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Let K be an algebraically closed field. Finite-dimensional regularly biserial K-algebras are
introduced. In particular, we outline the proof of the result that every regularly biserial K-algebra
is tame and its Auslander -Reiten invariant ff(4) is not greater than two.

Let A be a finite-dimensional algebra over an algebraically closed field K.
The Auslander—Reiten invariant B(A) is defined to be the largest possible
number of indecomposable direct summands in the middle term of the
Auslander—Reiten sequences which are neither projective nor injective. In [3]
M. Auslander and I. Reiten proved that, if 4 is representation-finite and
p(A4) < 2, then A is biserial, that is, the radical of any indecomposable (left or
right) projective A-module is a sum of at most two uniserial submodules whose
intersection is zero or simple. In [17] A. Skowronski and J. Waschbiisch
showed that, if 4 is representation-finite and biserial, then f(4) < 2. There are
representation-infinite tame algebras 4 with f(4) < 2 which are not biserial
(see [9]). On the other hand, as shown in [6, 18], every special biserial algebra
A is tame and has f§(4) < 2. Here we study a more general class of biserial
algebras called regularly biserial algebras. A finite-dimensional K-algebra
A over an algebraically closed field K is said to be regularly biserial if A is
isomorphic to the bound quiver algebra KQ/I, where (Q, I) satisfies the
following conditions:

(1) Every vertex in Q is a source (sink) of at most two arrows.

(2) If for an arrow « there are two different arrows 8 and y such that fa¢ ]
and ya¢ I, then either aff —cuyx el for a path u and some ce K* = K\ {0}, or
ay—dvPael for a path v and some d € K*, and moreover in both cases 1, yre!
for any arrow 1 # a.
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372 Z. POGORZALY

(3) If for an arrow « there are two different arrows # and y such that aff¢ I
and ay¢l, then either aff—cayuel for a path u and some ceK*, or
oy —dafve I {or a path v and some d e K*, and moreover in both cases tf, tye [
for any arrow 1 # a.

We prove that every regularly biserial algebra is biserial (Corollary 1). Let
A be a regularly biserial algebra which without loss of generality (Lemma 1)
may be assumed reduced, that is, every projective-injective indecomposable
module is uniserial. We prove in Section 2 that 4 admits a standard bound
quiver presentation KQ/I 3 A. This allows us to prove in Section 3 (Theorem
1) that every reduced regularly biserial algebra A admits a simply connected
Galois covering 4 = KQ/I - A = KQ/I with a free nonabelian fundamental
group II1(Q, I). This is the main result proved in this paper. Moreover, we
outline in Section 4 the proof, contained in [13], of Theorem 2 stating that
every regularly biserial algebra A4 is tame and has f}(A) < 2. For this proof we
give some generalizations {Theorems 3 and 4) of the main results of [6]
concerning the Galois covering techniques for representation-infinite tame
algebras.

The results presented here form a part of the doctoral thesis [13]. The
author would like to thank Andrzej Skowronski for fruitful discussions
concerning biserial algebras and Galois coverings.

1. Preliminaries

Let K be a fixed algebraically closed field. Recall from [4] that a locally
bounded category is a K-category R satisfying the following conditions:

(a) Different objects are not isomorphic.

(b) The algebras R(x, x) are local for any object xeR.

(c) For every object xeR,

Y dimgR(x, y)< oo and Y dimgR(y, x) < 0.
yeR yeR

A presentation p of a locally bounded K-category R is a K-linear surjective
functor p: KQ — R which is the identity on the objects and maps arrows a; to
p(e;), where p(a,),...,pla,)eJR(x, y) are morphisms whose cosets modulo
J?R(x, y) form a basis of (JR/J*R)(x, y). It is well known that p induces an
isomorphism KQ/I ~ R, where @ is uniquely determined by R and I = ker(p)
depends on the choice of p. The pair (Q, I) is called a bound quiver of R. We call
a bound quiver (Q, I) regularly biserial if it satisfies conditions (1}3) of the
definition of regularly biserial algebras.

Let R be a locally bounded K-category. An R-module is a contravariant
K-linear functor M from R to the category of K-vector spaces. The dimension
vector dim(M) of an R-module M is defined to be (dimygM (x))er and the
dimension of M as dim(M) =) . gdim, M (x).

