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1. Introduction

We are interested in singular ordinary differential equations (ODE’s)

T W), x(0), 1) =0,
where the partial Jacobian f;(y, x, t) is everywhere singular but has constant
rank. Moreover, we suppose the nullspace ol f;(y, x, ) to be independent of
(¥, x). Those uniformly singular ODE'’s are called differential-algebraic equa-
tions (DAE’s). They originate from actual applications in different areas. In
particular, dynamical systems subjected to constraints are described by DAE’s
(cf. [12]).

In the present paper, so-called index-k-tractable DAE's, ke {2, 3} (“higher
index™ DAE’s), are considered. In Section 2, solvability statements for linear
index-k-tractable DAE’s are given. The linear map repr¢senting a linear initial
value problem with appropriately formulated initial conditions is injective but
has no bounded inverse in its natural setting.

Those problems are called ill-posed. In particular, even the cons-
tant-stepsize BDF applied to a linear constant-coefficient DAE of this kind
becomes unstable (cf. [8]).

On the other hand, the BDF is reported to work well also for some higher
index DAE's when using a careful special error control ([2], [6], [12], [19]).
Up to now, for linear constant coefficient DAE’s and for certain semi-explicit
nonlinear index-2 or index-3 DAE's, the BDF is also proved to be convergent
([2], [5]. [6], [12]). Clearly, this does not contradict the instability since the
Theorem of Lax does not apply to ill-posed problems. Nevertheless, some
confusion arose out of these facts.

In Sectton 3 and 5 the variable-order variable-step BDF applied to the
quasilinear index-2-tractable DAE

A X () +q(x(), t)=0

[199]
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is proved to have a weak instability only. Instead of a uniform stability bound
S for stability, we now obtain a bound h~'S.

Thereby, A(t) is assumed to have a constant nullspace, and a certain
subspace is supposed to be smooth. Further, using detailed error estimations,
the BDF is shown to be convergent for (1.2) and, moreover, to have the same
order as in case of regular ODE’. Firstly, these [acts are proved for linear
DAE’s (Section 3). Then, by commuting linearization and discretization, the
mentioned results are obtained also for nonlinear DAE’s.

The weak instability causes the BDF to be very sensitive with respect to
the error control in the index-2 case. But, fortunately, implementations using
an appropriate control of the defects in the nonlinear equations to be solved
per step are reported to work reasonably ([6], [12]). However, the situation for
index-3 DAE’s becomes worse. At present, the best way of the practical
treatment of an index-3 DAE seems to turn to an equivalent index-2 DAE by
a so-called reduction step (which is an analytical technique) and then apply
a BDF.

An alternative way to treat higher-index DAE’s numerically appears in
outlines by regularization methods and further special methods for solving
ill-posed problems. Investigations in this concern are started recently. Section
4 informs on some interesting results.

2. Solvability of linear initial value problems

Let .4 denote the set of all ordered pairs {4, B} of continuous matrix functions
A, B: [ty, T]— L(R™) the first of which has a smooth nullspace, i.e.

2.1) N(t): = ker(A(t) = span{n, (1), ..., nm_.(8)},  te[to, T1,

Riy.nor Ny € CH{[to, T], R™), where r denotes the constant rank of A (¢).
Write shortly C: = C([to, T1, R"), C': = C*([t,, T], R™).
Assuming {4, B}e.#, we consider the linear equation

(2.2) Ax'+Bx = q.

Using continuously diflferentiable projection functions Q, P: [t,, T]— L(R™) so
that

(2.3) Q) =00, im(Q@)=N(), P@O:=1-0(),
we may reformulate (2.2) as

2.4) A((Pxy—Px)+Bx =g

and further relate the map A:Cy—C,

(2.5) Cy: = {xeC: PxeC}},

(2.6) WAx: = A(Px)+(B—AP)x, xeCk,
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to equation (2.2). The natural norm on C} is
Ixl: = lIxll o+ H(PxYllo,  xeCh.
Note that {C¥, || ||} is a Banach space, and U becomes bounded.

DrrFINITION. U is called tractable if
(2.7) dim(ker(2)) < oo.

Clearly, tractability means that the solutions of the homogeneous equa-
tion Ax'+ Bx = 0 form a finite-dimensional function space so that it becomes
possible to select a unique solution by a finite number of initial conditions.

Up to now, the question whether ker () has finite dimension is answered
only partially. For constant coefficients 4, B, we have (2.7) il and only if the
matrix pencil A4 + B is regular, ie. det(A4+B) # 0 ([1], cf. also [8]). Further,
in the case of sufficiently smooth coefficients 4, B, some results are obtained via
reduction methods (cf. [7], [5]). (2.7) is also true for all DAE’s (2.2) having
a global index in the sense of Gear and Petzold ([5]). Finally, index-
k-tractability, ke {1, 2, 3} implies (2.7) provided {4, B} € #" and some canonical
subspace varies smoothly ([13], [14]).

It should be mentioned that pre-tractability ([16]) is necessary but not
sufficient for tractability. For a conjecture how to characterize tractability in
terms of the coefficients {4, B} we refer to [15].

