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Let K be an algebraically closed [ield, and let A be a finite-dimensional K-algebra which is
connected, symmetric and tame and whose Cartan matrix is nonsingular. Assume that the stable
Auslander-Reiten quiver of A consists only of tubes. In this paper it is proved that, if in addition
the algebra A/J® is special biserial, then A has at most three simple modules.

In the process of classifying tame blocks in [2, 3, 4] we obtained various
families of tame symmetric algebras having a nonsingular Cartan matrix. One
of the important steps in that project was to derive bounds for the number of
simple modules from the graph structure of the stable Auslander-Reiten
quiver. The question arises whether such bounds might exist for more general
classes of algebras.

Here we are interested in finite-dimensional K-algebras A, where K is an
algebraically closed field, having the following properties:

(1) A is connected, symmetric, tame.
(2) The Cartan matrix of A is nonsingular.
(3) The stable Auslander—Reiten quiver of A consists only of tubes.

It has been suggested by A. Skowronski that such an algebra may always have
only very few simple modules. In fact, in the special case when all tubes of
A have rank <2, 4 has at most three simple modules. This has been proved in

(5]
Here we shall investigate the number of simple modules for another class
of algebras, those where A/J* is special (see [10]), or a “string algebra”.

This paper is in final form and no version ol it will be submitted for publication elsewhere.
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We shall assume throughout the paper that A is basic: let 4 = KQ/I where
0 is a quiver, and [ is an admissible ideal. Denote by J the radical of A. Recall
that A/J* is special if the following conditions are satisfied:

(0.1)(a) The number of arrows starting, respectively ending, at any fixed
vertex of Q is bounded by 2.

(b) For any arrow x of Q there are at most one arrow f§ and at most one
arrow y such that af and ya do not lie in J°.

Our aim here is to prove the following:

THEOREM. Assume that A is an algebra with quiver Q satisfving conditions (1)
to (3). Suppose also that

(1) For any indecomposable projective A-module P. (rad P)/(socP) is in-
decomposable.

(i) A/J? is special.
Then A has at most three simple modules.

The condition in (1) means that the projective modules are attached to the
ends of the tubes. Condition (ii) i1s important for having such a small bound.
We include an example due to A. Skowronski for an algebra satisfying (1) to (3)
and (1), with four simple modules (see Chapter 4).

The methods of proof are largely combinatorical, exploiting the hypo-
thesis (2). In fact, a nonsingular Cartan matrix seems to be a very strong
property. The condition (3) is difficult to use directly if the rank of tubes is not
necessarilly bounded. However, we were able to make use of modules which
cannot lie in tubes [see (3.8), (3.9)]. It might be of interest that modules of this
kind occur for algebras of “semidihedral type”, lying at ends of ZD -com-
ponents.

We note that one can also classify the algebras A satisfying the hypotheses
of the Theorem. One discovers that they are algebras of quaternion type, as
defined in [4]. In particular, the simple A-modules must lic in tubes of rank
< 2. On the other hand, there are algebras of quaternion type where A/J? is
not special (for example, family II in [411]).

If A satisfies the hypothesis of the Theorem then so does A°F; we shall use
this occasionally. Concerning notation, Q, is the set of vertices of Q, and Q, 1s
the set of arrows. If ¢ is a vertex of Q we define H(eA):= {radeA)/(soceA).
We write 57 '(¢) [and (" '(¢)] for the set of arrows starting [terminating]
at e.

The stable AR-quiver of A is denoted by I' (A). If M is a module then |M]|
1s its composition length. We write /(n) for the length of a cyclic permutation.

We assume from now on that A is a basic algebra satisfying (1) such that
A/J? is special.

Concerning basic facts and further terminology. we refer to {1, 6, 8].
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1. K-bases
In this chapter, we study the Loewy series and the quiver of A.