An R-module M is called locally finite-dimensional if dim,yM(x) < oo for
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every object xeR and finite-dimensional if dim{M) < oco. We denote by
MOD R the category of all R-modules. Mod R (resp. mod R) denotes the full
subcategory of MOD R consisting of all locally finite-dimensional (resp.
finite-dimensional) R-modules. Ind R (resp. ind R) denotes the full subcategory
of Mod R (resp. mod R) consisting of all indecomposable R-modules. (Ind R)/~
(resp. (ind R)/~) denotes the set of isoclasses of the objects from Ind R (resp.
ind R).

For a full subcategory C of Mod R we denote by [C] the two-sided ideal
in ModR consisting of all morphisms in ModR which factor through
morphisms from C.

Let M be an R-module. The support of M is the full subcategory supp(M)
of R formed by all objects xe R with M(x) #0. M is called sincere if
supp(M) = R.

Following Yu. Drozd [7] (cf. [5]) a finite (the number of objects is finite)
locally bounded K-category R is tame if, for any dimension d, there exists
a finite family of functors F;: mod A;-»modR,i=1,...,n,, where A, = K or 4;
is a rational algebra K[T], of dimension I, which satisfies the following
conditions:

(@ For any 1 <i<n,;, F,=—-®,0;, where @, is an A4,-R-bimodule
which is a finitely generated free left 4,-module.

(b) Every indecomposable R-module M of dimension d is of the form
M =~ F.S for some i and some simple A;-module S.

A locally bounded K-category R is tame if so is every finite full
subcategory.

2. Regularly biserial quivers

For a biserial algebra A consider a decomposition A, = P®Q, where P is
a direct sum of indecomposable projective-injective nonuniserial A-modules
and Q has no such direct summands. Then by [3], soc,(P) is a two-sided ideal
in A and any right (left) indecomposable projective-injective A/soc ,(P)-module
is uniserial. We call the algebra A4,y = A/soc,(P) the reduced form of A. Recall
that for an algebra B the Auslander—Reiten invariant «(B) is the largest possible
number of all indecomposable direct summands in the middle term of the
Auslander-Reiten sequences. From [3] we have the following lemma.

LEMMA 1. (a) B(A) <2 iff a(A,eq) < 2.

(b) The nonuniserial projective-injective A-modules are the only indecom-
posable A-modules which are not A, .4-modules. In particular, A is tame iff so
is Ared'

Now we shall choose a possibly nice presentation of a regularly biserial
reduced algebra. .
A pair of nonzero parallel paths (a, f,...5,), t = 1, in a bound quiver
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(Q, 1) 1s said to be a pair of weakly commutative paths in (Q, I) if either ay ¢!,
oay—af,...B,yel for some arrow y and some ae K*, or da¢l, da—bdf,... B,
el for some arrow é and some be K*.

LeMMma 2. Let (Q, I) be a regularly biserial quiver such that KQ/I is
a finite-dimensional algebra. Then:

(1) (Q, I) contains no two pairs of weakly commutative paths of the form
(X By---B) and (B, 2,...2,).
(2) (Q, I) contains no two pairs of weakly commutative paths of the form

(% By - By) and (B, o, ... @}).

Proof. For the proof of (1) suppose there are two pairs of weakly
commutative paths («,, f,...8) and (f,, «,...a,). Suppose that B,1¢I,
B.t—aa,...a,tel; the proof for the case xf8, ¢, xf,—dxo,...a, el is comp-
letely analogous. The regular biseriality of (Q, I) implies that, if d # 7, then
a0, B,0el. Consequently, either a,,t—bf, ... B,rel for some be K*, or there
is an arrow ¢ such that ea,, —ceff, ... f,€ I for some ce K*. In the first case we
have

07&B,“r=aa1...am1'=aba1...am_1ﬂ1...ﬁ,r
=...=(ab)"(a,...0m-1B8,...Bi=1)"B,T

in KQ/I for any neN, a contradiction to the fact that KQ/I is finite-
dimensional. In the second case we get € = a,,_, by the regular biseriality of
(Q, I), and we have

O#£B[t=an,...0p_1a,T=act, ..., fB;...0,1

=...=(ac)"(a, ... =1 B,...Bi-1)"B,T

in KQ/I for any neN, again a contradiction.
The proof of (2) is similar and we omit it.

