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Let M,,..., M, be n matrices and let Tr(M, ... M,) be the trace of the
product. It is well known that this product is not invariant under all
permutations of the matrices. However, it is invariant under cyclic
permutations because Tr(AB) = Tr(BA).

In the last few years this simple phenomenon, i.e. invariance under cyclic
permutation, appeared independently in at least three frameworks: trace of
Fredholm operators and generalization of de Rham cohomology [C1],
homology of Lie algebras [T], algebraic K-theory [LO].

[t was extensively studied for the first time in Connes’ work as a
cohomology theory, now called cyclic cohomology and denoted by HC"(A), n
> 0. These abelian groups are defined for any associative (and not
necessarily commutative) algebra 4 over a commutative ring k.

In this survey I will mostly present the dual version: cyclic homology
HC,(A).

The main features of this theory are the following. Firstly, it has strong
connections with the so-called Hochschild homology H,(A4, A) and with de
Rham cohomology. Namely, there is a “periodicity exact sequence”

. H,(A, A)— HC,(A) S, HC,_,(A) = H,_ (A, A)— ...

from which we see immediately that HC,(k) is periodic of period 2,
isomorphic to k when n is even and to O when n is odd. The map S permits
the definition of lEnHC,(A) which i1s a quotient of a periodic theory

S
HCY'(A). If A is a ring of functions of a smooth algebraic variety V (or the
ring of differentiable functions over a manifold V¥, in the topological
framework) then

lim HC, (4) = HCY' (4) = H*(V, C)

(de Rham cohomology of V).

* This paper is in final form and no version of it will be submitted for publication
elsewhere.
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In this sense HCY'(A), which exists even if A is not commutative (for
instance the C*-algebra of a foliation), plays the role of de Rham
cohomology. This enables Connes to define Chern classes for foliations and
therefore to give an explicit formula for the index of an elliptic differential
operator on a foliation.

Secondly, cyclic homology allows the computation of the homology of
Lie algebras of matrices. The point is that HC, _ (A) is the primitive part of

H, (g1 (A), k) when k is a characteristic zero field. A similar result is true for
the "orthogonal and symplectic Lie algebras but with cyclic homology
replaced by skew-dihedral homology. '

Thirdly, several points suggest a strong relationship with algebraic K-
theory. In fact cyclic homology can be viewed as an “additive algebraic K-
theory”: the linear group being replaced by the Lie algebra of matrices, the
determinant by the trace, the multiplicative formal group G,, by the additive
one G, the groups K, by HC,_,, etc. Some results are known in this
direction. For instance the algebraic K-theory of a simply-connected space X
(in Waldhausen’s sense) can be computed rationally from the cyclic
homology of the minimal model of X. There are defined characteristic classes
from algebraic K-theory to cyclic homology. However it seems that a lot
remains to be done in the comparison between HC, and K,.

Finally, one should note that through different ways, namely the study
of “anomalies”, some quantification problems in theoretical physics can be
formulated in terms of cyclic (co)-homology.

1. Cyclic homology of algebras [C3] [L-Q2]

Let k be a commutative ring with unity and let A be a (not necessarily
commutative) associative k-algebra with unity. The Hochschild homology of A
with coefficients in itself, denoted H,(A4, A), is, by definition, the homology of
the complex

R
where the boundary operator b is given by

n—-1

b(ag,...,ap) = Y (=1 (ag,.., GGy 5.y @)+ (—1)"(ana0, ay,..., ap_,).
i=0

In particular if A4 is commutative Hy(A, A) = A and H,(A, A) = QL,,‘.
Let 1: A®"*1  4®"*! be the cyclic operator

t(ag, ay,..., ay) =(—1)"a,, ag,..., Ay 1).
Connes remarked [C1, C2] that if we divide A®"*! by the action of t to get
Ch(A) = A®" 1 [(1—1),
then b is still well defined and therefore (C,(A), b) is a complex.
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1.0. DerinviTioNn 0. If k contains Q the cyclic homology of 4 is
HC,(A) = H,(C,(A), b).

ExampLe. If 4 =k then HC,,(k) = k and HC,,, (k) = 0. A generator of
the even dimensional group is the class of I®1® ... ®1 (odd number of Is).

This definition does not behave well in characteristic different from zero.
Therefore one introduces a new one.

The element N = 1+4+t+ ... +1" operates on A®"*! and there exists a
bicomplex C(A)

| l |

A0n+1 1-¢ A@n+‘|< N A@J‘Al—‘4 1-¢ -
bl —b'l bl

@n Q® @
A - A " - A 04: ee e

where 1, N and b are as above and
n—1
b (ags-..r @) = Y (—=1){ao,..., G Gisy,..., d).
i=0
1.1. DerinitioN 1. The cyclic homology of A, denoted by HC,(A), is the
homology of the total complex of the bicomplex C(A).

For instance, if 4 is commutative

The ground ring k& does not appear in the notation HC,(A), however these
groups do depend on k. For instance cyclic homology of C viewed as a C-
algebra is different from cyclic homology of C viewed as a Q-algebra (try n
= 1.

If k& contains Q Definitions 0 and 1 are equivalent (via the projection
map A®"*1 - C,(A)).

There is another definition in terms of bicomplex which is useful for the
comparison with de Rham cohomology.