(1.0)(a) Each path in the quiver gives nise to some element in the algebra
which we also call “path”. The paths from e to f span eAf. In fact, there is
a K-basis of A consisting of paths which is compatible with the radical series of
A; this is true for any finite-dimensional K-algebra. Recall that

(b) If A is symmetric then soc(ed) is simple and lies in eAe.

(1.1) LEMMA. Let e be a vertex of Q. Then

(a) For all k> 1, dim(eJ*/eJ**1) < 2.

(b) If dim(eJ*/eJ**Y) = 1 for some k then dim(eJ**'/eJ**?) < 1.

Proof. This follows immediately, using (0.1), if one constructs a K-basis as
in (1.0).

(1.2) LEMMA. For every vertex e of Q, the number of arrows starting at e is
the same as the number of arrows ending at e, and this is 1 or 2.

Proof. Assume that there is only arrow starting at e. Then, by (1.1), the
module e is uniserial. Since eA is also the injective hull for the simple module
S,, there is only one arrow ending at e. Dually, if there is only one arrow
ending at e then there is also only one arrow starting at e. Now condition (a) of
(0.1) ensures that there is only one alternative.

(1.3) A remark on the socle series. Assume that there are two arrows
starting at e. Then, by (1.1), there is an integer t > 1 such that for 1 <i < ¢, the
module eJi/eJi*! has length 2 but |eJ'/eJ'™!| < 1. Since A is symmetric,
soc(eA) = eJ'*" for some r = 0; and by (1.2) we know that soc,(eA) has length
3. If r = 0 then soc,(ed) = eJ' ™!, and if r > 0 then there is some weeJ' ™! —eJ'
such that soc,(ed) =eJ'*" "1 +wA.

2. The permutation associated to /A

Assume that A satisfies condition (1) of the Theorem.

(2.1) DeEFINITION. Define a map n: @, — Q, as follows:

NS BTEY
n= vy if yoeJ? for all arrows 6.

This is a map, by condition (b) of (0.1).
(2.2) PROPOSITION., The map w is a permutation.

Proof. We shall prove that = is surjective. Assume for contradiction that
e fis an arrow in Q such that vé lies in J* for all arrows y. Then J6 < J* f.

19 — Banach Center t. 26, cz. |
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(1) There is another arrow erding at f: Otherwise, we would have
J¥f = J26 and then Jé < J*3 and J§ = 0. This would imply that ¢ lies in
socA; moreover, A fwould have length 2. Since A is connected and symmetric,
A would be the local 2-dimensional algebra which is of finite type.

Let # be the other arrow ending at /. Then J?/ = Jy. Since A/J* is special
it follows that

(2) V2SI <1
Note also that, by (1.2), |soc,(A f)/soc(Af) = 2.

We now have [Jf/J%f| =2 but |J*f/J3f| < 1. By (1.3) applied to the
algebra A°P, there is an element weJf\J?f which lies in soc,(Af). Hence
H(Af) is a direct sum, a contradiction.

(2.3) We express n as a product of disjoint cycles. Each of these cycles
corresponds to a closed path in Q. Take such a cycle, ¢ = («,, ..., ,) say; then
t(o;) = s(a;+,) for all j. We say that the cycle goes through e, or e occurs in o, if
e = t(a;) for some arrow %; in o.

In order to have control over the Cartan matrix we need “multiplicities” of
the cycles of =.

(2.4) LEMMA. Let 6 = (ay, ...,a,) be a cycle of m where a,: e; > €;, . Define
elements w.e A by w,:= (2,04 1...0,.0,...0;_ ). Let m be the largest integer such
that wg # 0. Then {w) = soc(e;A), for all i.

Thus m depends only on o; we say that m is the multiplicity of o.

Proof. Assume first that i = 0. Let W be the set of all paths around the
cycle o starting with «,. Then the last nonzero we W spans soc(e, 1) (see e.g.
(1.1)), and w = we, [(1.0)(b)].