Lemma 3. Let (Q, ) be a regularly biserial quiver such that KQ/I is
a finite-dimensional K-algebra. Then for any pair of nonzero parallel paths
Oy 0 Ys Bp---P17 there is ae K* such that o,...a,y—ap,,...B,yel and for
any pair of nonzero parallel paths ta,...a,, tf,... B, there is be K* such that
ta,...0, —btB,...B, el

Proof. Suppose that there are two different nonzero parallel paths
%, ...0Y, B---B,y such that a,...a,y—apP,,... B,y¢ I for any ae K*. We can
assume that a, # f3,. Thus, by the regular biseriality of (Q, I), either there is
a path u such that a,y—a,uff;yel for some a4, € K* or there is a path v such
that 8, y—b,va,ye! for some b, € K* In the first case we consider the paths
a,...o0,up,y and fB,,...B,7, in the second f,,...B v,y and «,... o, 7. Observe
that each of these pairs is a pair of noncommutative nonzero paths.
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Assume that we have constructed a pair of noncommutative paths (w, y)
such that (w, o,...o,y) and (y, B,,...B,7) are pairs of commutative paths and
moreover w = w'oAu’ and y = y' udu’, where ¢, 4, p are arrows in (@, I) and u' 1s
a composition of at least ¢ arrows. Then either there is a path r such that
uA—croiel for some ce K*, or there is a path s such that gAi—dsuiel for
some de K*, because (Q, I) is regularly biserial. In the first case we put
w, = woiu’ and y, = y'relu/, in the second w, = w'spiu’ and y, = y'pdu’. In
this way we have constructed a pair of noncommutative nonzero paths (w,, y,)-
such that (w,,a,...a,y) and (y,,B,,...B,y) are pairs of commutative paths,
w, = wio, A, uy and y, = yju, 4,1} and 4,4} is a composition of at least ¢+ 1
arrows. Consequently, we can construct inductively paths satisfying the above
properties and such that 4, u} is a nonzero path in (Q, I) of an arbitrarily large
length, which gives a contradiction to the finite-dimensionality of KQ/I.

The proof of the second assertion is similar.

LemMA 4. For any regularly biserial alyebra A there is a regularly biserial
quiver (Q, I) such that A ~ KQ/I and the following conditions are satisfied:

(1) If (Q, I) contains a pair of weakly commutative paths («, f3,...B,) such
that ta ¢ 1 and to—b1f,... 5, €I for some be K* and for an arrow 1, then there
exist two arrows y, # y, such that either B,y,, ay,€l or ay,, ay, €l or B,7,,
Biviel.

(2) Every pair of weakly commutative paths (o, B,...B,) in (Q, I) is a pair of
weakly commutative paths in (Q, I') for any presentation KQ/I'S A.

Proof. Let A =~ KQ,/1,, where (Q,.],) 1s a regularly biserial quiver,
and let p: KQ,— A be a presentation with ker(p) = I ,. Moreover, assume
that there is a pair of weakly commutative paths (z, f,...8,) such that
te—btf,...B,el,, ta¢l, for some t and some be K*. Thus we have ea,
¢f, el , for any arrow ¢ # 7 by the definition of the regularly biserial quiver. If
there exists an arrow y, € Q, such that ay,, ff,7,¢1,, then either there exists
a path u such that ay, —cupf,y, el, for some ce K*, or there exists a path
v such that B,y, —dvay,el, for some de K*. In the second case we get
a contradiction to Lemma 2. So in the first case 4 must be of the form u = B,u'.
Indeed, if u = av’, then u = ay,u”, where ' = y,u” and we get

0#ay, =cay,u"fyy, = Cza7’1u"/3171“”ﬁ17’1 =...=c"ay (' By,

in KQ,/I, for any neN, contrary to the finite-dimensionality of A.

Suppose f,...8,yel,. Then p,... B, ¢, and Bu'f, ¢!, so, by Lemma 3,
one obtains B,... B, —fB,u' f,€l, for some fe K*. Then B,...B,v, —fB.u By,
el, and Bu' By, ¢, so B,...8,y,¢1,, a contradiction. This shows that
B,...8,7,¢1, and by Lemma 3 there is ee K* such that ay, —ef,...B,7,€1,.
Moreover, for any y, # y,, we have ay,, f,y,€l,.