We follow the idea to rely on certain canonical subspaces {cf. [8], [13],
[14]). For a given pair {A, B}e€ ./, we are going to use the matrix functions

(2.8) G,:=A+BQ,

(2.9) A;:=G,—APQ,

(2-10) G,: = A,+BPQ,,

(2.11) A, =G,— A, (PP)PQ,,
(2.12) G;: = A,+BPP, Q,,

as well as the subspaces

(2.13) N(t): = ker(A(1)),

(2.14) S(t): = {ze R™: B(t)zeim(A(1))},
(2.15) N, (0): = ker(4, (1)),

(2.16) S.(t): = {ze R™: B(t) P(t)zeim(4, (1))},
(2.17) N, (1): = ker(A4, (1)),

(2.18) S,(0): = {ze R™: B(t) P() Py (t)zeim (A, (1)},
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where re[t,, T]. Thereby, Q,(t), Q,(t) denote projections onto N, (t) and
N, (t), respectively, further

Pi(t):=1-0,0), Py(0):=1-0,().
Using A4,, we always suppose PP, to be continuously differentiable. The
subspaces (2.13) — (2.18) are called canonical subspaces of the DAE (2.2).

DernNiTION ([8], [13], [14]). Assume {A, B} e 4". The DAE (2.2) is called

1. transferable (or index-1-tractable) if G, (t) remains nonsingular for all ¢,

2. index-2-tractable if G, (t) is singular but G,(t) nonsingular for all t,

3. index-3-tractable if both G,(t), G,(t) are singular but G,(t) remains
nonsingular on [£,, T].

The point of index-k-tractability is to characterize special classes of
tractable maps U respectively tractable DAE’s (2.2), and to generalize the class
of DAE’s having the global index k (cf. [8], [13], [14]). In the case of k > 1 we
speak of higher-index equations.

Recall ([8], [13], [14]) that G,(tr) and A,(¢) are always singular or
nonsingular simultaneously. This fact is useful for testing index-k-tractability in
practice. Moreover, recall also that transferability means

(2.19) NH@SH=R", te[t,, T],

while index-2-tractability is equivalent to

(2.20) Nit)nS(t) # {0}, N,()@S,(t)=R", te[ty, T].

Finally, index-3-tractability is equivalent to the subspace-properties

(221) N@OnS@®#1{0}, NS #{0}, N,(O)DS,(t)=R",
telty, T1.

It is well known that the formulation of appropriate initial conditions for
index-k-tractable DAE’s depends on the DAE itself. Here, we use the
conditions

P(ty) x(t,) fork=1,
(2.22) Fx: =< Plty) P {ty)x(t,) fork=2, » =b.
P(ty) Pi(to) Py(ty)x(ty) fork =13
Denote, for index-k-tractable DAF’s,
im(P(t,)) ith =1,
(2.23) M: = < im(P(ty) P, (t,)) itk =2,
im(P(to) P, (1) P5(ts)  ifk = 3.

Clearly, the linear map
(2.24) L=, L) ChaCx M
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is bounded. The equation #x = (g, b) represents the initial value problem (2.2),
(2.22). For the numerical treatment of such an IVP, it should be known
whether this problem is well-posed in Hadamard’s sense, i.e. whether % has
a bounded inverse. Unfortunately, & is a homeomorphism only in the case of
transferable (= index-1-tractable) DAE’s. This is why we should differentiate
the transferable DAE’s from the nontransferable ones basically.

THEOREM 2.1. Suppose that (2.2) is transferable, the IVP (2.2), (2.22) is
uniquely solvable on C) for all qeC, be M.

Then, it holds that im (A) = C, dim (ker(W)) = r, and & becomes a homeo-
morphism.

([2], Theorem 1.2.20}.

THEOREM 2.2. Let (2.2) be index-2-tractable and Q (1) be chosen to project
onto N, (1) along S, (t). Assume Q,eC"'([t,, T], R™), additionally.

Then, the IVP (2.2), (2.22) is uniquely solvable on C} for all ek, be M,
where

(2.25) M: = {peC: Q,G,'peC'}.
It holds that im(2) = M,
dim (ker (W) = rank(P(t,) P, (z,) < r.
MM is a proper nonclosed subset within C, and ¥ has no bounded inverse.
([13], Theorem 2.4).

ExaMpPLE. For the semi-explicit linear index-2 DAE

I , 1 Bi1Biz _

0x+ B,,0 X =

_[o 1B,
[} ocfi)

Q 2[312(3211312)_1321 O:I
! '_'(BZ].BIZ)_l BZI O

Note that the projector function By, (B, By2) ™! B, is assumed to be smooth
in [6], [12] also. =

Recall from [13] that, under the assumptions of Theorem 2.2, the IVP
(2.2), (2.22) is equivalent to the form

x=(-QP G;'B-(QQ,))y+PQ,G; ' q+QP, Gy "'¢q
(2.26) —(00,) P2, G3'q+(0Q, G2 ' q),
Y =(PPYy—PP,G;'By+(PPYPQ,G; 'q+PP G5,
y(to) = b.

we compute
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TuEOREM 2.3. Suppose that (2.2) is index-3-tractable, and moreover, that
Q, (1), Q,(t) are chosen in such a way that
(2.27) 0, (600 =0
holds and Q,(t) projects onto N, (1) along §,(t). Additionally, assume
Q. 05, 0,€C!([to, T1, L(R™),
Q, 0, C*([1,, T, L(RM),
where Q,(t) denotes the projection onto N (t) along
{zeR™ (B(t)— A, (t)(PP,) (1)) P(1)z€im(G4(t) P, (1))}.
Then, the IVP (2.2), (2.22) is uniquely solvable on Cy for all g€ M, be M, where
(2.28) M: = {peC:Q,G; 'peC',
0,P,G3'p+Q,Q,(PP,Q, G5 g/ eC'}.
It holds that im(A) = M
dim(ker(2)) = rank(P(to) P, (t,) P,(to)) <.
M is a proper nonclosed subset within C, and % has no bounded inverse.
([14]), Theorem 2.4).