Suppose that w # wg. Since w # 0 but w§ ™! = 0 it follows that w = wx
where x = a,...a, and s<r. Let y =a,,,...2,; then w=(xy)"x. We may
assume that s+ 1 > r—g. [Otherwise, we interchange x and v. Note that (yx)™y
also spans soc(e,1).] Then soc(e,4) = ¢, J* where k = m(r+1)+(5+1). Let
A be a symmetrizing bilinear form of A; then 0 # A[{w] = Z[x(xy)"]. On the
other hand, x(xy)"ee,J*" ' =0, a contradiction.

This shows that {(w§) =soc(e,4). Now we also have wj'#0 and
wi't!l = 0 [factorize w, and w,, and use i]. Then the arguments for the case
i =0 apoly, and the statement follows.

(2.5) A basis for eA. (a) If there is only one arrow, o, say, starting at ¢ then
there 1s a unique cycle through e, call this ¢ = («,, ...,%,); and necessarily
a;e =0 for i #r. Thus if m is the multiplicity of ¢ then eA has a K-basis

{e, tg, Og0yy ovey(0g&y ... 0)0g, - ..\ (X0 ... 0)"}.

(b) Now assume that there are two arrows, o, and f, say, starting at e. Let
a=(ng,...,a,) and o =(fB,,...,B,) be the cycles through e. [We do not
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exclude here that ¢’ = ¢.] Then if m and m’ are the multiphcities of ¢ and ¢’
respectively then eA has a K-basis

{e, agy agty, ooy (0o ..o t)™ Bos BoBrs-ovs Bo- BY " Bo-.. Bo—1}-

3. On the paths of Q determined by =

We assume in the lollowing that A is an algebra satisfying conditions (1) and (ii)
of the Theorem. We also assume that the map =n delined in (2.1) 1s
a permutation.

If ¢ is a vertex of Q then we know that [s™'(e)| = |t~ (e} = 1 or 2, by (1.2).

(3.1) LEMMA. Assume that e and f are distinct vertices of Q such that
Is™ ')l = 2 and |s~ Y (f)| = 2. Suppose that all arrows starting or ending at e or
f lie in the same cycle of mn. Then for all primitive idempotents g of A,
dim(eAg) = dim(f Ag), hence the Cartan matrix of A is singular.

Proof. With the notation of (2.5), we have ¢ = ¢’ and B, = a, for some
s with 0 < s < r; then B, = a,4;. Using the K-basis given in (2.5)(b) we obtain
dim(eAg) = 2m # {i: o;g = 2;}, even for g = e. Now, this does not depend on
e but only on the fact that all arrows at e lie in o, and that s~ !(e)] = 2. These
conditions are also satisfied by f, and we deduce that dim(fAg) is the same.

(3.2) LeMMA. Assume that e, feQ, where e#f, with [s !(e) =
Is~ (/)| = 2. Suppose that © has two distinct cycles which both go through e and
f. Then dim(eAg) = dim(f Ag). for all primitive idempotents g of A, hence the
Cartan matrix of A is singular.

The proof of (3.2) is similar to that of (3.1) and is omitted.

(3.3) LEMMA. Let e be a vertex of Q such that |s~'(e)| = 2. Assume that
(a) The arrows at e lie in two cycles ny, m, of m.
(b} If t(e) = e and n(x) # f then aff = 0.

Then H(eA) is a direct sum.

Proof. Let ny = (a4, ..., ,) and n, = (B, ...,H,) where o, and f3, are the
arrows starting at e. Then rad(eA) = o4+ p,1, and we have to show that
oo AN A < soc(eA).

Now by the hypothesis, a,, = 0 and also f,a, =0. Let xeayAnf,A;

then x =ayy = B,z. Consequently Jx = <a,x, f,x) = <a,B02, B, ¥) =0,
therefore xesocAned < soc(ed), as required.