Summarizing: ay, —ep,...f,7,€1, for some ec K*, and for y, # y, we
have either ay,, f,y,€I, or ay,, ay,el, or B,y,, B,v,€l, or ay,, B,7,€l,.



376 Z. POGORZALY

Consequently, for x7,, fi,+, ¢ 1, we choose a presentation p,: KQ ,— A in the
following way: py(x) = p(x) for » # o and p,(a) = p{a—bp, ... B,). It is obvious
that taeker(py) = I, and ay, —(e—b)f,... 8,7y, € I,. The bound quiver (@, I,)
1s regularly biserial. Proceeding in this way, by induction on the number of
pairs of weakly commutative paths («, §,... #,) such that t«a—b1f,...f, €I, for
some 1 and some be K*, one obtains a regularly biserial quiver (@, I,) which
satisfies condition (1).

In order to choose a regularly biserial quiver which satisfies (2) and (1)
consider the quiver (@, I,) chosen above. Let p': kQ — A be a presentation of
A with ker(p)=1,. Then for any pair of weakly commutative paths
(o, B,-..f,) n (Q, I,) we have either ta—btf,... 5, €], for some be K* and
ayel,, or B,yel, for any arrow y, or ay—af,...,yel, for some ae K* and
t,2€l,,or 7, ,€l, for any arrow 7,. Thus in the case of f8,... 5,e€, for any
arrow ¢ (resp. ¢B,...f,€l, for any arrow g) we choose a presentation pg:
kQ — A as follows: py(x) = p'(%) for » # a and py(e) = p'(a—bp,...B,) (resp.
pole) = p'(a—af,...,)). By induction on the number of pairs of weakly
commutative paths in (Q, I,) one obtains a regularly biserial quiver (Q, I)
which satisfies (1) and (2). This finishes the proof of our lemma.

A regularly biserial quiver (Q, I) satisfying conditions (1) and (2) of Lemma
4 is said to be weakly standard.

LEMMA 5. A weakly standard quiver (Q, I) contains no two pairs of weakly
commutative paths of the form («, f,...B,) and (B,, v,,-..7;) for 1 <t < n.

Proof. Suppose that in a weakly standard quiver (Q, I) there are two pairs
of weakly commutative paths of the form («, f,...5,) and (8,, y,-..7,) for some
t with 1 <t < n, Then Lemma 2 implies that 1 <t <n. Thus ,8,-, ¢ and
B.+1B,¢1 mply that either §,8,_,—ay,...7,b-1€1 for some ae K* or
BiiiB,—bBis1Vm---y, €I for some be K* In the first case f,,,9,...7,€1,
because (Q, I) is weakly standard. But

Bo---Bi=aB,...Bisv1Vm--V1Bi-1---B, =0

in KQ/I,so B,...B, €l, contrary to the assumption that (a, ... 8,) is a pair of
weakly commutative paths. Similarly we obtain a contradiction in the second
case and the lemma is proved.

LEMMA 6. Let (Q, I) be a weakly standard quiver and let (x, f3,...0,),
(7.8,,...0,) be two different pairs of weakly commutative paths in (Q, I) which
have a common arrow. Then either 6, = B,, 6;-1 = fn_1,...,0, = B; for some
i<m,j>1,o0r fi=20,, Bi-1 =0pn-1,...,8, =9, for some i <n, j>1.

Proof. Observe that by Lemma 5 we get y # f, for any t = 1,...,n and
«#0, for any I=1,...,m. Consequently, g, =0, for some 1 <s<n,
1 <r < m. Consider the paths f,.,8,, 6,+,90,¢I. If r <m and s < n then



REGULARLY BISERIAL ALGEBRAS 377

Or+1 = Ps+1- Indeed, if 6,,, # B,+, then, by the weak standardness of (Q, I),
cither there is a path v such that (8, ., vf,+,) 1s a pair of weakly commutative
paths in (Q, I), or there is a path u such that (f,+, ud,, ) is a pair of weakly
commutative paths in (Q, I). In both cases we obtain a contradiction to
Lemma 5. Similarly, for r > 1, s > 1, one obtains §,_; = B,-,. Moreover,
B,...B, #9,,...0,, because the pairs are different. If r = m and s = n, we again
have a contradiction. Indeed, « =y, §, = 6,,, B, = ¢, and, since our pairs are
different, we obtain f; = é; and f;., # d;., forsomen>i>1, m>j>1.1In
this case similar arguments applied to f;+f;, 9;.+,8; give a contradiction to
Lemma 5. Similarly the case r = s = 1 is impossible. This finishes the proof.

