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In this paper we consider some problems related to: the constructive
characterization of the approximation of classes of continuous functions on
a segment by algebraic polynomials, established by S. M. Nikol'skii, V. K.
Dzyadyk, A. F. Timan and Yu. A. Brudnyi (see [3], [5], [6], [9], [12], [13));
the results of S. N. Bernstein [2] and, I. 1. Ibragimov [8] on the best
approximation of the functions x* and x™In x by algebraic polynomials; the
results of N. K. Bari, S. B. Stechkin and S. M. Lozinskii (see e.g. [1]) on the
equivalence of the O- and ~ -relations in the constructive characterization of
approximation by trigonometric polynomials.

We introduce the usual notation:
C°:=the space of continuous functions f: [0, 1] =R,
C:=!{f: f"eC%, reN,

#,.=the space of algebraic polynomials of degree < n, neN,

WAl = sl?ulf(x)l,
E.(f):= inf ||f=pll,
w, (f, t):; " sup |f (x2)=f(x,)l, the modulus of continuity

0<x) <x3€1,x9—xy St

of feC®,

Lipl:= \f: o,(f,1) =0()}.
Let £ = l¢,} be a decreasing sequence of positive numbers. Deﬁne

H[e]):=1{f: E,(f) <&, VneNj}.

E. P. Dolzhenko and E. A. Sevast’yanov ([4], Theorem 7) proved the
following theorem.
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THEOREM 1 ([4]). For every & there is f €eH [g] such that
(1.1) o, (f,n")=cn"? Z": ie;, neN,c=const>0.
i=1
This implies Theorems 1’ and 1” below:

THEOREM 1’ ([4)). If
Y ig; =
i=1
then there exists f eH[&] such that f¢Lipl.
THEOREM 1" ([4], Theorem 8). If

a0
Y ig; = o0,
i=1

then there exists f e H[&] such that f¢C.

Later, M. Hasson [7] proved Theorem 1” under the additional assump-
tion that i%¢; is decreasing. We present an example to show that this is an
essential restriction, in spite of the fact that Z:: , & < oo implies iZg; —0.

ExampLE. Let u(x):= —xIn"'x, x,:=(k!)"!, keN. We define a non
decreasing function a on [0, 1] by a(x) = u(x;) for x e(x,, x,—,] and k even,
and o« (x) = u(x) for x €(x;, x,-,] and k odd. Set ¢,:= a(n”2?), neN. It is easy
to see that

a0
Y igg =00, limi’g =0.
=

Let now B = {f, be any sequence satisfying (a) i®B; is decreasing, (b)
0 < B; <¢. Then it is not difficult to check that
LY i < .

i=1
From A. A. Markov’s inequality we deduce in the usual way (see e.g.
[4], [7]) that if Z iZ“'g < oo (reN), then feH[e]= feC". Thus the
condition Z ig; < oo is necessary and sufficient for the inclusion
H[g] =C! to hold ([4]). M. Hasson [7] assumed the following theorem to
be true:

THEOREM 2. Suppose i*¢ is a decreasing sequence, reN, r>1. If
Z:liz’“’s,- = 00, then there exists f €H[&] such that f¢C".

Theorem 2 was proved by T. Xie [14] and independently by the
author [11]. T. Xie [14] observed that the proof of Theorem 2 yields the
following theorem:
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THEOREM 2'. Suppose i*"¢; is a decreasing sequence, reN, r > 1. If
Z::liz"‘a,- = o0, then there exists f e H[£] such that f*~V¢Lipl.

If i¢; > ¢ > 0, then the assertions of Theorems 1’, 17, 2 and 2’ follow
from I. 1. Ibragimov’s results [8] (for details, see Section 3).

In Section 2 we prove Theorem 3 which eliminates the additional
assumption of Theorems 2 and 2'. Moreover, Theorem 3 (more precisely: its
corollary, Theorem 4) gives a necessary and sufficient condition for the
inclusion H[£] <« W™ Hf to hold, where W™ Hf is the class of functions for
which the kth modulus of continuity of the rth derivative, w,(f®,t), is
bounded by the increasing function ¢ = ¢(2).