(3.3.1) The hypotheses of (3.3) are satisfied for the quiver Q of Fig. 1 and
= (o, ) (Boy)- .-

(3.4) LEMMA. Let Q be a quiver containing the one in Fig. 2. Assume that

(@) The arrows at e form cycles ny = (), 7, = (B,, Bo, ---)-
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(b) m, does not go twice through g or f (thus g +# f).
Then H(eA) is a direct sum.

Proof. It suffices to consider the case when n; does not go twice through f.
We wish to apply (3.3).

(1) We may assume that afi, = 0: Using the K-basis in (2.5) one gets an
expression afy, =) c{B,...B,) Bo where c;€ K. This holds since B, is the only
arrow in 7, ending at f. Set o/ =a—) ¢;(f,...B,), and replace a by «'.

(2) B,a = 0: We use the K-basis in (2.5) for gA. Thus there are a; [b;] in
K such that

ﬂra = Zai(ﬁrBO v ﬁ"— l)iﬁr [+Zb1(ﬁs . ﬂs—l)jﬁs' e ﬂr]

Here the second sum appears only in the case when n; goes twice through
g; then B, is the other arrow starting at g.

Since f,af, =0 it follows that a;,=0 [=b;], for all i,j. (Note that
a nonzero element f.... B, B, does not lie in socA.) Now the statement follows
from (3.3).

(3.5) LEMMA. Assume that ecQ, is a fixed vertex and that feQ,. Then
eAf #0 if and only if @ has a cycle o such that e and f both occur in a.

This follows immediately from (2.5).

(3.6) LEMMA. Assume that Q contains a quiver as in Fig. 3 such that

S

° -9 ®
€ ap &4 @y e

Fig. 3
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Is™ el =1t7 " e,)l =1 and that m(ay)#a,. Then we may assume that
ogo, = 0.

Proof. We have a,a, € J> since n(x,) # o,. The hypothesis on the number
of arrows starting at e, and ending at e, implies that eyJ’e, = ayJu,,
consequently a0, = a,xa, for some xeJ. Set ap = ay(l —x) and replace «,
by ap.

(3.7) Remark. Let e =) e; where the sum is taken over the distinct
idempotents occurring in the cycle n, of 7, and define A, to be the algebra eAe.
Assume that e; is a vertex such that all arrows (in Q) at e, lie in ©,. Then
H(e;A,) is indecomposable if and only if H(e;A) is indecomposable.

(3.8) LEMMA. Assume the quiver of A has the form shown in Fig. 4 and that

A is defined by the relations
(i) a,a =0,
(i) (xg...o,P*J =0,
(iil) B2 = (2g... o, B ag...a,+d(ag...a,BY,
(n, k = 1 and de K). Then the stable quiver I (A) has a component which is not
a tube.

Proof. Let H = H(e,A); then there is an AR-sequence
0—rad(eyA) > e, ADH — e, A/soc(e, A) —0.

Moreover, H is indecomposable; this can be seen from the K-basis in (2.5); and
therefore H lies at the end of a component. Define U:= fA/fAnay,A and
V:= a,A/soc(e,A). Thus there is a short exact sequence

0-V-oH-U-0.

We shall prove that this must be an AR-sequence; thus the component of I'_(A4)
is not a tube.

(1) QU =~ fA: We define a projective cover ©: e,A—U by setting
©i(x) = fx+(xgANPA). Then BA < Kerz. Using (2.5) [and the relation (iii)] we
can calculate dimensions and see that equality must hold.

(2) Q(fA) = (Bay)A: We define a projective cover n: e, A — A by setting
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n{x) = fix. By (iHiil) we have fx,A4 < Kern, and equality follows from
comparing dimensions.

(3) (fag)A = V: Left multiplication by f induces an epumorphism
ao A —(fx,)A whose kernel 1s soc(e, A).

Hence Q%(U) = V, and there is an AR-sequence

(+) 0=V —>X5XU—0.

We have to show that H = X.