PROPOSITION 1. For any regularly biserial alyebra A there exists a weakly
stundard quiver (Q, I) such that for every pair of weakly commutative paths
(«, B,...B,) the following condition is satisfied: if o (resp. 1) is an arrow in Q such
that ac¢l, ac—bp,...p,c€l, be K* (resp. ta¢l, ta—a1B,...f,el, ac K¥*),
then b =1 (resp. a=1).

Proof. Let (Q,I') be a weakly standard quiver and let p: KQ—- A4
be a presentation such that ker(p) = I'. Let («, f,...,) be a pair of weakly
commutative paths such that asc¢lI’, ac—bf,...f,0el’, be K* (resp. ta¢l’,
ta—atf,... B el', acK*). We choose a presentation p,: KQ—A in the
following way: po(x) = p(x) for x #a and py(a) =b"'p() (resp. py(®)
=a 'p(&). Then ac—p,... B, 0eker(p,) = I, (resp. ta—1f,...B,el,). It is
clear that (Q, I,,) 1s a weakly standard quiver too and using Lemmas 5, 6, we
may continue this procedure inductively with respect to the number of pairs of
weakly commutative paths («, §,...,) which do not satisfy the conclusion. In
this manner we construct a weakly standard quiver (Q, I) which satisfies the
required condition.

A weakly standard quiver satisfying the condition of Proposition 1 is said
to be standard.

LEMMA 7. Let A = KQ/I, where (Q, I) is a standard regularly biserial
quiver. Then, for any arrow e€Q, ¢ A and A-¢ are uniserial modules.

Proof. Let ¢ be an arrow in Q. Moreover, let ¢y, ... y, be the maximal path
starting with ¢ and such that ey, ...7,¢ 1. Let i, be the smallest index such that
the end of y, is the end of an arrow 1, # y,, with ey, ...y;,- 17, €¢I Then either
there exists a path u such that y;,_,y, —7;,-,7,,4€l, or there exists a path
v such that y, _,1;, —%i,-17;,0€ ], because (Q, I) is standard.

In the first case by the maximality of ey,...y, we find that u is trivial, so
Vio—1Yie— Yio—1T;, €1 and iy =t by the standardness of (Q, I). Consequently,

eAoey, Ao ... oey -1 ADEY A

is the only sequence of submodules of &4 and hence ¢-A4 is uniserial.
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In the second case if v # y;,+,...7,, then let i, be the minimal index such
that i, > i, and y; does not lie on the path v. Since &y, ...y, is maximal, the
standardness of (Q, I) and Lemmas 5, 6 imply that v = y;,44...7;,-1. Again
using the standardness of (Q, I) shows that i, —1 =1 and

eAoeyrA>...oey,...7 A

is the only sequence of submodules of ¢- 4, and so ¢- 4 is uniserial. If v is trivial

then as above we see that -4 is also uniserial. The proof that 4-¢ is uniserial is
similar.

CORrROLLARY 1. Every reqularly biserial algebra is biserial.

Proof. Let A = KQ/I be a regularly biserial algebra. Lemma 4 and
Proposition 1 imply that the quiver (Q, I) may be chosen standard. We now
show that any indecomposable projective 4-module x- 4 satisfies: rad ,(x- A) is
a sum of at most two uniserial submodules whose intersection is zero or simple.
Here x is a vertex of Q. If x is a sink of at most one arrow ¢ then
rad ,(x-4) = 6-A is uniserial by Lemma 7. If x is a sink of two different arrows
y, 0 then rad (x-A) = y-A+d- A, where y- A4, - A are uniserial by Lemma 7. If
y:And-A is zero or simple, then x-A is bisenal.

Suppose that Y = y-And-A has length > 2. It is clear that Y is uniserial.
If y- A is the projective cover of the uniserial module Y then y is a source of two
different arrows 7, € such that there are paths éw, 1, yw,e. Moreover, Y not
being simple implies that there exists an arrow 4 with sink y and eA¢ ], tAi¢l.
Then the standardness of (Q, I) implies either the existence of a path u for
which eA—utiel, or the existence of a path v for which 1A —vedel. In the first
case the uniseriality of y-A4 implies that ¢ =y and u = du,; but then y-A4/Y is
a simple module, yoA+0:-4 x~y-A/Y®d-A and x-A4 is biserial. In the second
case we find similarly that - A/Y 1s simple, y-A+5- A~y AP A/Y, and x- A4
is biserial.