In both cases of Theorems 2.2 and 2.3, the range im(%#)= M x M 1is
nonclosed within C x M. Further, .# is injective, but its inverse ¥~ ! acting
from Cx M onto Cj is no more continuous. Those problems in which the
continuous dependence of the solutions on the right-hand sides is missing are
called ill-posed or essentially ill-posed in Tikhonov’s sense.

Surely, we could turn to maps #: CL — M x M and use an appropriate
stronger norm || - [, on M to have a Banach space {M, |- Hw} and a homeo-
morphism % as well (cf. (17]). However, this approach seems to make no sense
in view of the numerical treatment we are interested in, and also in view of
possible linearizations of nonlinear problems.

It should also be mentioned, that .# itself becomes unbounded in the
setting #: C— Cx M, while #~': C x M — C also remains unbounded. This is
easily proved considering (2.26) and the related decoupling for the index 3 case
in [14].

3. On the BDF applied to linear index-2-tractable DAL’s

The first question we should deal with is about feasibility. A variable-order
variable-stepsize BDF applied to (2.2) is simply

1 k
(3.1) A(Zj)'h— )3 ayXx;-i+B(t)x; = ¢(1)),

ji=o
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thus, per integration step, a linear system with the coefficient matrix
. a.io
J

has to be solved.
LemMma 3.1, If (2.2) is index-2-tractable and
(3.3) I-9()0,(t) P'(r)

remains nonsingular for all t, where Q,(t) denotes the canonical projection onto
N,(t) along S,(t), then F, is nonsingular for sufficiently small h;.

Proof. Write shortly F = A/t+B, t: = hj/a,, and drop the arguments ¢; as
well as the index j. The equation Fz = y is equivalent to

1
(A+BQ—AP’Q)(;P:+QZ)+BPZ =y—AP'Qz,
further to
1
(A, +BPQ1)(;P1P2+P1 0z+Q,2)+BPP,z = y— AP'Qz
or

1
(34) =P Pz+P,Qz+40Q,z+Gy ' BPP,z = G3'y—Gy ' AP'Qz.

Now we may use the identity Q, = @, G5 ! BP (cf. [13]) and, moreover, the
relations (cf. [5])

G;'APQ=G;'A PPQ =P PPQ, PP P=PP,,
PP,Q=0, QP,P=-00Q, QP,0=Q. QP,PPQ=-00,PQ.
Multiplying (3.4) by tPP,, QP, and Q,, we obtain the system
PP,z+1PP,Gy'BPP,z+1PP, P'Qz = 1PP,G; ' y,

1
—-00,2+Qz+QP, G, BPP,2-00, P'Qz = QP, G 'y,

0,z=0, Gz—ly‘
Hence, we have

a3 (I+tPP,G;'B)PP,z+1PP, P'Qz = PP, G}y,

_ 1 -
QP, GZ_IBPPI z+(I—-0Q, P)Qz=0QF,G; ly‘i‘;QQl G, 1)’
to delermine the components PP,z Qz. For small t >0, the matrix H
:=1T+1tPP,; G5 "' Bis nonsingular, and also the Kronecker complement in (3.5)
K:=1-0Q, P—tQP,G;'BH PP, P
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is so. Finally, solving (3.5 with respect to PP,z Qz, we obtain
1 - -
3.6) z={(I-tH 'PP P)K™! (QPpL;QQl—rQP1 G;'BH lPPI)

+PQ,+tH 'PP,}G;'y. =
ExaMpPLE ([5]).

00 1
A(f) = [1 nt]’ B(1) = [o ’11t+r1]’ neR.

The related DAE (2.2) is index-2-tractable. We compute

0 — 0 0
Q(t)=[0 ﬂ, wo=1 7|

L+nt nt(1+nt) |1 om

1 402
POPO=0, 1-00)QOP()= [O 1 _’lﬂ.

Thus the matrix (3.3) is nonsingular for # # —1 but singular otherwise.
- Moreover, it is easy to check that F; becomes singular for n = —1. =

Note that (3.6) gives an explicit expression for F; '. In particular, in the

constant-nullspace case we have P' =0, K = I,

. h.
(3.8) Fj!= {QPI +PQ, +5‘};—° 0Q,+—L(I—QP, G5 ' B)H ™! 1)1)1}(;2-1

J Jo

tj

The BDF’s are well known to become unstable when they are applied to
higher-index DAE’s. This fact is true even in the case of constant-coefficient
DAFE’s and constant-stepsize BDF's (cf. [8], [16]).

In the following we use grids

(3.9) Tlyg<t, <..<!"=T

belonging to a given gridclass IT. The smallest gridclass we are interested in iS
the set I7.,, of all equidistant grids (3.9). Assume always

=N

Denote by h and 1 the maximal and minimal stepsize of (3.9), respectively.
Introduce the linear map & R™"+ 1 grint D)
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v -
: I
Ay ayy
(3.10) Ly = E%g-qaﬂ_ﬂ
(;nk A . l;l A F

Clearly, % is related to the BDF (3.1). &, is nonsingular if the assumptions of
Lemma 3.1 are satisfied. However, there is no uniform bound for || #!||, for
all nell, 1e. the BDF is unstable. In particular, the nontrivial term

—Q(t )@, (t) of Fj I (cf. (3.6) resp. (3.8)) grows unboundedly if h; tends to zero.