Denote A®A®" the quotient of 4®"*! by the submodule generated by
(ag, ..., a,) where a; =1 for some i, 1 <i < n. (Here 4 = A/k). Put

n

B(ag,..., a) = Y (—1)"(a, Gj41,---, Ay, Ggs--., Gi—1).
i=0

Then there is a bicomplex B(A).
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1.2. DermviTioN 2. HC,(A) is the homology of the total complex of the
bicomplex B(A).

There 1s a map from Tot B(A4) to Tot C{A) inducing an isomorphism in
homology, hence the equivalence of Definitions 1 and 2.

There is still another definition in terms of derived functors. The family
A®**1 >0 can be looked at as a AC°-module A® where AC is a certain
small category containing the simplicial category 4 and all the cyclic groups
C,=2Z/n (AC is denoted A in [C3]) (see Section 12).

1.3. DeriniTioN 3. For any k-algebra A, HC,(A) = TorX (k, A°).

It can be shown [C3] [F-L] that this definition agrees with the others.

2. First properties [L-Q2]

It is well known that H,(k, k) = k and H,(k, k) = 0 for n > 0. On the other
hand one has

HC,(k) =k and HC,p, (k) =0.

Therefore HC, (k) is periodic of period 2. This is not true for an arbitrary
algebra 4. However there is a kind of periodicity.

2.1. TueoreM (Periodicity exact sequence). There is an exact sequence
... o H (A, AL HC, (A3 HC,_,(A) 2 H,_ (A, A)— ...

First proved by Connes [C2] in the cohomological framework using
Definition O this theorem is more easily proved using Definitions 1 or 2 [L-
Q2] [T}

It is sometimes interesting to make cyclic homology periodic on the
nose.

2.2 DeriNITION. Periodic cyclic homology is the homology of the total
complex of C*'(A) obtained from C(A4) by continuing the rows on the left.

Another way of comparing cyclic homology to Hochschild homology is
via a spectral sequence.
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2.3. THEOREM. There is a spectral sequence abutting to HC,(A) with E,
=H, ,(A) and with d': H,_ (4)— H,_,.,(A) being B.

Obviously from Definition 1 cyclic homology is related to the homology
of the cyclic group Z/n+1 acting on A®"*?

2.4. THEOREM. There is a spectral sequence
E, =H,(Z/q+1, A% )= HC (A).

2.5. Morita invariance. Two algebras 4 and A’ are said to be Morita
equivalent if there is an A-A’-bimodule P and an A-A-bimodule @ such that
PR, 0 ~A as A-bimodules and Q® P ~ A" as A’-bimodules.

Cyclic homology is Morita invariant; that means HC,(4) = HC,(A'). In
particular cyclic homology of matrices over A is canonically isomorphic to
cyclic homology of A. This equivalence is very helpful in the computations.
Morita equivalence is still valid in the cohomological framework and also in
the topological framework (see Sections 5 and 10, respectively). In particular,
cyclic (co)-homology of the algebra of infinite matrices with rapid decay is
isomorphic to cyclic (co-)homology of C.

3. Relationship to de Rham cohomology

In this section the algebra A is assumed to be commutative. Let Q) = Q},
be the A-module of Kahler differentials, generated by symbols dx for xe A
with the relations d(x+y) =dx+dy, d(xy) = xdy+ydx and d(k) =0. The
nth exterior power is denoted €27.

The de Rham complex

A=Q0-Q ... Qudontt o,

where d(apda, ... da,) =dayda, ... da, gives rise to de Rham cohomology
Hpgr(A).

3.1. TueoreM [L-Q2]. If A is smooth over k and k contains Q then
HC,(A) = Q/dQy '@ Hpa* (ASHp (AD ...

This 1s proved using Defimition 2 and a result by Hochschild, Kostant
and Rosenberg: H,(A4, A) = Q% when A4 is smooth. This theorem was first
proved by Connes [C2] in the framework of cohomology for the ring of
differentiable functions on a manifold (cf. 10.1).

3.2. A similar comparison has been worked out in {F-T2] between
periodic cyclic homology and crystalline homology in characteristic zero.

33. Deligne cohomology. In the case k = C, Deligne has defined a
cohomology theory as follows. First one truncates the de Rham complex (at n,
let say), then one shifts the complex by one and modify the right part by
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putting a map Z — Q% (depending on n, in general). If we ignore this last
modification then its homology is exactly cyclic homology for smooth A. The
main advantage about Deligne cohomology (vs. de Rham) is that it bears a
product, defined at the chain level and which is homotopy commutative. The
advantage of using cyclic homology, namely Definition 0, is that this product
becomes strictly commutative at the chain level in this framework (cf.

[L-Q2]).

3.4. Of course, cyclic homology can be extended to algebraic varieties
(and schemes) by sheafifying the complex C,(A4) and taking the
hyperhomology.

3.5. Positive characteristic. In characteristic p > 0 current research is
trying to cluctdate the relationship with de Rham-Witt cohomology.

4. Computations

4.1. Ground ring. We already showed that HC,,(k) =k and HC,, ., (k)
=0.

4.2. Dual numbers, nilpotent ideal. Let k[£] be the ring of dual numbers
(¢* = 0). Then [L-Q2]

HC,(k(]) = HC,(k)® @ H,_,(Z/m+1, k)
n=0

(homology of the cyclic group Z/m+ 1 with coefficients in k). In particular, if
k is a characteristic zero field then HC,,(k[¢]) = HC,,(k)®k, where a
generator of this last summand is e®e®...®e. This implies HCT (k [¢])
= HCY' (k).