The proof that 4-x is biserial is similar.

3. Universal coverings

Let A be a locally bounded K-category and A = KQ ,/I,. Assume that the
quiver Q, is connected. Let x, be a fixed vertex of Q, and let W be the
topological universal covering of Q , with the base point x,. From [12] there is
a natural map ¢q: W —-Q, given by the action of the fundamental group
I,(Q,. x,). For the bound quiver (Q,., I,) a minimal relation in I, is an
element ¢ = 7~ L;u;e€l (x, y), where 4,6 K* and u; is a path from x to y,
such that n>2 and for every nonempty proper subset T < {1,...,n},

Yier A€l ,(x, y) [111.

Let N be the normal subgroup of IT,(Q,, x,) generated by all elements of
the form [y~ 'u~'vy], where y is a walk from x, to x and u and v are paths
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from x to y such that there is 2 minimal relation in I, of the form ¢ = Y 7=, 4w,
such that w, = u, w, = v. Then the group I1(Q,, I,) = I1,(Q,, x,)/N is called
the fundamental group of the bound quiver (Q,, I,,) [11]. We define @, as the
orbit quiver W/N and the map =n: Q , — Q, is given by the action of I1(Q,, I,)
on @ ,. The map = gives a Galois covering n: KO, — KQ, of path categories
and consequently we obtain a Galois covering F: K@ /T, — KQ /I, with the
group I1(Q ,, [ ,), where IA is the ideal in KQA generated by all elements u such
that n(u)el,. Then A= KQ,/I, is called the universal cover of A [4]
determined by the presentation KQ /1,5 A.

A locally bounded K-category is said to be simply connected [1] if A is
triangular and for any presentation p: KQ,— A the fundamental group
I(Q,, I,) is trivial, where the triangularity of 4 means that its bound quiver
does not contain oriented cycles.

An algebra A is said to be standard [16] if there is a Galots covering F:
A— A such that A is simply connected.

Now we are able to prove the following theorem.

THEOREM 1. Let A be a basic connected reduced reqularly biserial algebra.
Then there exists a standard quiver (Q, I) such that:

(i) A=~ KQ/I
(i) 11(Q, I) is a free nonabelian group.
(i1i) R = KQ/I is a simply connected regularly biserial K-category.

In particular, A is standard.

Proof. From Proposition 1, 4 ~ KQ/I for a standard quiver (Q, I). Let
(Q, ) be the bound quiver which is obtained from (Q, I) by removing all
arrows o for which there is a pair of weakly commutative paths («, v) in (Q, I)
and by removing all relations involving these arrows. Moreover if, in the pair
(e, v), v is also an arrow then we remove only one of the arrows a, v (no matter
which one). Thus (@, ) is a special biserial bound quiver. Moreover, the
construction of the universal covering implies (Q, ) = (Q, I). Since A is
reduced, (0, Dis a bound quiver with [ generated by paths. This implies that
(0, I) is a tree and [ is generated by paths. So the fact that (Q, I) = (0, I} and
Lemmas 2, 4, 5 and 6 imply that KQ/I is a simply connected K-category and
consequently (ii1) 1s proved. Hence A4 is also standard.

It remains to prove (i1), because (i) is obvious by the choice of (Q, I).
Observe that I1(J, I) is a free nonabelian group and I1(Q, ) = I(Q, 1), so
I1(Q, I) is free nonabelian. Our theorem is proved.

4. Main result
The main aim of this section 1s to outline the proof of the following theorem.

THEOREM 2. Let A be a finite-dimensional regularly biserial K-algebra.
Then A is tame and B(A) <2
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A complete proof of this result contained in [13] is technical and tedious.
In this proof we apply Galois covering techniques developed for represen-
tation-inlinite algebras by P. Dowbor and A. Skowronski in [6]. In fact, we
need a more general version of the main result of [6] which we present below.

