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This paper is an extended version of the author’s lecture at the Semester on
Classical Algebraic Structures at the Stefan Banach International Mathemati-
cal Center in May 1988. The aim of the paper is to survey the author’s recent
results on the subject indicated in the title.

After announcing the completion of the classification of finite simple
groups (CFSG), emphasis in finite group theory has been shifted to the
applications and revision of CFSG and to the study of properties of (known)
finite simple groups. It is particularly important to study the closely connected
properties of subgroups and representations of finite simple groups.

Let G be a finite group, let K be a field with char(K) = p, and neN.
A (linear) representation of G of degree n over K is defined as a homomorphism
G - GL,(K). It is particularly difficult to study modular representations of G,
i.e. those where p divides the order of G.

Consider the following classical problem.

ProbLEM 1. Describe the finite linear groups of small degree, i.e. finite
subgroups in GL,(K) for every K and small n.

Beginning with the middle of the past century, this problem attracted
attention of many mathematicians. In the seventies-of our century it was solved
for K=C and n <9 in the well-known papers of Jordan, Klein, Valentiner,
Blichfeld, Brauer, Lindsey II, Wales, Hoffman, Feit. The case p>0and n< 5
of Problem 1 was considered before 1982 in the papers by Jordan, Moore,
Wiman, Burnside, Dickson, Mitcheli, Hartley, Bloom, Mwene, DiMartino,
Wagner, Zalesskii, and I. D. Suprunenko (see [26]). The irreducible subgroups
of GL,(2) are determined by Harada and Yamaki for n < 6 [9] and by the
author for 7 < n < 10 [11, 13, 14, 15]. Observe that it is reasonable to restrict
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our attention, when solving Problem 1, to the irreducible subgroups whose
composition factors are the known simpie groups.

In the last years, intensive investigation began of maximal subgroups in
finite groups. One of the main problems in this-field is the following.

ProBLEM 2. Determine the maximal subgroups of finite almost simple
groups, i.e. of groups G with § <G < Aut(S), where S is a finite nonabelian
simple group.

Aschbacher [2] outlined a program based on CFSG of solving this
problem. The main idea of this program is to represent every finite almost
simple group as the group of automorphisms of some natural object in order to
make its subgroup structure transparent.

In [1], Aschbacher essentially reduced the problem of finding the maximal
subroups H of a finite aimost simple classical group G having the natural
projective module V over the field GF (q) to the case when § = F*(H) is
a nonabelian simple group and V is an absolute irreducible GF (g) S-module
for some covering group S of S. A covering group of a simple nonabelian group
is also called a quasisimple group. More precisely, a group L is quasisimple if
L=[L, L} and L/Z (L) is simple. Thus the problem of the subgroup structure
of finite almost simple classical groups and, in particular, Problem 1 is reduced
to the following problem.

ProBLEM 3. Investigate (modular) representations of finite quasisimple
groups.

Of course, Problem 3 is interesting and important independently of
Problems | and 2 as a problem concerning “external” properties of finite
simple groups. New information on representations of quasisimple groups
would be useful for revision of CFSG and also for the theory of group
geometries.

Now we consider some important problems of the theory of modular
representations of finite quasisimple groups which are closely connected to
Problems 1 and 2. '

Let p > 0 and let K be an algebraically closed field. Choose a compilete
system x,, ..., x, of representatives of conjugacy classes of p’-elements of the
group G. Denote by Irr (G) = {,, ..., x,} the set of all irreducible complex
characters of G, and by Irr Brp(G) ={¢,, ..., p,} the set of all irreducible
p-modular Brauer characters of G. Recall that the Brauer character f; of
a p-modular representation T: G —» GL,(K) of G is defined as follows:

(1 Br (g) = Z & (g),

=1

where g is an arbitrary p'-element of G, ¢,(g), ..., ¢,(g) is the complete
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system of eigenvalues of the matrix T(g) (ie.

@ =} &)
i=1
for the character y of the representation T), and u is some lifting of K* to C. It
is known that

) Tl = Y dyex) (1<j<r 1<i<s)
k=1

where 0 < d, e Z. Write D = (d;)), ,, Z = (x;(X})sxs> and & = (¢;(x))), ,. Then
the matrices D, Z, & are called the (p-modular) decomposition matrix, the
character table, the (p-modular) Brauer character table of G, respectively.