More generally, il k contains @, then [G1] HCY' (A) - HCE'(A/) is an
isomorphism when [ is nilpotent.

4.3. Tensor algebra. Let V be a module over k and T(V) its tensor
algebra. Then [L-Q2]

HC,(T(V)) = HC,(k)® @ H,(Z/m, V®™)

m>0
(Z/m acting by permutation on V&M
4.4. Smooth algebra. We already mentionned that if 4 is smooth and k
contains @, then
HC,(A) = 23/dQY ' ®Hpp* (A)QHpR (4D ...

4.5. Group algebra. Let G be a group and k[G] be its group algebra.
Denote by {G) the set ol conjugation classes of G and choose an element :
in each class (z>e {(G). Let G. = lgeG| gz = zg} be the centralizer of z in
G. There i1s defined a fbration
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(%) St = BG, — X(G,, z)
where BG, is the classifying space of the discrete group G, and such that the
image of 1eZ=mn,S' is zeG,. Then [B2]

HC,(k[G]y= @ H,(X(G., 2), k)

ze’GY
(homology of the space X(G,, z)). As Hochschild homology is
H,(k[G], kK[G)) = @ H.(BG,, k)
ze’ G

one can show that the periodicity sequence is the sum over (G ) of the Gysin
sequences of the fibrations (x). If z is of infinite order then X (G,, z)
= B(G./|z}) and its homology is the homology of the discrete group G,/{z}.
On the other hand for z =1, X(G,, 1) = BG xBS! and therefore:

(4.5). HC,(k[G]) contains @ H, ,,(G, k) as a direct factor (homology

120

of the discrete group G) [K1]. As a corollary we see that if k contains Q then
HC_(k[r,t7 '] = HC,(k®HC, (k) *>0. (Put G=2Z in the above
formula. Follows also from 4.4).

4.6. Tensor product [B3, Ka]. Let A and B be k-algebras and suppose

that chark =0, B and HC_(B) are flat k-modules. Then there is an exact
sequence

0 — X Cotor*™(HC, (A), HC,(B)) — HC,(A®B)
i HC* (A) Dk[u] HC* (B) - 0,

where [] stands for the cotensor product of the two k[u]-comodules (see
6.1).

A similar statement holds in the framework of differential graded
algebras [B1].

4.7. Differential graded algebra (see Section 9).

4.8. C*-algebra of the Kronecker foliation [C2]. The Kronecker foliation
of the torus is the foliation by lines of slope 8 R/Z

e
-

<
q 9

The associated C*-algebra i1s Morita equivalent to the closure of the
non-commutative algebra A, whose pgeneric element is a formal sum
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Za,,‘,,, Ui U7 where a,,,€C, neZ, meZ, is a sequence of rapid decay and
where U, U, = exp(2inf) U, U,. Though Hochschild cohomology of 4, may
be infinite dimensional, HC¥, (A4,) is finite dimensional, of dimension 4, over
C. In particular HC;, (4,) is of dimension 2 generated by the standard trace
1 coming from HC® and ¢ coming from HC? and given by

@(ae, a,, a;) = 00(51(01)62(‘12)—52(01)51(02))
(where 6, and &, are the basic derivations of A4,).
The pairing (—->: Ko(Ay) x HC, (4g) — C is given by

d4p). D=1, LF) =0, (4], 0>=0, {[F],0>=1,

where the 2-dimensional group K, (A,) is generated by the unit [4,] and the
class of & = Schwarz space of the real line with the following module
structure:  (£:U,)(s) = E(s+8), (E-U,)(s) = e¥™E(s).

4.9. Generalized Jacobi matrices. A generalized Jacobi matrix is an
infinite dimensional matrix (g;;) i 2 0, j > 0 which has only a finite number of
non zero entries on each column and each row. The generalized Jacobi
matrices form a ring Ck called the cone of k. It contains the ring of finite
matrices k as a two-sided ideal. The quotient Sk = Ck/k is called the

suspension ring of k. It is proved in [F-T1] that if £ contains Q one has
HC,(Ck) =0, i >0 and

HC,,(Sk)=0, HC,_,(Sky=k, i>0.
[n fact there is a morphism k[t, t~!] — Sk inducing an isomorphism

HC,(k[t, 1~ "IHC;(k) > HC,(Sk), i>0.

5. Cyclic cohomology [C1, C2, C3]

All the definitions of Section 1 can be dualized to give cyclic cohomology. In
fact Definition 0 and the main theorems concerning it appeared first under
this form in Connes’ work.

We first deal with the analogue of Definition 0. Let k be a characteristic
0 field and A be a k-algebra. C"(A) .is the vector space of (n+ 1)-linear
functionals ¢ on A4 such that

(t) (P(am--v,an)—_—(—l)"(/’(am aOs‘--san—l)-
The Hochschild coboundary operator is given by the formula

(bo)lag, ..., apey) = Z (=1 @(ao,--, G Gisy,. ey Guay)

i=0

+(— 1)n+1(p(a,,+ Lo, Ay, ..., Q).



CYCLIC HOMOLOGY. A SURVEY 289

This defines a complex (C*(A), b) which we call Connes’ complex. Remark
that a cyclic cocycle is a Hochschild cocycle which satisfies (t).

5.1. DeriniTion 0. Let & be a characteristic zero field. Cyclic cohomology
HC"(A) 1s the homology of the complex (C*(A4), b) (Connes’ notation is
H%(A) where A stands for the cyclic permutation).