The instability of the BDF is a reflection of the unboundedness of the map
P~ CxM-C.

Nevertheless, for some special classes of index-2-tractable DAE’s the conver-
gence of the BDF is proved ([2], [6], [12]), and the BDF is reported to work
well, when a special error control is realized (e.g. [19]).

To make both these facts more transparent we show in the following that
in those special cases the instability is only weak. More precisely, we show that
there is a bound S so that the inequality

(3.11) 15, <h™'S, well(n, N1,
is true, where [1(n, 15, hm,) denotes the set of all grids (3.9) with

h,
(312) T g—i"g’h, hghmnx-
hj-y

Let us agree to use only k < 6 and [1(n,, n,, hya,) such that the BDF applied
to an explicit ODE is stable.
Now, take an arbitrary grid mell(n,, #,, hma), arbitrary w;eR™,

h Zaua_’ ,+BZ = W

J=kny g =y =0, k=,

that is we consider the equation %, z = w. Assume P’ = 0 and decouple (3.13)
in the same way as we proved Lemma 3.1. This yields

(3.14)  Py(t) P Z a;;zji+P(t)Qz;+ P, (t)G,(t) " B;PP(t)z;

JIO

=P (t)G,(t)"  w),
(3.15) Q.,(t)z;=Q,(t) G,(t) " w,
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Multiplying (3.14) by P and Q, respectively, we derive

1 u -
—PP,(t) Y az;;i+PP,(t;) G,(t) "B, PP(t)z

(3.16)
AR

= PP(t) GZ(IJ)_I w
(3.17) —-%QQL(IJ.)‘ZOa,-jz,-_,-+QzJ-+QP1(t,-)Gz(tj)‘lBjPPl(tj)zj

= QP (1) G,(t) ' w

Inserting the relation

'_‘PP (l Z aﬂZJ i
hJ

a Pp (tj )zj—i

llMg-‘

1

by,
k 1

+ Z ajiP;‘(Pl(tj)_Pl(tj—i))(PP1(tj—i)zj—i+PQ1(tj—i)zj—i)
=0 3

into (3.16) and using (3.15) we verify the inequalities

max [PP(t)z;] < S; max |w)],
Osj<n 0<j<n

max [Q,(t)z;| < §, max |w.

[VEN Y] 0€js<n
Hence, we have also
(3.18) max |Pzj] < S, max |[w.
[P ENEY] 0 j€n

On the other hand, (3.17) yields, for j=k,... n,
1 k
(319) sz :FQQl(lj).ZOaﬁ{P _r i +PQ ji- I}Zj i
J i=
—QP (lj)G (t')-lBjPP1(fj)zj+QP1(’-_,')Gz(tj)_lW_,'

QQ lj) a;rQl(tj—.')Wj—i

+Zaj. Qut)—=Q ;- )PP (t;- )z,
—-QP, (1 BPP ) ;+QP, (r
where
. W; for j=0,...,k—1,
TG00 ' w, for i =
20y I J=kK, ..., n.
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Now, we have

1 k
(3.20) 10z| < }L—'QQJQ) )y a;; Q,(t;-)) Wj—i|+S4 max |w|.

§ =0 0<I<n
(3.18), (3.20) imply (3.11). Moreover, for z; = x(t)—x;, j =0, ..., n, where x(¢,)
denotes the value of the exact solution at t;, and x; is the exact numerical
solution generated by the BDF using given starting values xg, ..., x, -, the
corresponding values w; are

wy=x{t)—x;, forj=0,..., k=1,
1

(3.21) W; =11 = h_Aj anx(t;-)+ B;x(r)—q(t)
T

] .
= OM::- L

1
== A; 2 apxlty-)— A (PxY (¢),
h i,

for j=k, ..., n. Since 7;€im(4)) we may write
w,=1,=A;A} 1, j=k,..,n

further
(3.22) W, =G,(t) P A;Af T,
=G,(t) " A (()PAf ;=P (t}PAS t, j=k,..um
Surely, for exact starting values x; = x(t;), j =0, ..., k—1, (3.20) yields simply

0(x(6) - )| < S maxle, >k,

k<l€n
further

(3.23) max [x(£;)— x| < §5 max [z].

0<j<n kSisa
Finally, we collect our results in

THEOREM 3.2. Let the assumptions of Theorem 2.2 be satisfied and, further,
P’ = 0. Let the variable-order variable-stepsize BDF (3.1) be stable on I(n, 15,
houy) for explicit ODE’s. Then this BDF applied to the DAE (2.2) is weakly
unstable and satisfies (3.11). Moreover, this BDF is convergent and has the same
order as for explicit ODE’s.

Theorem 3.2 generalizes the related convergence results in [5], [6], [12]
obtained for semi-explicit DAE’s. For the values %, ..., X, € R" generated by
the perturbed equation

N I & - .
(3.24) ijqu(tj)—h—AjZ a;Xj-i+6;, j=k,...,n,
i =1

14 — Banach Center t. 24
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using starting values %o, ..., £, € R™, we obtain the error estimation

(3.25)  max |x(f)—%| < Symax{ max |x(r)—X|, max lt,— 8}
0<jsn o<J<k—1 ksjsn

1 k
+ max h—|QQ1(t Z a;iQy(t;- l)bJ ¢|

ksjsn 'ty
where

5 —G,(t)718; forj=k, ..., n,
T xt)-%; forj=0,..., k—1,

J

and 4, represents defects in the linear equations due to roundoff errors. Thus,
the components 0, ( )5 ;/h; must be kept small by an appropriate error control.
From (3.10) we know immediately that

(3.26) |Znll, <B K.
This yields
(3.27) 1Ll 12041, < B2 KS.