Let R be a locally bounded K-category, G a group of K-linear automor-
phisms of R acting freely on the objects of R, R/G the quotient category
[10] whose objects are the G-orbits of objects of R and F: R—R/G the
covering functor attaching to each object x of R its G-orbit G-x. F induces
a functor F.: MODR/G—-MODR attaching the module NoF°® to the
R/G-module N. Moreover, there is [8, 6] a functor F;: MOD R—MOD R/G
which is left adjoint to F. and acts on the objects as follows: for any
MeMODR and any object r of R/G,

(F,M)r)= @ M(x);
Fx=r
if r,%>r, is a morphism in R/G then the map (F, M}(2): (F, M)(r,)—(F,M){r,)
attaches to (m)e @p,-,, M(x) the element

(X M(a)m)e @ M(y),
x Fv=r,
where 4, is determined by the formula ), -, F(%,) = 1.

For every full subcategory L of R we denote by G, the stabilizer {geG;
gL = L} of L. By GL we denote the full subcategory of R consisting of G-orbits
of all objects of L. The group G acts on MODR by 9 —) such that
M = Mog ! for every M e MOD R. For every M e MOD R we denote by G,,
the stabilizer {ge G; ‘M ~ M}. Moreover, we assume that G acts freely on
(ind R)/ =, the set of isoclasses of objects in ind R. Observe that, if G is torsion-
free and acts freely on R, then G acts freely on (ind R)/~.

An R-action of G on an R-module M [8] is given by K-linear maps v(g, x):
M (x)— M (gx) which are defined for every object x of R and every element g of
G and satisfy the following conditions:

(@) v(l, x) = 1x-

(b) v(h, gx)v(g, x) = v(hg, x) for all xeR and g, heG.

() v(g, x)M(x) = M(ga)v(g, y) for every ae R(x, y) and every geG.

By MODF® R we denote the category whose objects are pairs (M, v), where
v is an R-action of G on M e MOD R, and the morphism set from (M, v) to
(M’, v') consists of all R-homomorphisms from M to M’ which are compatibie
with the R-actions of G. We denote this set by Hom$(M, M’). By Mod% R we
denote the full subcategory of MODY R consisting of all (M, v)e MOD®? R such
that M e Mod R and supp(M) is contained in a finite number of G-orbits of R.
From [8] we have

LEMMA 8. Under the above notation the functor F. induces an equivalence
mod R/G - Mod§ R. Moreover, F, induces an injection from the set
((ind R)/~)/G of G-orbits in (ind R)/x into the set (ind R/G)/~.
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Following [6] we denote by mod, R/G the full subcategory of mod R/G
consisting of all modules of the form F; M, where M emod R. Modules from
mod, R/G will be called modules of the first kind. Denote by mod, R/G the full
subcategory of mod R/G consisting of all modules which do not have direct
summands [rom mod; R/G. These modules are called modules of the second
kind.

A module M elIndR is called weakly G-periodic if supp(M) is infinite and
supp(M)/G,, is finite.

Let H be a group of K-linear automorphisms of a locally bounded
K-category C which acts freely onind C)/~. Denote by Mod},C (resp.
Mod}, C) the full subcategory of Mod¥ C consisting of all M e Mod¥ C such
that M = @, Z,, where Z,eind C (resp. Z,eInd C and Z,¢ mod C) for every
iel

Let R be a locally bounded K-category and G a group of K-linear
automorphisms of R acting freely on (ind R)/=. Let % be a family of locally
bounded K-categories. A family of functors e3: Mod § - Mod R, Se %, is said
to be G-separating if the following conditions are satisfied:

(a) For any Se %, the functor ¢} admits a left and right adjoint functor
e5: Mod R - Mod S.

. (b) For any Se %, there exists a subgroup G of G such that G acts freely
on § and 4 —)el = €f (=), U—)e’ = & 9—) for any geGy.

(c) For any Se ¥, the class of weakly Gs-periodic S-modules is nonempty
and coincides with the class of sincere S-modules in IndS.

(d) For any weakly G-periodic R-module M, there exists exactly one S€ %
such that M ~ €5(X) for some weakly G¢-periodic S-module X.

(e) e5(Y)emod R for any YemodS, Se.%.

(f) e¥(N)eMod¥; S for any NemodR, Se .

(g) For any Se.% and any G-orbit O in R, the intersection O Ry is
contained in a finite number of G¢-orbits, where R denotes the support of any
weakly Gg-periodic R-module of the form e3(X) for any weakly Gg-periodic
S-module X.