All the other definitions can be carried over in the cohomological
framework and in particular:
Derinition 3. HC'(A) = Ext" (k, (A)°)* = (c[. Section 12).

Il in Defimtion 0 we ignore the cyclic condition (1) we get Hochschild
cohomology H"(A, A*) where A* is the dual of A. All the properties of cyclic
homology hold for cyclic cohomology: Morita invariance, periodicity exact
sequence:

(5.2) ... H"" (A, A*) > HC"(A)S HC""2(4)—- H"" (4, A*)— ...,
computations, etc. In particular, we have
HC*™k) =k, HC>™ '(k)=0.

5.3. DerINITION. Periodic cyclic cohomology is defined (in the smooth
case) as

HC., (4) = im HC"* % (4).
Connes has given another definition of cyclic cohomology which is quite
convenient for concrete examples and when dealing with products. Let Q

= @ @ be a graded C-algebra, d a graded derivation of degree 1 such that
i=0

d* =0 and |- Q"— C a closed graded trace. This means that

[dwo =0 for weQ",

j())z (1)1 _ (_ l)degwldcng ‘-

w;w, for degw, +degw, = n.
Such a triple (2, d, |) is called a cycle of dimension n. There is an obvious
notion of sum of cycles and also a notion of product (take Q®Q’). An
n-dimensional cycle over A is a cycle like above plus a homomorphism
p:A—- Q°

The character of an n-dimensional cycle over A is the (n+ 1)-linear
functional t

T(am---, an) = (Q(ao)dg(al) dQ(an)

It determines a cycle in C"(4) and any cycle can be realized that way.
A k-algebra R is said to be flabby if there exists a bimodule M finitely
generated and projective as a right module such that R@®M is isomorphic to

1Y — Banach Center Publications
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M as a bimodule. An n-dimensional cycle (Q, d, _[, o) in A such that Q° is
flabby gives a boundary in C"(A).

5.4. Derinmion O, The additive monoid of n-dimensional cycles over A4
modulo those such that Q° is flabby is a group HC"(A).

By the above remarks it gives the same group as Definition O when k 1s
a characteristic zero field.

From the product of cycles (2®£Q') cyclic cohomology inherits a
product structure

HC"(A) x HC?(B) — HC™* P(A®B).

For B = k the product by the standard generator of HC?(k) gives the
map S: HC"(A) — HC"*%(A) appearing in the periodicity sequence.

One of the advantage of Definition 0’ is that many “concrete” situations
give rise to an n-dimensional cycle. Here is an example (see Section 10 [or
some others).

5.5. n-summable Fredholm operators [C1]. Let A be a (not necessarily
commutative) Z/2-graded algebra over C. An n-summable Fredholm
operator F on the graded A-Hilbert space H = H* @H  is an element in
L{H) (bounded operators in H) such that F2 =1, Fe = —¢F (where e+ =1,
tl,- = —1), [F,a]l =Fa—(—1)y"*"aFe L"(H) where L"(H) is the Schatten
ideal |Te L(H)|Tr(|T|" < o) and ac A.

The trace extends by linearity to a linear functional on L'(H) and
therefore the above data gives an element in HC(A4). For n greater than 1

there i1s defined an n-dimensional cycle over A as follows. Put da =i[F, d]
and let €7 be the linear span in L"9(H) of the operators

(ap+4l)da, ... da,, AeC.

Put, for any w, dw =i[F, w] and for e Q" .fw = Trace(ew). Then (2, d, D
is an n-dimensional cycle over A defining an element in HC"(A).

Such a data comes naturally from elliptic operators on a manifold V(A4
= C”(V)). In this case the Fredholm operator is p-summable for p > dim V.

6. Operations

6.1. There 1s defined a product on cyclic cohomology [C2]
HC"(A)x HC*(B)— HC""P(A®B).

It is constructed using Definition 0" (see Section 5). It can be realized trough
the Ext functors (cf. Definition 3) as a particular case of the product

Ext’ (M, N) x Ext’(M’, N') = Ext":?(M®M', NQN').
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When B =k the product by the generator ue HC?(k) gives the
periodicity map 0.

Translated into homology this gives a coproduct [B3, Ka]

HC,(A®B)— @ HC,(A@HC,(B).
p+g=n

Hence, when B =k, HC,(A) becomes a comodule over HC, (k) = k [u].

There i1s also a slant product

HCP(A®B) x HC,(B) — HC?™"(A).

6.2. On cyclic homology there is defined a product with a shift of degree
[L1, L-Q2] (of a different nature).

HC,(A)®HC,(4) 5 HC,\. 5. 1 (A®A).
With Definition O this product is defined by the formula
[x]x[y] = [x-B(y)], xeC,(4), yeC,(4A)

where the dot means shuffle product and the map B is the one described in
Section 1.

When A4 is commutative it provides HC, _ (4) with a structure of
graded commutative algebra. This product 1s compatible with the product on
Deligne cohomology (cf. 3.3). In particular when A is smooth then
xe HC,(A) decomposes as

x=x+x", xXeQy/dQy', x"eHp2(ADHM(AD ...
(and similarly y =y’ +y").
Then
xxy =x AdyeQyPH1dQyTe,
the other component (in Hjg) being O.

6.3. The exterior product induces A-operations on the homology of the
Lie algebra of matrices. By restriction to the primitive part (see Section 7) it
gives A-operations on cyclic homology. These operations can be computed
explicitly if one uses Definition 0.