Clearly X and H have the same composition factors, and there is
a nonsplit epimorphism p: H—U. Since (x) is an AR-sequence, we have
a commutative diagram

We claim that ¢ must be an isomorphism. It suffices to show that y is
one-to-one or just that KerynsocH =0. If KerynsocH were 3 0 then
i would map soc,(x,4)/soc(x, 1) to zero. But then. from the structure of
H [using (ii1)] it would follow that Imy = U@V’ where V' is some quotient of
V; this would imply that x splits.

(3.9) LEMMA. Assume that the quiver of A is as shown in Fig. 5 and that A is

€n

.\
ﬂ@o.,a—;: o/ :
an e °
o, ./
€2
Fig. 5
defined by the relations
() ap_,a, =0,
(i) pf=(og...a)" and B°J =0,
(it} Borg = (0g... o)™ ‘otg... 0,1 and ago, = 1 +df,
(iv) o, B = (og...0,00)" "oty . ..,

(m>=21,n>3,s5s>4 and de K). Then the stable quiver I' (A) has a component
which is not a tube.

The proof is the same as that of (3.8), taking H = H(e, A), with
U=a,A/x,Ana;A and V =ua,A/soc(e;A). [Here QU =pA and
QpA) = (aga, Ay = V.]
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In preparation for the proof of the Theorem, we shall study algebras
A with (1) and (2) having the following properties:

(3.10)(a) The quiver @ of A contains the one illustrated in Fig. 6.

e
. h

e T T

[ ]
e f’

Fig. 6

(b) The associated permutation n has cycles =ny = (a,, 24, ...} and
n, = (B, ..., p,) which intersect only at e.

(c) Any two vertices €{e. e, e, f,. [} are distinct except that e, = ¢,
when [{rny) = 2, or that f, =f, when I(n,) = 2.

(3.11) LEMMA. Assume A satisfies (3.10). Suppose also that f,ay # 0. Then
there is an arrow e, 5 f.

Proof. Suppose B,a, # 0. By (3.5), there is an arrow 7 starting at e, which
lies in a cycle, 7, say, through e, and f,. Let g = t(y); we have to show that
g=1/.

Note that 7, is not a loop. By (3.2), 7, does not go through any other
vertex of m, or n,. Suppose g # f,; then g does not occur in n, or 7, and
therefore oyy = 0, by (3.5). Using the basis for f,A4 as in (2.5) we find that if
Ty =VoV1-- VsVs+1---V) Where s(yo)=f and y,=7y for s<w, then
Boatg =) ¢(Vo---¥u)Vo---¥s—1 for unique c;e K. Now 0 = f,a,y, hence all ¢,
are 0 [using (2.5)] and therefore f,x, =0, a contradiction.

(3.12) LEmMMA. Let A be an algebra satisfying (3.10). Assume that there is an
arrow e, 5 f.. If the quiver has more than 3 vertices then ayy lies in soc, A.

Proof. We shall prove that J?(a,y) = 0.

Let m, = (y, ...) be the cycle of n containing y. Then by (3.2), n, intersects
no, ®, only in e,, f, respect:vely. In particular, no other cycles go through e, e,
or f,. Note also that, by (2.5),

(%) Aoy €edf, < fod.

Case 1. e, # e, and f, #f.: There is no cycle through e, and f,, so
a,a,y =0 [see (3.5)], and

J2(otgy) = IB, o0y = By Brogy, ¥B, 07D

There is no cycle through f,_, and e,, hence f,_;f,2, =0. Moreover,



296 K. ERDMANN

8,0, = 0 since there is no cycle through ¢, and f,. Hence, using (x), we see
that yf,00y€78,804 = 0.

Case 2. e, = e, but f, #f.: Then, by (3.10) (c), n, is a 2-cycle. By (%),
a, oy €a, BoA. There is no cycle through e, and f,, therefore a, f, = 0. Hence

Jragy = JB.ogy = (Brey B, toys ¥B.007)-

The first generator is 0, as above, and yf8,a,7 lies in y8,8,4 ce, Af;A=0.