Now suppose the character table Z of G is given. The following problems
arise,

(@) The partition of Irr (G) into p-blocks. The characters y, y € Irr (G) belong
to the same p-block if and only if there exists a sequence x; = 1, Xip» ---» X4, = ¥
of characters of G such that every pair of consecutive members of this sequence
has some common component ¢, in the decomposition (2). If Z is given then
problem (a) may be solved by an effective algorithm (see [4]). To any p-block of
Irr(G) there is associated a p-block of IrrBr,(G), namely the set of all
components ¢, in the decompositions (2) of the characters from our p-block.

(b) Finding the matrices D and ®. Theoretically the matrix D may be made
block-diagonal by permutation of its rows and columns, where each diagonal
block corresponds to a p-block of Irr(G) and the associated p-block of
Irr Br,(G). Therefore, the calculation of D is reduced to the calculation of its
diagonal blocks. Since the rank of D is equal to r, @ is uniquely determined by
Z and D by solving the system (2) of rs linear equations with 2> unknowns
ou(x) (L <j k<r<s).

(c) Finding the field of definition of a (p-modular) representation T:
G — GL,(K) with the Brauer character ¢ € Irr Br,(G). The field of definition of
T is defined as the least subfield of K over which T may be realized. It is well
known that the field of definition of T is equal to GF (p}(xr(x;)I1 <j <)
Therefore, having the set {¢ (x;)[1 < j < r} and taking into account the formula
(1), we may find the field of definition of T.

The solution of problems (a)-(c) permits one, in particular, to describe the
equivalence classes of irreducible representations of a finite group G over every
finite subfield of K.

(d) Counting conjugacy classes and normalizers of absolutely irreducible
quasisimple subgroups in GL,(q), where g = p™. Let H be a finite quasisimple
group, let T: H — GL,_(g) be a faithful absolutely irreducible representation of
H, and let N be the normalizer of T(H) in GL,(gq). For any subgroup X of
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GL,(g), let X be the image of X in PGL,(g). It is easy to prove that
T(H) <N < Aut(T(H)) ~ Aut(T(H)), and the conjugacy classes of absolutely
irreducible subgroups of GL,(g) isomorphic to H are in one-to-one correspon-
dence with the Aut(H)-orbits of faithful irreducible p-modular Brauer charac-
ters of H, and, consequently, |Aut(T(H)): N| is the order of the Aut(H)-orbits
containing f;. Therefore, the solution of problems (a)-{c) and the conjugacy in_

Aut (H) of the faithful irreducible p-modular Brauer characters of H lead to the
solution of preblem (d).

As we see, the calculation of D gives a lot of information on modular
representations of a group and on subgroups of GL,(g). An algorithm of
calculation of decomposition matrices is unknown even in the relatively simple
case of p-blocks with cyclic defect group. Neither is it known whether D (up to
permutation of rows and columns) or even the set {¢; ()|l <i<r}is uniquely
determined by Z (a problem of Feit [7]).

There are only a few complete results of the calculation of D for known
quasisimple groups. This is done only for the alternating groups of small
degree, for some Chevalley groups of small Lie rank, and for some sporadic
groups. The “Atlas of finite groups” [6] contains the character tables of the
covering groups for every sporadic simple group and for some other “small”
simple groups. Certainly, it is necessary to have a similar atlas of Brauer
character tables. Recently the activity of investigations on Problem 3 has
increased. In particular, the author knows that Parker, using a computer,
studies intensively the modular representations of the groups whose character
tables appear in [6].

Our results on Problem 3 are obtained independently of Parker’s work. In
[17], [18] we calculated the decomposition matrices for J, and Aut(J,) and all
p. The proof is based on the Brauer theory of modular representations of finite
groups and is of combinatorial nature.

The progress in solving Problem 3 allows us to make the next step in
solving Problem 1, namely to describe the absolutely irreducible quasisimple
subgroups and its normalizers in GL¢(g), where ¢ is a prime power. In
particular, we have the following.