Recall that the kth modulus of continuity of fe€C° is the function

o, (f, )= sup sup |4k(f, x)|,

he[0,t) xe[0,1 —kh]

where
k rk
#0539 = T (=107 () fCer it
i=0
is the kth order finite difference of f at x with step h.
THEOREM 3. Let k€N and r+1€N.
@ If

a0
Y ri*lg =0,
i=1

then there exists f e H[&] such that f¢C'.
(b) If

[ o}
Y rir g < o0,
i=1

then there exists f e H[&] such that f €C" but for all neN

@ n
o (f, ") > c( Z riZr=lg 4 pn2 Z iz(r+t)—18i),

i=n+1 i=1

c=c(r, k, &) =const > 0.

As noted earlier, by using Markov’s inequality we deduce in the
standard way that Theorem 3 is equivalent to Theorem 4 below. Let us first
introduce some notation.

Let ke N, r+1€N, and let ¢ = ¢(t) be continuous and nondecreasing
on [0, 1] with ¢(0) =0 and ¢(t) > 0 for t > 0. Define

W H := {f: o,(f?, 1) =0(e )}
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and for r #0
Wi=W-1H (=W 2H]=..=W°H").
THeOREM 4. H[¢] <« W"HY if and only if

[« o]
Z rin—18i+n—2k Z iz(r+k)—18,- —_ O(q)(n—Z))

i=n+1 i=1
Theorem 4 has the following corollaries:
THEOREM 4'. H[€] = C', reN, if and only if

(1.2) Y 21y < oo,

i=1
THEOREM 4”. Let r €N. Condition (1.2) is necessary and sufficient for
H[E] < w.

Remark 1. “Decreasing” may be replaced by “nonincreasing” every-
where in this paper.

Remark 2. Under the additional assumptions that ¢, = n~ % ¢(n”?) and
¢ is a function of the type of the kth modulus of continuity, Theorem 4 was
proved in [11].

2. Proof of Theorem 3

In the sequel always x €[O0, 1].

Fix meN. We will denote by c various positive constants depending on
m only.

Observing that for /€N the function sin?(/arcsin \/;) is an algebraic
polynomial of degree /, we define, for neN, the algebraic polynomials

(2.1) T, (x) : = sin2"* 2 ([mi 2]arcsin ﬁ)

where [a] is the integer part of a.
Note the following properties of these polynomials:
(a) deg T, < n.
(b) For all x

(22 0< T,(x)<1.
(c) For n<1//x

(2.3) T.(x) < cx™*2p2m+2),
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(d) For m+2<n< l/\/;

(2.4) | T,(x) = cx™ 2 p2m+2),
(¢) For j=0,1,...,m+1

(2.5) T (0) =

Let « =a(x) be a continuous increasing function on [0, 1] such that
a(n~?) =e¢, for all neN. In the sequel, we denote by a various positive
constants which depend on a and m only (unlike the constants ¢, which
depend only on m).

We define the function

(2.6) Bx):=) i e Ti(x) = Z g T (%)
i=1 =m+
and the polynomials
(2.7 P,(x):= i i~3¢ T (x).
i=1
LemMmA 1. (a) For all x
(2.8) 0<B(x)—P,(x) <cxe,, neN.
(b) For all x
29 B(x) > axa(x),
and for x < (m+2)~?2
(2.10) B(x) = cxa(x).
Proof. (a) Let first x > (n+1)"2. Then
BW-Pu) = 3 iPaT() <o, ¥ i
i=n+1 i=n+1

<}epin <, n" ¥ < 2xs,,.