Case 3. e; =e¢, and f, = f,: Then n, and =, are both 2-cycles. Now, if
A has more than 3 simple modules then, by (1.2), 7, is not a 2-cycle, and there
is no arrow f; —e,. Thus, by (3.11) [applied to a,, f,] we have a, f, = 0. There
iS an expression

%Y = Zci(ﬁoﬁl)iﬁo (c;e K).

Hence x a,y€a;8,4 =0 and therefore

Jragy = J(B,07) = {(BoB17), (B %e7)>-

(i) We have pf,B,a,c€eJe,. Hence there are r,eK such that

BoBiag = [Z T,-(O!oal)j] a,. Then
BoBiooy = [ X ri@oa,Y ][ 2 ci(BoBy) Bo] € Axy fA = 0.

(i) We have yB,ee,Aec Aa;, by (2.5); consequently yB,a,7€
Aay foA =

4, Proof of the Theorem

Let A be an algebra satisfying the conditions (1) to (3) and also (i) and (ii) of the
Theorem.

(1) We may assume that |s~'(e)f = 2 for some vertex e of Q: Suppose not,
then by (1.2), s *(e)l = |t (e} = 1 for all e€Q,. Since A is symmetric (and
connected), any two vertices of Q must be joined by some path. Hence Q is of
the form A, and all arrows have the same orientation. Consequently A is of
finite type, a contradiction.

(2) m must have at least two cycles: Assume for contradiction that = is just
one cycle. Then n goes twice through any vertex e with [s~*(e)] = 2. By (3.1)
fand (1)], there is therefore a unique such vertex e.

Assume first that there is no loop attached to e. Then Q contains
a subquiver of Fig. 7 and = = (&, ...,8,,8,-..)- Now e,, e,, f; and f,, are all

\/
A,

Fig. 7
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distinct from e. By the uniqueness of e, we have therefore
[s™1(e) = s~ '(f;)| = 1; moreover, n{a,) # f,. Hence, by (3.6), we may assume
that a,f, = 0. Similarly, without loss of generality, §,a, = 0. [This does not
affect the other zero relation.] Therefore the algebra A itself is special, and
H{eA) is a direct sum, a contradiction.

Now assume that there 1s a loop attached to the vertex e. If ¢ has two
loops then e is the only vertex of Q, and there is nothing to do. So we may
assume that the quiver is as shown in Fig. 8 and n = (a, Ba,...), with e, # ¢,
and e, # ¢;,. Our aim is to show that A satisfies the relations in (3.8).

N,

By (3.6), we can take a,, a, satisfying a,a, = 0. Moreover, if k is the
multiplicity of = then the relation (ii) in (3.8) holds. It remains to determine the
relation for f2.

(2.a) Without loss of generality, B* lies in ey Aa,: Since p2eJ3, we may
write, using (2.5), B* = xo,+ ya, B with x, yeJ. Set f':= f—ya, and replace
B by B

(2.b) B2 lies in soc,(x,A): We deduce from (2.a) that f2a, = 0. By (2.a) and
(2.5) there are ¢;, d,e K such that

(%) B =Y cictg... 0BV tg...an+ ) di(Bag...0,).

Hence B° =) ¢;(fag...a) =Y cilag... a0, )" +) di(Boy... o). Using
the K-basis in (2.5) it follows that all ¢; and d, are O except possibly ¢,_, and d,;
this proves (2.b).

The element ¢, -, in () is # 0; otherwise, H(e,A) would be a direct sum.
Then we may assume that ¢,_; = 1, and we obtain the relation (iii) in (3.8).

Now, by (3.8), we have a contradiction to the hypothesis. This completes
the proof of (2).

Thus = must have at least two cycles; and then there is a vertex of Q which
occurs in two distinct cycles.