Similarly, the matrices F of the linear systems to be solved per integration step
have the condition numbers

IE, | |\ F7 )~ by 2

since QQ, is always nontrivial for index-2-tractable DAE's.
In comparison with this, we recall that

1Ll B 'Ky, 1%5M . < S0,
IF;IIF; ') < const
is true for explicit ODE’s. In the case of transferable DAE’s we have (cf. [8])
also
1Lpll, <8 Ky, 125", <S8
but [[FI IF; | ~h;it.

Thus, it is not surprising that integration methods applied to index-2-
DAE’s depend more sensitively on the error control. However, using a careful
error control, integration methods may work well (cf. [6], [12]) also for a class
of index-2-DAE's.

However, for index-3-DAE’s the situation becomes worse. At the best we
may expect

125, K oand  [FHE )~ Ry
A detailed analysis of BDF’s applied to index-3-DAFE’s is in preparation.
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4. Some remarks on regularization methods

Since the IVP (2.2), (2.22) is essentially ill-posed in Tikhonov’s sense, if (2.2) is
index-2-tractable, numerical methods for ill-posed problems are of interest also
for those nontransferable DAE’s. We are going to deal with two regularizations
which are very closely connected with singular pertubations.

The linear equation (2.2) is approximated by

4.1) (A+eB)x;+Bx. = q

using the so-called pencil-regularization (e.g. [1], [3]). An alternative way is the
use of the regularization

(4.2) (A+eBP)x;+(B+eBPP)x. = q

proposed in [18].

With (4.1) one aims for a regular ODE. This goal is not reached in general.
For instance, for the special DAE given in (3.7) with n = —1, the regularized
equation (4.1) is again an index-2-tractable DAE. On the other hand, by (4.1),
transferable DAFE’s are approximated by regular stiff ODE’s, i.e. (4.1) yields
“parasitic” boundary layers (cf. [11]). This is why (4.2) is proposed in [18].

If P =0, both (4.1) and (4.2) may be applied. The initial condition for
index-2-tractable DAE’s is (cf. (2.22))

(4.3) Pto) Py(to) x (1) = b.
For (4.2), we may use the additional condition (cl. (2.26))
(4.4) P(to) Q:(to) x(to) = P(to) Q(to) Galte) ™' qlto)-

Additionally, when using (4.1), we have to determine Q(t,)x(t,) besides (4.3),

(4.4). However, the formula given by (2.26), ie.

(4.5)  Qlto)x(ty) = Qlty) Py(te) Gy(ta) ™' {q(te) — Blto)b} +(QQ, G2 LY (t)
—(Q0,) (to) {b+ P(to) Q,(to) G (te) " 4(to)},

is not reasonable for the practical use. Thus, we must compute an ap-
proximation of the consistent initial value for (4.1).

THEOREM 4.1. Let the assumptions of Theorem 2.2 be satisfied, ge’M, be M.
Then (4.2) is transferable for sufficiently small ¢ > 0.
Let x, x.e Cy denote the solutions of (2.2), (4.3) and (4.2), (4.3), (4.4),

respectively.
Then, |%.—x|g —0 (e=0), further, |Px.—Px||,, = O(e).

Moreover, if PQ,, PP, eC?, PQ,Gy'qeC?, then
||xc—x||u;v = 0('"?).

The proof is given in [10] for a certain special case. The general case is
considered in [9].
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ExampLE. The differentation problem x5—x, = 0, x, = ¢, 1S approxima-
ted by (cf. (4.1))

—exy+x5—x, =0,
(4.6) X3+ X, = q,,
X,(te) = qa{to)s X, (to) & qa{to),
and by (cf (4.2))
x5—x,; =0,
4.7) £XhH 4+ X, = g,
X, (to) = q,(to),

respectively.
It should be mentioned that further assertions concerning the convergence

of (4.1) and (4.2), respectively, are given in [1], [3], [9], [11].

5. Nonlinear DAFE’s

Let us start this section formulating some smoothness conditions for the
general nonlinear DAE

(5.1) J{x (), x(1), 1) = 0.

ASSUMPTION (A): feC(¥, R"), %:=R"xR" x[1,, T]. Let f/(y, x, t).
fe(y, x, t) exist for all (y, x, e %, and let f;, fee C(%, L(R™). Let the nullspace
of f;(y, xi‘t) be independent of (y, x). Denote

(5.2) N(t):= ker(f; (v, x, 1)).

Let N(-) be smooth, and denote by @, P the corresponding projection
functions onto N(-) and its complement. =

The nonlinear map A: Ch—C,
(5.3) (Ax)(1): = f((Px) (=P (1) x(1), x(1), 1),

is defined on the whole space Cj, and is Fréchet-differentiable there. For each
given x, € Cy, the linearized map represents a linear DAE with the coefficients

(5.4) UML), SUM () et
where
M (0): = ((Px,) ()= P'(1)x, (1), x, (1), 1).