THeEOREM [L—-P). The A-operations on HC,(A) are induced by the formulu
k-1
Fagy..a)=(—1F 'Y (”*"_H) T SEn(G) (a0, dytys- s yem)
1=0 n geS,,,,
where S, is the subset of the permutation group S, acting on {1,..., n} made
of the permutations which have | descents.

) 12345
(For instance g =

has 2 descents: 2—1 and 5— 4).
21354
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Among the operations generated by the i-structure (*, y*, etc) the
simplest one s the involution

”n(n+ 1)/2

(ag,..., a,)—(— (dg. Gy Uy ysenns dy).

This involution is more generally defined when A4 is non-commutative
provided that there is given an (anti)-involution on A (see Section 11).

The y*-operations induce the so-called 7-fillration on HC, (A). There are
other filtrations coming from the bicomplexes ((A), B(A) and the rank
coming from the comparison with the homology of the Lie algebra. The
comparison of all these filtrations is an active fAeld of research.

6.4. Let D be a derivation of 4 (over k). Then Goodwillie [G1] proved
that D operates trivially on HCY' (A). This i1s a kind of “Poincaré lemma™ for
cyclic homology. This result is quite interesting in the framework of
dilferential graded algebras (A, d) because it implies that HC}' (A, d) depends
only on Ayg/dA, if k contains Q (se¢ also Secction 9).

7. Lie algebras of matrices

In this section k is a characteristic zero field and 4 1s a (not necessarily
commulative) associative algebra over k. The n x n-matnices with coefficients
in A form a Lie algebra g¢l,(A). There is a stabilization map
gl (A)s gl (A) (put zeros on the last row and column) and g/(A)
= U_L]I,,(A).

The homology H,(gl(A), k) of the Lic algebra of matrices is not only a
coalgebra (thanks to the diagonal map) but also an algebra (thanks to the
direct sum @). It is in fact a Hopf algebra. Therefore, by a well-known
thecorem of Milnor and Moore, this Hopf algebra is the envelopping algebra
of its primitive part (an element x is primitive iff Ax = x®1+ 1®x). Note
that this primitive part 1s a Lie algebra. In the case at hand the primitive
part is a commutative Lie algebra and therefore the Hopf algebra is the
graded symmetric algebra over the primitive part.

7.1. THeorem [L-QI1, L-Q2, T]. If k is a characteristic zero field there is
a canonical isomorphism

HC,_,(A) = Prim H,(g! (A), k).

As a result this theorem enables us to compute the homology of g/ (A)
by combining it with the computations of cyclic homology.
This theorem has an obvious formulation in cohomology theory:

HC"™ ' (A) = Indec H"(g! (A), k).

The proof involves a kind of “plus-construction™ and relies on classical
invariant theory.
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The same method gives information on the stability of the homology of
the Lie algebra of matrices.

7.2. Turorem [L Q1. L Q2]. Let A be a churacteristic zero field and A a
commutative k-algebra. The stabilization map

Higla(A), k)= Hi(glar 1 (A), K)

is an isomorphism for i < n and for i = n+1 its cokernel is Q% '/dQ% .

The first theorem is analogous to K,(A)®Q = Prim H,(GL(A). Q).
where K, (A) is algebraic K-theory of A. This 1s the reason why Tsygan [T]
calls HC,. | (A) = K,/ (A) additive K-theory of A (note the shift of index).
With this new notation the product on cyclic homology defined in 6.2
becomes more natural:

K, (A) x K} (A) = K4 p(A),

In fact it has the same properties as the product in algebraic K-theory.
Namely, the role of Milnor K-theory (product of elements in K,) is played
here by Q5/dQ%' < HC,(A). Hence, the second theorem 1s the additive
analogue of a theorem by Suslin for K,.

Il one replaces the Lie algebra of matrices by the Lie algebra of
orthogonal (resp. symplectic) matrices over a ring with involution one Is led
to a similar theorem about the primitive part of the homology. However
cyclic homology has to be replaced by skew dihedral homology (see Section
1.

In characteristic different from zero only few resulls are known. In low
dimension it is immediate that H, (¢! (A4). k) = HCy(A) (the trace invariant)
and one can show [B] [K-L] thathz(.x_'_I_(A). k)= HC, (A).

8. Algebraic K-theory

In [C2] Connes showed (in the cohomological framework) that therc is a
nice map from the Grothendieck group K,(A4) to HC,,(A4). It is given as
follows. Let e be an idempotent in k xk matrices W, (A4), i.c. e =e¢ The
isomorphism classes [¢] generate Kqo(A). The element ¢®e® ... e i1s a
cyele in Cy, (M (A)) and therefore defines an element in HC., (W (A4))
= HC,,(A4) (Mortta invariance). This construction gives a map

('hzn: Ko(A) - H(wzn(A).

For n =0, chyle] = Tr(e).
In the odd case Connes performs a similar construction

Chn: Kl (A) - HC2ﬂ+ 1 (A)
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as lollows. Let u be an invertible matrix in A. Take
U=—DRu T-1N® ... Au—1)®Wm '—1)eC,,e (DM (A)).

It is a cocycle and defines the element ch,[u] in HC,,,,(A). For n =0 and
A-commutative HC,(A) = Q%/dA and

chy([u]) = (detu)” ' d(detu) = d(Logdet u).
To extend these maps to higher algebraic K-theory into maps
ch,: K;(A)— HC,;,,,(A)
one uses the following composition [K2]
Ki(A) = ;;(BGL(A)*) — H,(GL{A). k)
— HCy. 3 (k [GL(A))) = HC; 4 50(M(A)) = HC,. 5, (A).

