elementary facts about concealed algebras for the
proof of 3.1.

LEMMA. Let A be a concealed algebra. Let e be any idempotent of A. Then
A/AeA is a product of representation-infinite concealed and representation-finite
algebras.

Proof. By [23, 4.3(6)] the Auslander—Reiten quiver I' of A/AeA has
preprojective (resp. preinjective) components such that their union contains all
indecomposable projective (resp. injective) A/AeA-modules. If A’ is a represen-
tation-infinite factor of A/AeA, then I' ;. contains a preprojective component
with all indecomposable projective A’-modules and a preinjective component
with all indecomposable injective A’-modules. By [24, lecture 2], A’ is
concealed. m

34. LEMMA. Let A be a concealed algebra of a minimal wild hereditary
algebra A =kA. If A is A-free, then A is a tree.

Proof. If A is not a tree, there is a vertex ae 4, such that A —{a} = A, for
some m > 3. By [13], there is a vertex ye Q, such that A/AyA is concealed of
type A,. Then A/AyA=3k4d’, where & is a quiver with underlying graph
A=A, It is easy to show that A is not A-free. =

3.5, The next lemma is a consequence of [22] (see also [17]). We include
here a proof for the sake of completeness. Another proof could be done using
APR-tilts [2].

LEMMA. Let A be a concealed algebra of the hereditary algebra A. Then A is
minimal wild if and only if A is minimal wild.

Proof. Let ,T be a preprojective tilting module such that 4 = End (T).
Then we get a torsion pair (9, %) in modA as follows:

¢ =1{,M: Extx}{(T, M)=0}, £ ={,M: Hom (T, M) =0},
and a torsion pair (2, %) in modA given by
X={N T®,N=0}, #={,N: Tor{(T, N)=0}.
Moreover, there are equivalences
Z=Hom (T, —): ¢3%, Exti(T, -y F3%.

Clearly, A is wild if and only if A4 is wild.

Assume that A is minimal wild and let ae(Q ), be such that 4 = A/A4aA is
a (hereditary) wild algebra. We identify mod A with the full subcategory of
mod A with objects {xemodA4: Hom ,(Aa, x) = 0}. There exists n, = 0 such



367

that t;"(Aa)e¥ and n, > 0 such that Ay = 1% 21" (4a) is indecomposable
projective. By [22], there is a full exact embedding ¢: % — mod A, where % is
a wild bimodule category and the image of ¢ is contained in the regular part of
modA. Then

TRZt, M. % ->modA/AyA

if a full exact embedding from % to A/AyA. Therefore A/AyA is wild,
a contradiction.

Assume now that A = A/AyA is wild. By 3.3, we may assume that A is
concealed. Therefore there exists a hereditary wild algebra B such that the
regular parts of modA and modB are equivalent. Thus, there is a full exact
embedding ¢: % — mod A where % is a wild bimodule category and the image
of ¢ is contained in the regular part of modA. The proof follows as in the
CONverse case. m

3.6. Proof of 3.1. (a) = (b). Assume that g, is hypercritical. By 2.6, there is
a full convex subalgebra A, of A and a vertex yeQ, such that g, =q% is
critical and if v is the positive generator of radq,,, then (v°,e), <O.
Moreover, assume A = A,[R] with R = rad P,. We divide the proof in several
steps.

(1) A is concealed. Since A satisfies the (S)-condition, I", has a preprojec-
tive component . First we observe that 2 has no injective modules. Indeed, if
xe(Q,)o then 12 I, where I, (resp. I9) is the indecomposable injective
A-module (resp. A,-module) associated to the vertex x. Since I? is not
Ag-preprojective, I ¢ 2. Clearly, I ¢ 2.

Assume 0.#e=)p 4px. Then A = A/AeA has 2 as a preprojective
component ol I ;. Since A is a full convex subalgebra of A, g; is a proper
restriction of q, and hence q; is weakly nonnegative. By [21, 1.3] (see also
[17]), A is a domestic tubular coextension of a tame concealed algebra A’. Let
w be the positive generator of radg,.. Then, by 1.3, there exists a vertex te @,
such that (0% e), <0 and the module R’ =radP, is an indecomposable
preprojective A’-module. But 2 is the preprojective component of I",, therefore
R'e#? yields a contradiction. We have shown that all indecomposable
projective A-modules belong to £

Let # be a preinjective component of I',. Since # has no projective
modules, the proof above can be dualized to show that .# contains all the
indecomposable injective A-modules. By [24], 4 is a concealed algebra.

(2) A 1s minimal wild. Let ye Q,. By 3.3, 4/AyA is a product of concealed
and representation-finite algebras. Let A’ be a representation-infinite factor of
A/AyA. Let X be an indecomposable A'-module.

If X 1s A'-preinjective, q,.(dimX) = 1. If X is not A’-preinjective, then,
since A’ is concealed, pdim , X < I. Therefore

q,(dim X} = dimHom ,.(X, X)—dim Ext}.(X, X).
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Observe that X is not A-preinjective, thus pdim, X <1 and
0 < ¢P(dimX) = g,(dim X)
= dim Hom ,(X, X)—dim Ext}(X, X) = ¢q,.(dim X).

Since gldim A" < 2, [23, 2.3] implies that ¢ ,. is weakly nonnegative. Again
(17, 21] say that A" is tame (concealed).

(3) A is a wild hyperbolic algebra. Let xe Q, and assume that 4 = A/AxA
is not representation-finite. We have to show that x is extremal and A is
connected.

There exists an indecomposable A-module X such that gq; (dimX) = 0. By
(2), ¢ (dim X) = 0. Therefore, by 1.3, g% is critical. By [15] (using 2.4) we get
q'Y = q, for some tame concealed algebra A'. By (1) in 2.7, A’ is a full convex
subalgebra of A. Hence, x is extremal in Q and A = A'.

(b) = (a). By 2.1(¢) there exists a full convex subalgebra A, of A such that
A, 1s tame concealed. By hypothesis, we may assume that A = A,{R] for some
indecomposable A,-module R. Since A is wild, g, is not weakly nonnegative
[20].

Let ze N9° be such that z(y) = 0. Then 4 = A/AyA is tame and by [20,
1.3}, q; is weakly nonnegative. By comparing the coefficients of q; and ¢}’ we
get

0 < q4(2) < 4P (2).

Therefore, q, is hypercritical.

(a) = (c). If g, is hypercritical, then A is concealed and minimal wild. Then
3.5 implies that A is concealed of a minimal wild hereditary algebra A. If
A =kA, 34 says that 4 is a tree.

(c)= (a). Since A is wild concealed, g, is not weakly nonnegative [17, 21].
By 3.5, each quotient A/AyA is tame for ye Q,. Then the proof follows as in
(b)=1(a). =
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