' (h) For any S, €% and ZeModS, e¥e3(Z) is a direct sum of
finite-dimensional S’-modules.

(i) For any yeR, r > 1, there are only a finite number of Se€.% such that
IS/Gg| < r and yeR;.

Denote by %, a fixed set of categories from & such that the subcategories

R, Se ¥, form a set of representatives of G-orbits in the set of all categories
Ry, Se .

Let Se¥, and let E’: ModfR-—>Mod% S be the functor induced
by e¥: Mod R >Mod S. Then ES admits a left and right adjoint functor E3:
Mod$s S —>Mod$ R given by

E5(X) = @ ei(X)) = [] *(e3(x)),

gelUs geUs
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where X e Mod§sS and Uy is a fixed set of representatives of the left cosets
G modulo G4. The module €3(X) admits an R-action of G which is induced by
the given S-action of G4 on X.

Now we are able to state the following generalization of Theorem 3.1
from [6].

THEOREM 3. Let R be a locally bounded K-category and G a group of
K-linear automorphisms of R acting freely on (ind R)/~. Let {e3}s.s be
a G-separating family of functors. Then there exists an equivalence of categories

E: 1l (modS/Gy)/[mod, S/Gg]— (mod R/G)/{mod, R/G].
Se¥o

Moreover, the Auslander—Reiten quiver I'r,c of R/G is isomorphic to the
disjoint union of quivers

FR/G-LL(—L‘L (rS/Gs))Z)
SE.?’Q
where ([s6,), is the union of connected components of I'sg, whose points are
isoclasses of S/G¢-modules of the second kind.

Now let A be a K-category. Then every contravarniant functor @
R—->MOD A4°" will be called an 4-R-bimodule. Every A-R-bimodule Q induces
a functor —® ,Q: MODA —-MODR, where (V® ,0)(x) =V® ,0(x) for any
VeMOD A and xeR.

Let B be a weakly G-periodic R-module with an R-action v of the group
Gy on B. Then F; B admits a structure of KGg-R-bimodule, where KGy is the
group algebra of the group G, over K. More precisely, for every Gxe R/G,
(F,B)(Gx) is a left free KGp-module of rank ) ,.w_dimg B(y), where W, is a set
of representatives of G -orbits in the set Gx. If G is an infinite cyclic group
then F,B is a K[T, T ']-R/G-bimodule and we obtain a [unctor
— ®xcr.r-yF;(B): mod K[T, T~ ']—mod R/G.

Let {e3}scs» be a G-separating family of functors such that any Se % is
a line, that is, Qg is a linear quiver whose underlying graph Qs is of the form
A.. Let Bg=e5(X,) for some weakly Gg-periodic S-module X and

& = —Qr.r-nFi(Bg): mod K[T, T™']->mod R/G.

Under the above notation we have the following generalization of Theorem 3.6
from [6].

THEOREM 4. Let R be a locally bounded K-category and let G be u group
of K-linear automorphisms of R acting freely on (ind R)/ ~. Moreover, let {€3}s.+
be a G-separating family of functors such that any S€ & is a line. Then the
Jamily {@%}s.o, induces an equivalence of categories

@: 1l modK[T, T~ ']—(mod R/G)/[mod, R/G].

SeSo
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Moreover,

(FR/G)z =11 rx['r.-r—l],
Fo

where I'yirp-1 is the Auslander—Reiten quiver of the category of finite-
dimensional K{T, T~ ']-modules. Moreover, R/G is tame iff R is tame.

The proofs of Theorems 3 and 4 are straightforward generalizations of the
the proofs of [6, Theorem 3.1] and [6, Theorem 3.6].

Now we can sketch the main steps of the proof of Theorem 2, contained in
[13]. Let A be a regularly biserial algebra. From Lemma 1 we may assume that
A is reduced. By Theorem 1, 4 admits a simply connected Galois covering
A A with a free nonabelian group G. Then using the vector space category
methods [14, 15] one classifies all finite-dimensional indecomposable A-mod-
ules and proves that A is tame and a(4) < 2. Further, we construct a G-separa-
ting family of functors satisfying the conditions of Theorem 4. Applying
Theorem 4 we conclude that 4 is tame and fS(4) < 2.
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