Quivers having two intersecting cycles which are not loops. Suppose Q is
such a quiver. Then Q contains a subquiver as in (3.10). We shall now see that
the conditions there hold. '

The cycles n,, n, intersect only once, by (3.2). Moreover,

3 e, #f and e, # 1., also e, #f, and e, # f,: Suppose e, = f,. Then we
see from (3.2) that ¢, 4 and eA have the same composition factors.
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(4) If I(my) =3 then s(a,) and t(ny) are distinct. If l(m,) 23 then
s(B,) # t(B,): Suppose that e, = ¢,. By the hypothesis, all arrows at e, must lie
in ,. Hence there is no cycle through e, and t(f,) or t(f,). By (3.5), ,8, =0
and f,o, =0. Now we deduce from (3.3) that H(eyA) is a direct sum,
a contradiction.

Hence the hypotheses of (3.10) hold, and we have the results from (3.11)
and (3.12) available.

We will now show that H(eA) is close to being a direct sum. Let
A= {ag, %oy, ..., 05} and B:= {f,, BB, .-.. 07} where o, and w, are the
products over all arrows in n,, 7, starting with o, f8, respectively, and s, m are
the multiplicities of n, and n,.

Let 0 be any arrow.

(5) If xe A, then x6€ A or xé is zero, unless x = oy, and O is an arrow
e, —f,: We have x = xe, for a unique primitive idempotent ¢;, and we may take
o starting at e;, and J not occurring in . Let g = ¢(d); then g does not occur in
Ty, by (3.1). If g does not occur in &, either, then eAg = 0, by (3.5), and xé = 0.
Hence we may assume that g = f; for some j but f; # e.

Consider first the case when x = a4, and f; # f,. Then there is no arrow
Ji—e. Applying (3.11) [with «,, J instead of f,, «,] shows that a6 = 0.

Now assume that x has length > 2; write xé = x, ;-6 for some x, € A. If
a;—,0 =0 then we are done. Otherwise, there is an arrow, y say, from f;
[=1t(d)] to s{oi—y) = e;—y, by (3.11).

Suppose y # f8;; then = has a cycle (3, y,...) [# mo] which intersects n, in
e;—, and in ¢;. By (3.2) we can only have ¢; = e;_, that is, o;_ is a loop. But
then |s”'(e)| = 3, a contradiction to (1.2).

It follows that y = B, and hence f; = B,, f; = f, and «;., = a;. Now, x has
length > 2, hence xJ = (xy...a,) 02,6 and ayé lies in J?soc,(A), by (3.12).
Hence xé = 0, as required. Similarly

(5*) If xe B then x6€ B, or x6 = 0, unless x = f, and 6 is an arrow f, > e,.

Hence there must be an arrow e, —>f,, or an arrow f, —e,.

(6) The structure of H(eA) in case there is an arrow e, 5 f, but no arrow
fi—e,: In (5), (5*) [and (3.11)] the modules a,x, 4 and f,4 are completely
described, in particular, their intersection is soc{eA). Moreover, by (3.12), there
is some ¢e K such that

(*) OLO'))=C([)’0...ﬂr)"'_lﬁo...ﬂ,_l.

Since H(eA) is not a direct sum, we must have ¢ # 0, and then we may assume
that c = 1.

(6.a) The component of I'(A) containing H(eA) is not a tube: Let
H:= H(eA). There is the usual AR-sequence

0 —»rad(ed) = eAPH —eA/soc(eA)— 0;

moreover, H is indecomposable and lies therefore at the end of some



A CLASS OF TAME SYMMETRIC ALGEBRAS 299

component. Define U:= a,A/aoAnf,A and V:= f,A/soc(eA). Then one
shows, using (%), by the method of (3.8) that QU >~ yA4 and that
QyA) = B,p,A = V. Thus there is an AR-sequence 0->U - X -V - 0, and as
in (3.8), one proves that X =~ H.

By (6) and (6.a), there must be an arrow e, 5 f and also an arrow [, Be,.
Let n, be the cycle of n containing y. and =, the cycle of n containing 7.