THEOREM 1 [16]. Let H be an absolutely irreducible quasisimple subgroup of
GLg(q), where g = p" for some prime p and some integer n = 1. Suppose that the
nonabelian composition factor in H is a known simple group. Then H is
isomorphic to one of the following groups: SL,(p™), p = 3, m|n, and p > 7 for
m=1; SL,(p™), p 2 3, m|n; SU;(p™), p = 3, 2m|n; Q& (p™), m|n; Sp(p™), min;

Uﬁ(pm)v 2m|n, SLG(pm)s mln’ Gz(Pm)’7 p= 27 m|n, SLZ(S)’ 2 ¢p # 5’ L2(7)’
2#p#T;SL, (N, 2#p+#T,and 2|\n for p= +3 (mod8); 3.4,,p=5,9q=1
(m0d3) 6.Ac.p=S,and 2ln for p# 1, 7 (mod24); A,, p#7;2.4;, p=13,
2ln;3.4,,9=1(mod3);6.4,,p =5, and 2|n for p £ 1, 7 (mod 24); SL,(11),
29ép;é 11, and 2|n for p=2, 6,7, & 10 (mod 11); L, (13), p = 2, 2|n; SL,(13),
2#p+#13,and 2lnfor p=2,5,6,7, 8, 11 (mod13); U;(3), p=T7; 2.L3(4),
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p=3,6L,4),p=59g=1(mod3); U,(2),p=5;3U,(3),p=22|n;6.U,(3),
p=5andq=1(mod3);2M,,,p=3;J,,p=2,2|n;2.J,, p = 3, and 2\n for
p=2,3(mod5); 3.M,,, p=2,2|n. (Here a. X denotes an extension of a cyclic
group of order a by a group X). In addition, the group GL,(g) has exactly one
conjugacy class of absolutely irreducible quasisimple subgroups for each of the
above-indicated types of groups, with the exception of 6.4, (two classes), SL, (7)
(two classes for p # 7), and SL, (p™) (m—1 classes for pe {3, 5}, and m classes for
p=1).

The proof of Theorem 1 uses the Brauer theory of modular represen-
tations of finite groups together with the representation theory of algebraic
groups. In the course of proof we calculate the decomposition matrices of some
“small” quasisimple groups, including J,. In particular, Theorem 1 together
with the above-mentioned reduction result of Aschbacher solves (modulo
CFSG) problem 8.39 b) from [21]. Kleidman (see [10]) described (modulo
CFSG) all maximal subgroups in finite classical almost simple groups of
dimension < 12. Theorem 1 was obtained by the author independently of this
result of Kleidman.

Aschbacher [3] classified all irreducible FL-modules for every quasisimple
group L of Lie type over a finite or algebraically closed field F. He uses this
result in the investigation of subgroups in the groups E (F), 2E (F), and F, (F).
The last groups are considered as the isometry groups of a symmetric 3-linear
form on the 27-dimensional module. From this the special role of the number
27 is clear.

We obtain a complete classificaiion of absolutely irreducible p-modular
representations of degree < 27 of quasisimple groups of Lie type defined over
a finite field of characteristic # p. The proof consists in calculating the
decomposition matrices of quasisimple groups of Lie type from a list obtained
by using a result of Landazuri and Seitz [22]. In particular, we have the
following.

THEOREM 2. A finite nonabelian simple group G of Lie type defined over
a field of characteristic p has an absolutely irreducible projective representation of
degree < 27 over a field of characteristic # p if and only if G is isomorphic to one
of the following groups:: L,(q) for 4 < q <53 and q # 32, L,(q) for q€{3, 4},
Us(q) for {3, 4,5}, L,(2), L,(3), PSp,(q) for q€{3,4,5,7}, U,(3), Us(2),
Sz(8), PSps(2), PSps(3), Us(2), 24 (2), PQ,(3), G,(3), G,(4), D, (2), *F,(2).

Note that large groups from Theorem 2 belong to the second half of the
list of simple groups which appears in [6], and their orders reach milliards. The
results on decomposition matrices of quasisimple groups investigated in
Theorem 2 may be considered as a contribution to the future atlas of Brauer
character tables of “small” quasisimple groups, and also may be useful for the
classification of maximal subgroups in almost simple classical groups of
dimension < 27 (it remains to treat the-quasisimple groups of alternating and
sporadic type), and in the exceptional groups F,(q), E¢(q), *E¢(q).
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The use of CFSG reduces many gnestions in finite group theory to the
examination of the corresponding properties for known finite simple groups,
which is often difficult. We now consider some such results concerning
subgroups of finite simple groups.