The first map is the Hurewicz homomorphism, the second one is described in
4.5, the third one is induced by the natural map k [GL(A)] — M(A) and the
last one i1s the Morita 1somorphism.

In the cohomological framework this map from K-theory to cyclic
homology defines for any Ce HC*(A4) a map

oc: K, (4)— k.

As remarked above, ch, = K,(A) - HC,(A) can be described using the
logarithm (when it exists). This (together with the analogy Lie group - Lie
algebra) suggests that for topological algebras (or more generally when there
exists a logarithm) there is a strong relationship between K,(A4) and
HC,_,(A). This is illustrated by the following result announced by
Goodwillie [G2]. Let A be a Q-algebra and I a nilpotent ideal, then there is
a rational isomorphism of relative theories

K,.,(A, 1)®Q:’ HCn—l(As 1)

In another situation, let A be a locally convex topological algebra, then
there is a commutative diagram involving the periodicity exact sequence
[C-K]

Kt (A) —Ki(4) KA —KP(A) - KL (4)
l ! l l |
HC,,,(A)—- HC,_,(A)— H,(A, Ay— HC,(A)— HC,_,(A).

As cyclic homology is “almost™ Deligne cohomology one can also expect
Chern classes from algebraic K-theory to Deligne cohomology. They do exist
and give rise to the “regulator maps” [K3, K4] (see also C. Soulé,
Régulateurs, Séminaire Bourbaki, Fév. 85, {or a survey on regulators).

In the comparison between K, (A4) and HC, (A) it secems that the
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logarithm is not sufficient. In [B] a new function appeared, the dilogarithm
(3. z"/n*), which is mainly involved in K;. Recent work of Beilinson indicates

that polylogarithms () z"/n*) intervene (essentially in K, _ ).

9. Differential graded algebras

As usual when we have a homology funcior defined on the category of
k-algebras, we can extend it to schemes (sheafification), to simplicial algebras
and to differential graded algebras.

This last case has been worked out in detail by Burghelea in [B1] where
it 1s shown that these new functors are related to the algebraic K-theory of
spaces (in the sense of Waldhausen) and to equivariant cohomology. As a
result 1t gives new computations of algebraic K-theory of spaces.

Let (A, d) be a differential graded algebra (DGA) over a characteristic
zero field. Definition 0 of cyclic homology can be extended to a DGA by
constructing a bicomplex C,(4,) whose horizontal differential is of b-type
(Hochschild) and vertical differential is induced by d. The homology of the
total complex is HC, (A, d).

Let X be a simply connected simplicial set and let QX be the Kan
simplicial group which models the loop space in the simplicial framework.
Then Q[QX] is a DGA.

On the other hand from X (or its geometric realisation) Waldhausen has
defined the reduced algebraic K-theory K(X).

The generalization of the comparison theorem between cyclic homology
and the Lie algebra of matrices (see Section 7) gives the following.

9.1. TuHeoreM [B1]. For any simply connected space X there is a rational
isomorphism of reduced theories

K, (X)®Q=HC,_ (Q[QX]).

This theorem together with the computation of cyclic homology for a
tensor algebra (see 4.3) permits us to compute K, (X)®Q completely from
the minimal model of X, a result originally found by W. C. Hsiang and
R. Staffeldt [H-S].

We have seen in 4.5 that cyclic homology of a group algebra can be
computed from the homology of some spaces. A similar computation was
achieved by Goodwillie and by Burghelea for the Q-differentiable graded

algebra C_(QX) for a connected space X in terms of the free loop space x5t
9.2. Tueorem [B-F] [G1]. For a connected space X

HC,(C,(RX)) = H,(X>' x_ ES', Q).
* s
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The periodicity exact sequence identifies to the Gysin sequence of the
fibration

x> — x5 x, ES' - BS".

The combination of these two theorems gives a computation of the
algebraic K-theory of simply connected spaces in terms of S'-equivariant
homology (thus avoiding any cyclic homology).

The articles [B-F] and [V-B] contain some explicit computations of
cyclic homology for suspension, product of Eilenberg-MacLane spaces,
projective spaces, etc.

9.3. Tueorem [G1]. Rationally periodic cyclic homology depends only on
the fundamental group of the space:

HCY (C,(QX)®Q = HCY' (Z[7, XD®Q.

This is because derivations act trivially on periodic cyclic homology
(see Section 6).

10. C*-algebras and foliations [C2, C4]

10.1. Continuous cyclic homology. When A4 is a C*-algebra (or, more
generally, a locally convex topological algebra) it would be desirable to take
into account this topology in the definition of cyclic homology. This project
is easier to perform in the cohomological framework as it suffices to take
only those cocycles which are continuous. In this framework Connes ts able
to prove the theorems we already mentionned for “algebraic” cyclic (co)-
homology: periodicity exact sequence, Morita invariance, etc. In particular,
for a manifold we have

THEOREM. Let V be a differentiable manifold. Then
HC* (C™(V)) = H,(V, O).

per

10.2. Foliations and action of discrete groups. To any manifold V
supporting a foliation F there is associated a C*-algebra C*(V, F) which is,
in general, non-commutative. When the foliation comes from a submersion
then C*(V, F) is equivalent to the study of the algebra of differentiable
functions over the space of leaves V/F (this is a commutative algebra).
Therefore the characteristic classes can be read off from the de Rham
homology of V/F. When this 1s not the case unbounded cyclic cohomology of
C*(V, F) replaces de Rham homology of the (bad) space V/F.