(7) m, = my: Suppose not. For any vertex g with yele,, ¢,.f,. /.. the
composition factors of g4 are determined by the cycles x; (0 < i < 3) and their
multiplicities. Using (2.5), it follows that e, A®f, 4 and ¢, A@f, A have the same
composition factors. Thus the Cartan matrix is singular, a contradiction.

Now, since n, = m,, we must have e, = ¢, and f, = f,, by (3.1). Moreover,
m, and 7, are 2-cycles, by (4). But 7, must also be a 2-cycle, by the definition of
n, and m,, since no other arrows can start or end at e, or f,. Thus the quiver
has three vertices only and is of the form shown in Fig. 9.

Fig. 9

Quivers in which one of two intersecting cycles is always a loop. Now we
have to study the possibility that, whenever two cycles of n intersect, then one
of them is a loop.

Suppose that A has more than one simple module; then the quiver must
have just one cycle, n, say, of length > 1, and otherwise only loops. We know
from (2) that there are at least two cycles, hence Q must contain a quiver as in
Fig. 10 and 7, = (o,%,...). It follows from (3.4) that the cycle 7, must go twice

€
[
ao \.'

ﬂGe
\g‘/

Fig. 10

through ¢, and e¢,. On the other hand, by (3.1), the cycle n, can only have at
most one self-crossing. It follows that e, = e;. This argument applies to any
loop. Hence, if @ has another loop then this loop must have distance < 1 from
e,, and it follows that Q is one of the quivers of Fig. 11. Hence in this case,
A has two or three simple modules.

Now consider a quiver as in Fig. 10 with only one loop. Assume (for
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O Ot

Fig. 11

contradiction) that Q has more than three vertices. Then Q is a quiver as in
(3.9).

(8) If H(e, A) is not a direct sum then A is defined by the relations in (3.9):
We have n(a,_,) # «, and moreover |s”'(e,-,)| = |s '(e,)] = 1. Hence, by
(3.6), we may assume that a,_, &, = 0. Then one shows that fo, € soc,(x, 1), by
using arguments as in (2.a) and (2.b). The rest is straightforward.

Now, by (3.9), I',(A) has a component which is not a tube. We deduce that
this cannot occur, and the proof is complete.

We remark that the quivers with one loop in the last part left are just those
of Fig. 12. Thus altogether there are just six possible quivers.

Fig. 12

ExaMPLE (A. Skowronski [9]). Let A = KQ/I be the bound quiver algebra
given by the quiver

Q: 422213

B

and the ideal generated by af—uy, fpa—vo, ofu, yav. Then A satisfies the
conditions (1) to (3). Moreover, the stable AR-quiver consists only of 1-tubes
and 3-tubes.

Proof. Consider the tubular algebra A4 of type (3, 3, 3) illustrated in Fig. 13
with aff = py, Ba = vo, afu = 0, obtained from the tame concealed algebra
C of Fig. 14 with aff = uy, of type (2, 2, 3), by two one-point extensions using
the simple regular C-modules of Fig. 15, lying in different tubes in I'; of rank 2.
Then the repetitive algebra A of A is of the form shown in Fig. 16, with
afi = uy, Po = va, ofu = 0, yav = 0. Tt follows from the results of [7] that 4 is
locally support-finite of polynomial growth, nondomestic, and that I" ; consists
only of 1-tubes and 3-tubes. Consider the shift g: A —» A given by

1+22628-21-2296—...
3040755939457 ...

Then g* is the Nakayama shift. Let B = A/(g%); then B is nondomestic,
standard self-injective of polynomial growth, and I"; consists only of 1-tubes
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and 3-tubes. The Cartan matrix of B is

—_ )N W
N =W N

O W= N
WO N -

hence is nonsingular. Moreover, B is symmetric and B = A.
Note that A/rad*A is not special biserial.
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