DEFINITION. Let (A) be satisfied, ke {2, 3}, x_eCy. Then (5.1) is called
trangferuble around x, and index-k-tractable at x , if the linear DAE.having the
coeflicients (5.4) is transferable and index-k-tractable, respectively.
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To test whether index-k-tractability is given say on the ball
{x.€Chx: llx,—xol < @}, xp€Cy fixed, we may use the following matrices (cf.
[13], [14]):

(5.5) Gy, x, 0= fi(y, x, )+ fi(y, x, ) Q(1),

(56) A, x, 0:=G (. x, 0= [y, x. ) P() Q(0),

B7) Gy x, D=4y, x, O+ iy, x, HP()Q,(x, 1),

(5 8) Az(y, )C, t)' :GZ(,V’ X, t)—Al(yv .)C, f)K(}'a .\f, [)P(I)Ql(x, t)‘)
(5.9) Gy(y, x, 0):=A,(y, x, )+ £ily, x, D PO P, (x, ) O, (v, x, ).

Moreover, the nullspace of 4,(y, x, t) is assumed to be independent of y and
Q(t)x. Denote

(5.10) ker(A,(y, x, ) =:N,(x, ) = N,(P(t)x, t).
Q,(x, 1) is defined to be a projection onto N (x, t), further
Pix,t):=1-0Q(x, ).
Using A,(y, x, t), we assume additionally that
I(x, t):= P() P (x, t) = P(t} P, (P(t)x, )
depends continuously dilferentiable on (x, ). Finally,
(5.11) K(y, x, 1): = Oyx, H{y+ P (0Ox)+ T(x, 1).

For index-2-tractability, we have to check the singularity of G (y, x, t) as well
as the nonsingularity of G,(y, x, t) on the related neighbourhood of the
trajectory of x, within %. For index-3-tractability, both G, (y, x, t), G,(y, x, I)
have to be singular but G,(y, x, t) has to become nonsingular (cf. [13]
Theorem 3.1, [14], Theorem 4.1).

Note that semi-explicit DAE's having the global index ke {2, 3} (cf. [5],
[12]) are shown to be index-k-tractable ([13], [14]).

Now, let us turn to the semi-explicit system

(5.12) W) —o(t) =0
(5.13) o' () +g(u(e). v(e), 1)+ ky{ue), T w(e) =
(5.14) h(u(t), 1) =

which describes, e.g., mechanical motions subjected to constraints (cf. [6],
[12]). Assume that h, (u, t) =: H(u, t) has full rank, i.. the constraints (5.14) are
linearly independent, ker(H (u, t)") = {0}. Putting (5.12)-(5.14) in the general
form (5.1), we obtain, with x = (u, v, w).

1 0 —1 0
Sy, x, 1) = ! ] fiyx, )= { gu+hlw g, H |,
0 H 0 0



214 R. MARZ

! 0
Al(y,x,t){ vt o= |0 }
0 1

Clearly, the nullspace of A,(y, x, t) is independent of y and Ox = w. Compute

0 I
0, = { H'(HHT)"'H } ., PP = { I-H"(HH")"'H }
—(HH")"'H 0 0
Now, the assumption for IT: = PP, to be smooth appears to be a smooth-
ness condition for the nullspace of H (u, t). Since H (u, t) has constant rank,
a sufficient condition for this nullspace to be smooth is that H (u, t) itself is
continuously differentiable. Then, also P, becomes continuously differentiable,
Further we compute Q, Q =0,

I =T
G,= | I+g,TH"|,
0
T:=HT(HHT)"‘H, S§:=I1-T,

I —-T
Ay = I+(g,+Tp+T)T H' |,
0

0 -I10
JxPP, = [QHhL’.TW Yo 0}
H 00
Finally,

a
Az(y’ X, t)z = 07 fxl(y) x’ t)P(t)Pl(x’ t)ZEim(AZ(y7 X, t)): z= [b] ]
¢
imply
u=Tb, b+(.)Tb+H"¢=0, Ha=0,
thus a = Tu, b= Tbh, further a =0, h=0, H ¢ =0, hence ¢ =0. In con-
sequence, (5.12)-(5.14) is index-3-tractable everywhere.

Following the idea of [6], Theorem 1.1, where systems (5.12)(5.14) with
autonomous constraints are considered, we turn from (5.12)-(5.14) to the
equivalent system

w(t)—v(t)+ ki (u(t), )" z(t) = 0,
v'(t)+g(ulr), o(e), ) +h(u(), )" w(t) =0,
h(u(r), 1) = 0,

R (ue(e), 1) v(t)+ hy(u(t), £) = 0.

(5.15)
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Surely, if u,, v, € C*, w, e C form a solution of (5.12)-(5.14) then (u,, Vsr Wy, 0)
satisfies (5.15). Conversely, for each solution (u,, Vs Wyes Z,) Of (5.15) with
z,, = () the first components (u,, v,, w,) solve (5.12)—(5.14). The point of (5.15)
is that any solution has a trivial fourth component (cf. [6]). Namely, we have
Wyv+h =0, ' = v—h[T z. Differentiating the constraint in (5.15) yields

h‘:‘ u + h; = 0,
hence
hov+h—h h'z=0,

and finally z =0.
The DAE (5.15) is index-2-tractable. To show this we put this system in
our general form (5.1) and compute the related matrices. We have

! Wtz —1 0 HT

L I ;| gl w g, HT O
= 0 » Je= H 0 0 0 !

0 hi,o+h, H 0 0

I HT HT(HH")"'H
L | 1A o HT(HHT) ' H
L 0 ’ 1= —(HH")"*H 0
0 —(HHT)"'H 0

Now,
Zeker(A,(y, x, 0)), [y, x, ) Pieim(A(y, x, ), Z=[aTbTcTd"]",
imply
a+H"d=0, b+HT¢=0, Ha=0, (.)a+Hb=0.