Similarly, let I' be a discrete group acting on a manifold W. Let Cy(W)
be the C*-algebra of continuous lunctions on W vanishing at infinity. The

C*-algebra crossed product is denoted Co(W) xI'. Connes has constructed
a basic map
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p Ky (Wx EIN— K, (Co(W)xiTI')
where K, is twisted topological K-homology. The main conjecture 1s:

i 1s an 1somorphism.
In fact we are more interested in the injectivity of u (rational injectivity
of u implies the Novikov conjecture on homotopy invariance of higher
signatures). In order to test this injectivity one can use the maps

¢oc: K, (Co(W)xI') - C

induced by Ce HC*(Co (W) xI') (cf. Section 8). Then there is a commutative
diagram

KW ET) —E sk (C (W)xT)

H'(WXIEF,R)

where ch, i1s the Chern character and wce H* (W x (EI', R) is the element
deduced from C.

The injectivity problem reduces to know if all we H¥*(Wx ,EI', R) come
from cyclic cohomology (cf. [C4] for precise results).

In the foliation framework if D is a differential operator on ¥ which is
elliptic along the leaves there are defined a topological index Ind, (D) and an
analytic index Ind, (D). For any Ce HC*{C*(V, F)) Connes [C4] proved the
following index formula

<(Dc, Ch*(lndt D)> = (pC(IndaD)

which reduces to the Atiyah-Singer index formula when the foliation comes
from a submersion.

11. Dihedral and quaternion homologies [L2]

Let 4 be a k-algebra equipped with an involution a+a such that ab = ba.
Then HC,(A) inherits an involution. Therefore, when 1/2ek, HC, splits into
HC,; ®HC, . This splitting ts compatible with the product structure defined
in 6.2.

Dealing with Definition 0 the involution y on C_(A) is induced by

24— _ _
y(“OB al)"" an) :(_1)"(n+l)/ (a01 ans an—la"'s al)-

In fact, if we kill the action of t and y on the Hochschild complex then b is
still well defined and the homology of the resulting complex is (when k
contains Q) denoted HD,(A) and called dihedral homology. The reason is that
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t and y define an action of the dihedral group D,,, on A®"*! from which
we took the coinvariants. It is immediate to verify that HD,(A) = HC,} (A) in
this case.

In Definitions 1 and 2 for cyclic homology we took advantage of the
fact that the tnivial Z/n-module admits a periodic resolution. This is no
longer true for D,. However, it i1s true if we take the quaternion group Q,
whose homology is periodic of period 4. A particular resolution of the Q,-
module Z is thus used to give defimtions of type 1 and 2 for quaternion
homology HQ,(A) without any restriction on the characteristic.

As @, i1s a central extension of D, with kernel Z/2, HQ,, and HD, differ
only by 2-torsion. In particular, if 1/2ek, then

HQ, = HD, = HC; .

The existence of a small category AQ (resp. 4D) containing A and the
quaternion (resp. djhedral) groups mimicking AC (see Section 12) permits us
to generalize Deﬁnition 3:

HQ,(A) = Tor®(k, A%, HQ"(A) = Ext7 (k, (47)*),
HD,(A) = TorfP(k, A7), HD"(A) = Ext’p(k, (47)*).
The 4-periodicity of the homology of Q, gives rise to an exact sequence
.. = HT,(A) > HQ,(4) » HQ\_4(A) —» HT,_{ (4) -

where the intermediate theory HT,(A) can be computed in terms of
Hochschild homology and the involution on it. For instance, if 1/2ek there
1S an exact sequence

.. Hy (4, A)— HT,(A) » H,_ (A, A) - H_ (4, A) -

When A =k (and of course trivial involution) HQ,(k) is periodic of
period 4: HQ,, (k) =k, HQ4py = k/2k, HQ,4,+, = 2-torsion of k, HQ,4,,
=0.

If one replaces the action of y by —y, then one obtains skew quaternion
homology _HQ, (A) and skew dihedral homology _,HD, (A). If 2 is invertible
there are both isomorphic to HC_ (A).

Most of the properties and computations of cyclic homology can be
carried over to dihedral and quaternion homology. One of the most
interesting is the comparison with the homology of the Lie algebra of
orthogonal (ie. skew-symmetric) matrices o(4) and the Lie algebra of
symplectic matrices sp (A).

THeoremM [J~L. Loday and C. Procesi, also announced by J. Mc Iver].
If k is a characteristic zero field and A a k-algebra with involution, then

_yHD,(A) = PrimH,(o(A), k) = Prim H,(sp_(A), k).
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Quaternion homology of group algebras decomposes as a sum of
homology groups of spaces having only n, and =, (see [L2, § 4]).

Extension to DGA and comparison with hermitian K-theory is a
current field of research.

12. Cyclic sets, Tor and Ext functors. Generalization

12.1. Cyclic sets. As mentionned in Sections 1 and 5 cyclic (co)-
homology can be defined as a derived functor [C3]:

HC,(A) =Tor (k, A", HC"(A) = Ext"¢(k, (A%)*).

The involved abelian category is the category of cyclic modules. A cyclic
module 1s a functor from a small category 4C°® (denoted A in [C3]) to the
category of k-modules where the opposite category AC is characterized as
follows:

(a) The objects of AC are [n], n= 0.