Menegazzo [23] introduced the class of IM-groups, i.e. groups in which
every proper subgroup is the intersection of some maximal subgroups. He also
determined all finite solvable IM-groups. Further Migliorini [247] and Bianchi
and Tamburini [5] obtained criteria of nonsimplicity of finite IM-groups, and,
in particular, proved in [5] that any minimal finite nonsolvable IM-group is
simple. The question of existence of finite nonsolvable IM-groups remained
open. Yu. N. Mukhin drawed our attention to this question in connection with
the study of the subgroup lattices in topological groups. We have the following
theorem.

THEOREM 3 [20]. A finite IM-group whose simple sections are known simple
groups is solvable.

As a corollary we obtain the solvability of profinite IM-groups.
Also we have the following theorem.

THEOREM 4 [19]. A finite group G whose composition factors are known
simple groups is 2-nilpotent if and only if the normalizer of every Sylow subgroup
has odd index in G.

Theorem 4 gives a negative answer to question 5.37 from [21]).

Now we define the notion of the prime graph of a finite group, which first
appeared in connection with some cohomological studies (see [8]). Let G be
a finite group. The prime graph I' (G) of G is constructed as follows: the vertices
are all primes dividing the order of G, and two vertices p, g are joined by an
edge if and only if G contains an element of order pg. Denote by t(G) the
number of connected components of the graph I'(G).

Jt turns out that the nonconnectivity of I'(G) is closely connected with
the decomposition of the augmentation ideal of G as a right module (see [8]).
This fact aroused interest in the study of finite groups G with t(G) > 1. In an
unpublished work of Gruenberg and Kegel the structure of a finite group
G with t(G) > 1 has been restricted, and, in particular, the solvable groups
with this property were completely determined. This result implies that if G is
a nonsolvable group with ¢(G) > 1 not isomorphic to a Frobenius group then
G has a nonabelian composition factor X with t(G) < t(X). Therefore, the
study of a finite nonsolvable group G with ¢(G) > 1 is reduced to the case of
a simple group. Williams [25] obtained an explicity description of the
connected components of the prime graph for every known finite simple
group, with the exception of finite simple groups of Lie type in even
characteristic. We give such a description in the remaining case. That solves
Problem 9.16 from [21] (see also Problem (3.8) from [12]). In particular, we
have the following.
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THEOREM 5. Let G be a finite simple group of Lie type in even characteristic.
Then the prime graph of G is connected except for the following cases:

(1) two components: A,(q) (g>4), A,_,(@) (p=5), 4,(9) (g—1|p+1),
2A,_ (@), 4,0 (g+1p+1, (p, @) #(52), 24,2, C,(2), C,(g) (n=2",
mz1), D,(2) (p=5), *D,,(2) (p#2"—1), D, (@ n=2"m=2, (nq)
#(p+1,2), 'D,y(q), G,(a), *F,(2), E¢(q), *Eq(q) (g > 2);

(2) three components: A (q) (q > 2), A,(2), 245(2), 2D‘,H(Z) (p=2"-1,
m>2), F (), *F4(q) (g > 2), E;(2);

(3) four components: A,(4), 2B, (q) (¢ > 2), E¢(2), Eg(q) (g = 2, 3 (mod 5));

(4) five components: E4(q) (9 = 1, 4 (mod 5)). Here p denotes an odd prime,
and q denotes a power of 2.

Besides the application to the augementation ideal of a finite group the
notion of prime graph is also useful in other respects. If n is any component of
the prime graph of a finite nonsolvable group G and n does not contain the
prime 2, then G contains a nilpotent n-Hall subgroup H which is isolated in G.
A subgroup H of G is called isolated if H~ H? = 1 or H for any element g of G,
and for all h in H—{1}, C;(h) < H. Conversely, if G contains an isolated
subgroup H then the prime divisors of H form a connected component of
I’ (G).

It is possible to use this description to find all those finite simple groups of
Lie type in even characteristic which are Crr-groups (n is a set of primes).
A finite group is called a Cnn-group if the centralizers of nonunit n-elements in
this group are m-groups. In particular, as an illustration we have the following
theorems.

THEOREM 6. If G is a finite simple group of Lie type in even characteristic
and 5 divides the order of G, then G is a C55-group if and only if G is one of the
following: L, (4), Ly(4), Sp,(2) = Ag, or U,(2).

THEOREM 7. If G is a finite simple group of Lie type in even characteristic
and G contains an element of order 6, then G is a Cnn-group for n = {2, 3} if and
only if G is isomorphic to U,(2), or to G,(2) = U,(3).
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