This yieldsa=0,d =0,b =0, ¢ = 0, ie. the matrix G, = 4, +/; PQ, remains
nonsingular. Hence, (5.15) is index-2-tractable.

In [6], [12], the BDF’s applied to index-2 systems are reported to work
well. But the BDF applied to index-3 systems becomes much more unreliable.
A reduction step, for instance from (5.12)—(5.14) to (5.15), is recommended in
[6] (cf. also [7]).

Now, consider the variable-order variable-step BDF applied to a non-
linear index-2-tractable DAE (5.1). Denote by x,, € Cy the solution of (5.1) to be
approximated. Let starting values x,, ..., X,y € R" be given. The BDF is now

1 k
(5]6) f(h-—Zaj,-x_,-_,-, xj, t;)=0’ jzk,..., n.

ji=0

Recall that convergence is proved for certain semi-explicit systems ([2], [6],
[12]), in particular, for (5.15).
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The related map acting in R™" Y is
i Zg—Xo
Zp—1—Xk-1

1 k
. Z .
57:1]2: — f(iz— z a,u-zk_,-, Zk’ {h , g =" ‘1 ERm(nfl)_
ki= :

zy
Zanl n—is 2y n
L rn

Surely, &  is continuously differentiable provided assumption (A) is satisfied.
More precisely, the Jacobian taken at

X, (o)
z* =
X4 L)
is
- .
I
U ~ dyy ~ o~
(5.17) Fr(z*) = —hﬂAk = A
k k
Ayt ~ Ayy » =
—A —A F
L h" n h" n n_
where

=Gty Fyi=Ehm) ),

J

( Zaﬂ x, (-2, .(tj),tj)efff’.

Besides the nonlinear DAE (5.1) we consider the linear DAE
(5.18) Az'+ Bz = ¢

with the coefficients {4, B} = {f,(M (")), fi(M ()} A" (cf. (5.4)). This linear
equation is index-2-tractable. Apply the BDF under consideration (o the linear
DAE (5.18) also. For P’ = 0, the matrix % (cf. (3.10)) which is related to the
BDF applied to (5.18) is nonsingular. Supposed the related projection Q, (t) is
smooth, the inequalities (3.11), (3.18) and (3.20) hold for &,z = w.

Now, we turn to a more restricted class of nonlinear DAE’s, namely to
quasilinear ones of the form

(5.19) A X' (6)+g(x(t), 1) =
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where the nullspace of A (¢) is assumed to be constant, and P’ = 0. Moreover,
let yi(x, t) be Lipschitz with respect to x. Then, forj =k, ..., n, it holds that

A=A = (M (1) —f;(n) = 0
_ Fj—F = fi(M,(t))—filn) = 0.
This yields
(5.20) Ly = Fn(z*),

further, for

1
F (2, 2): = [ Fy{sz+(1 —s)2) ds,

0

F ulz, 2)—Fy(z*) = diag(0, ..., 0, «y, ..., ),

where

1

IQx 92 +(l ) _,w ]) gx( tj))ds'

0
Now, for

z, ZED(2¥, 0): = {ZeR"F D | Z—2¥| , < o},
we derive
”a_;”cx; g QL’ .]= k’ sy n,

thus
(5.21) 1% n(z, 2= F (2., < oL.

The relations (5.21), {5.20), (3.11) imply, by the Banach Lemma, the nonsin-
gularity of % ,(z, z) as well as the inequality

~ h=tS§

G 7~ 1 — -
(5.22) 1% a(z, 2 lla =1 “hiSol
if o > 0 is chosen so that
(5.23) h™ tSLe<1

1s valid.
Introduce the map E;: R™"* 1V R"* 1D py

- —~ - +
b"21=2—5f’ln(2*) 1'97[123 ZER'"(" 1)_

For z, e By(z*, ¢), we obtain

(524) |Egz—Epzl, = lz—2—F N F gz—F 52|,
SN F @) o 1 Fa(z¥) = F (2, 2o llz—2]
<h 'SolL|z—Z|,,
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(525) |Egz—z*|, = lz—2*=Fq*)  (Fpz—F y2*+F p 2%
S NF ) o 1F @) —F n(z, 29 o lz— 24 o + 1 F n(@*) 1 F 2%,
h QLHZ ”*"(7_)+“‘/’;I(Z*)—Ig(;ﬂz*"w'

Denote #; z* =:1. The values ;= x(t)—x;,j =0, ..., k—1, represent the
errors of the starting values while

1, = Alt ZaJ,x o) g, ). L), J=k ..n,

are the local discretlzatlon €Irors.
Taking into account that (cf. (3.22), (5.7))
7,€im(4 (),
G,y(t) ;= Gyt LAY Alt) T 1y = P, (t)PAG)" 1),
G,(t): = Go(M (1),
hold for j =k, ..., n, we derive the inequality
(526) | Fulz") ' Fuztli,

k

< §,lith, +8g  max ‘“|QQ Z aini("j—i)Tj—il

J=k, 2k—1 l i=j=k+1

from (3.18), (3.19), {3.20).
Now, for a fixed value oce (0, 1) we choose a refined grid ne IT(n,, 1;, Fmax)
and sufficiently accurate starting values so that

(5.27) 1Fn(z*) & pz*l, <(1—-0a).