(b) AC contains the simplicial category 4 (category of non decreasing
maps [n] =0<1<...<n}]—=[m]={0<1<...<m]) as a subcategory.

(c) Any morphism in AC can be written uniquely as a composite ¢@og,
@eHom ,([n], [m]) and geAut ,([n]) for some m and n.

(d) Aut[n]=Z/n+1 for n =2 0.

The paradigm of cyclic modules is 4°: 4C°® — (k-Mod) given by [n]—
A®""! The action of the face (resp. degeneracy) operator §; (resp. ;) of 4 is:

(0)*(ag, ..., a,) =(ag,---» @G G4 15...,a,) for 0<i<n,
(5")*(00,..., an) = (anaO: y,...y an—l);
(0}*(ag,.... a,) =(ag,..., a;, 1, aj44,...,a,) -for 0<j<n.

The action of the cyclic generator ¢ of Aut . ([n]) is

t(ag,..., a,) =(a,, aq,..., a,_,).

The category of cyclic modules is abelian and has enough projectives
[Ka]. The derived functors of Hom . (resp. ® ,) are the functors

Ext" (resp. Tor).

The proof of the equivalence between Definitions 2 and 3 (of Section 1)
results from the choice of a particular biresolution of the trivial cyclic
module k. This biresolution is a mixture ol a periodic resolution for the
cyclic groups and a classical resolution for the category 4 [C3].

The category AC leads naturally to the notion of cyclic set, i.e. a functor
X: A°" — (Sets). There is a well defined geometric realization for such a
functor, denoted | X|*. If we restrict X to A°° this gives a simplicial set whose
geometric realization is denoted |X| instead of |X}4.
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Tueorem [C3] [B-F]. Any cyclic set X: AC - (sets) determines u
homotopy fibration | X| — | X|* — BS'.

The main point is that the classifying space of the category AC 1s
homotopy equivalent to BS' = B(SO(2)).

When A is a group algebra the cyclic module A is (as a functor) the
composite of a cyclic set and of the functor which assigns to a set a free k-
module. This permits us to prove that, in this case, HC_(A) is the homology
of the classifying space of the cyclic set [B-F] (cf. 4.5).

Tueorem [B3] [G1]. Let X be a cyclic set and |X|% its geometric
realization. There is an action of S* on |X| and the homology of | X|* is the

equivariant homology of the free loop space IXI‘("1 over |X|:
. .1
H (XY = H (1XI® xES").

More generally in terms of homotopy theory cyclic sets form a good
mode! for §'-spaces.

TueoreM [DHK]. The category of cyclic sets is a closed model category
in the sense of Quillen and is equivalent to the closed model category of S'-
spaces.

12.2. Crossed simplicial groups [F-L]. Most of the properties of cyclic
sets and cyclic modules depends on the properties (a), (b) and (c} ol the
category AC. It is therefore quite reasonable to make the following

Dermvition. A sequence of groups [G,] n 20 is a crossed simplicial

group if it is equipped with the [ollowing structure. There is a small category
AG such that

(a) Objects of 4G are [n], n= 0.

(b) AG contains A4 as a subcategory.

(¢) Any morphism in AG can be uniquely written as a composile @oy
where ¢ e Hom ,([m], [n]) and geAut ,[n].

(d) Aut ,; [n] = G} (opposite group of G,) n= (0.

Then [G,! is a simplicial set but not necessarily a simplicial group.

Examrre 1. Take G, = 1], then 4G = 4.

Exampeie 2. Let G be a simplicial group. Then |G, 1s a crossed
simplicial group, the composition in AG being

(@pog)o(yoh) = (Y*(g) h)o(poy).

Exampie 3. Take G,=Z/n+1, then AG = AC. This category Is
described in [C3] in terms of homotopy classes of maps [rom S' to S’
sending Z/n+1 to itsell. Here is a presentation of AC"" by generators and
relations. The generators are those ol 4%, i.e. d; and s;, and re Z/n+1 (one
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for each n). The relations are the standard relations of 4, the relation ("*!
=1 (of Z/n+1) and

(l) dI-IZId,-,l, ]

(2) Sit =1s;_ 4, 1

A\
N
=

M
-
A
=

One can show that this imples
dot =d,, sot =ts,.

The geometric realization of the simplicial set [Z/n+ 1} is homotopy
equivalent to SO(2) =S§'.

ExamprLE 4. Take G, =D, (resp. Q,,;). Then there exists a small
category AD (resp. AQ) which makes |G,} into a crossed simplicial group.
The category 4Q°" 1s presented by the generators of 4 and the generators 1, y
of Q... The relations are those of 4, those of Q,,, (e "' =y yry~!
=t~ 1), the relations (1) and (2) above and

diy=yd,_;, 0<i<n,
5;y=¥s,_;, 0<j<n.

AD®® has a similar presentation.

The geometric realization of the simplicial set [D,, ] (resp. [Q,+,}) is
homotopy equivalent to the group Q(2) (resp. the normalizer of S' in the
quaternion group SU(2) = S%).

ExampLe 5. The family of symmetric groups |(S,.,} (resp. braid groups
{B,,,}) is a crossed simplicial group [F-L].

Most of the properties of cyclic sets can be generalized to AG°"-sets. In
particular this is true for the three theorems quoted above. Also Tor and Ext
functors can be defined for AG°"-modules. As A” 1s a AD°"-module (and
therefore 4Q°"-module) the derived functors give dihedral and quaternion
(co)-homology of A (see Section 11).
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