This is always possible by (5.26). Practically, this means a choice x; = x, (1) +
Oh4*1), j=0, ..., k—1, applying the p-order BDF.
Then, we choose ¢ small enough so that

(5.28) h™1SLe < w

In this way, the map E is contractive with o < 1 on the closed ball %, (z*, ),
and Ep(#,,(z*, 0)) S By(z*, o). Consequently, by Banach’s Fixed Point Theo-
rem, the map E,; has a unique fixed point onto %n('- , 0), 1.e. the nonlinear
equation

(74 —
Fnz=0,

representing our integration method has a locally unique solution, i.e. there
exist locally unique values x,, ..., x,€R"™, satislying (5.16).
Since, for z, Ze#;(z*, o),

1—Z=F gz, )" F p2—F , 9)
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holds, the inequality

i B's _
(5.29) llz—2Zll SWJHWHZ_-?_HZHOD
follows (cf. (5.22)). Thus, (5.16) is shown to be only weakly unstable.
Using (5.25) for the true numerical solution z = x, i.e. the fixed point of E,
we obtain the error estimation

! _
(5.30) max_ x,(i)—x) € 7 | Fu(z) " F ¥,

Consequently, if exact starting values are used, ie. x,(t) = x;,j =0, ..., k—1,
we have simply

1
(5.31) max |x,(f)—x| € — max [z
J=0,...m 1 & j=g,.n
that means the variable-order variable-step BDF applied to the quasilinear
DAE (5.19) is convergent with the same order as in the case of regular explicit
ODE’s.

THEOREM 5.1. Ler x,eCh be a solution of the quasilinear DAE (5.19). Let
(5.19) be index-2-tractable in the neighbourhood of x,. Further, let g, be Lipschitz
there with respect to x, and let A(t) have a constant nullspace.

Moreover, let the projection Q,(t) onto the nullspace N, (t):=ker{A4,(t))
along S,(t):= {zeR™: g, (x,(t), t) Pzeim(A,(t))} be continuously differentiable,
where

(5.32) A1) = A (M (1) = AD)+gix, (), 1) Q

Let the variable-step variable order BDF be stable on I1(n,, H;, Pmax) in the
reqular ODE-case, h.., sufficiently small. Then this method is only weakly
unstable on I1(n,, N4, haax)- 1t is convergent with the same order as in the case of
regular ODE'’s.

Moreover, for each grid me II{n, 115, hmay), for sufficiently accurate starting
values xg, ..., Xy— 1, the nonlinear equations (5.16) are uniquely solvable with
respect to x; on balls {ueR™: |x (t)—u| < g}, j=k...., n, where ¢ depends
on I,

(5.33) limg =0.
B0

The behaviour of g (cf e.g. (5.23)) seems not to be only a consequence of
the technique used for the proof but reflects as matters stand in the nonlinear
equations to be solved. In any case, we are not able to compute the values x;
exactly. Instead of x;, we generate only certain %;€ R" satisfying (5.16)
approximately, i.e. we have
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1 & .
(5.34) f(ﬁ Z Up Xj-is X tj.) =d;, j=k ...,n,
ji=0

(5.35) Xi=x; j=0,.., k-1
Recall that ;.= x,(t)—x; = x*(tj)—xj,j =0,..., k—1, denote the errors in
the starting values.

THEOREM 5.2. Let the assumptions of Theorem 5.1 be satisfied. Then, for
sufficiently small defects 8; in (5.34), (5.35), the error estimation

(5.36) max |x,(t;)— %l < Sgmax { max |t}|, max|t;—d}
iz i<kh=1 izk
1 k
+ max QQl(rj)},-- > Q- w—;
JiZk Jji=0

holds, where

0]
Xq x,.(fo) 0 Ty
X = ’ Z* = - » 0= N T =
0,
xn x*(tn) Tn
_5n_

we have #, X =4, 7, z* =1,
X—z* = X—2*~Fy(2*) U F = F ¥} + Ty (2*) Ty §—F %)
= Fu(e®)" HITp(@*) - Fu(f, 24} =24+ 7 (z%) (5-1),

(
1
trivially. Hence (cf. (5.21), (3.11), (5.28))

(5.37) [¥—=2%, <h 'SoLl|%—z*|, + | Fy(z*)" " (§—1)] ..
further

. 1 __ e
(5.38) fx—z*., ii']—_—& |F 1(z*) "=, .

Due to (3.18), (3.20), we find
(539 IFuEH "1 (0-0l,

. ! ul
< Sypile—tl, + max E"QQI(U) L aiQ (- )w; :|

j=k,..., nly i=0
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where

wir=1, j=0,..., k-1,
;= G;‘(tj)’léj. "

ExampLE. For the Euler backward method applied to the index-2 system

(5.15) we have

PQ, = diag(T, T,0,0), T:=H*H, H*:=HT(HH")"

1
QQ;([;');)‘(Q1(tj)wj_Ql(tj—l)wj—i)

further

1
QQ](tj);?__ (t,)7'6,—00,(r)) QL(to)(x*(fo)_xo)
= 11 forj=1,
QQ[(’_]‘)E(Q[({J‘)GZ({J')—I(Sj_Ql([_i—l.)GZ(tj“l)_l(SJ'—I
J
i H"w
ol H* (z—(hy v+ hi) H* )
Ql(l)Gz([) W ( HT)—l(Z (h:,lul7+h,,,)H+ —)
z

—(HH") 'w

Thus, the defects in the third and fourth equation of the system (5.15) should be
kept small in comparison with the defects in the first and second equation. This
corresponds completely to the considerations in [6], [12] as well as to the
practical experience reported e.g. in [6] and [19]. =
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