Let now x < (n+ 1)~ 2. Choose n, €N satisfying (no+1)~2 < x < ny % and
note that by (2.3)

no no

Z =3 T(x) < cxm+2 Z 2m+1 < cxm+2 2(m+1) < cx.
i=n+1 i=n+1
Further,
no. ©
B(x)—Pu(x)<e, Y, iT*T(X)+e, Y i *T(x)
i=n+1 i=ng+1

<ceg,x+3ie,ng? < ceyx.
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The inequality B(x)— P,(x) = 0 being obvious, the proof of (a) is complete.
. (b) We first prove (2.10). Let therefore x < (m+2)~ 2. We choose n,eN
satisfying (no+1)~2 <x < ny? and obtain, by (2.4),
o

B(x) ? snoxm+2 Z i2m+l 2 Ce
i=m+2

m+2 .2m+ 2

x4 ng = ce,. X = cxo(x).

"o no

This completes the proof of (2.10), and also of (2.9) for x < (m+2)~2. On
the other hand, if x > (m+2)~2, then

(M+22B(X) 2 €ms2 Tos 2(X) = Ems 2 X™ "2 2 CXEpy 2 = axa (),
which completes the proof of Lemma 1.

Set ([10], [6], p. 168)

;'u""'2}9(u)x(x—u)""l du.

2.11) FO)i= oy

LEMMA 2. For neN
(2.12) E,(F) < ce,.
Proof. Define

1

Y fu™m 2P, x(x—w" 'du.

By (2.5), Q, is an algebraic polynomial of degree <n—1 with Q,(0) = 0.
"Now, for x =0 we have |[F(0)—Q,(0)] =0, and for x # 0, by (2.8),

0n(x):=

1 1
IF (x)~ Qu(x) < cfu™™ 2ug, x(u—x)""'du < cxe, [u~?du < cs,,

x

which finishes the proof.

LeMMA 3. Let keN, k < m. Write r:=m—k.
1

(@) If {ru=""2B(u)du < oo, then FeC", but for he(0, 1/k]
0

h kh
o f | Bu)uy ™ 2du,duy_, ...du,
0

htuy+...+up_q

2.13)  AX(F", 0) = mh

Ot >

h+l‘l+...+llk_1

h h
+rhf...§ [} (h+u,+ ... +uy_y) "
(1) 0 h

xBu)uy " 2dupdu,_ , ...du,
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1 e 1 h .
+mh"kjhﬂ(u)u 2du+H£rﬁ(u)u 2du

> mh* j,B(u)u"" 2du+k'~[rﬂ(u)u "2 4u.
(b) If
1

(2.19) frB@u ""%du = o

(1]
then F¢C'.
Proof. (a) Let

1

(2.15) frBu~""?du < 0.
0

If r=0, then FeC® by Lemma 2. If r # 0, then

(_1 k 1
[rBWu=""2du = F(0).
0

(2.16) lim F®(x) =

x =0 k!
To see this, note first that
1
(2.17) limx (Bu)u~""3du =0.
x =0 x
Indeed, for any ¢ > 0 choose 4, > 0 so that j'o Buw)u~""2du <e. Now
choose 4 €(0, ;] so that ‘SL Bw)u~""3du <¢/2. This gives for x €(0, 9)

1

xj'ﬂ(u)u" 3du--xj'lﬁ(u wre 2du+xjﬁ(u)u"’ 3du

<XELE_
Sx2 2
Now (2.16) follows from (2.17), the inequality x <u and the identity

E.

1
(2.18) F®(x) =%j(x—u)"'l(mx—ru)ﬁ(u)u'""zdu, x #0.

We now prove (2.13). To do this, we introduce the functions

m
Fi(x):= o [x(x—wr 'Bwu""2du, F,(x):=x"'F (),

]

h
Fs(i= =[xt B@um"du, Fy(9:=x"'Fs(d, x#0.
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We extend F, and F, by continuity to x = 0 and note that F, (0) =0, F;(0)
= F®(0). Now, since 4%(x/, 0) =0 for j=1,...,k—1 and 4%(x*, 0) = k! h*,

we obtain
AX(F", 0) = A%(F,, 0)+ mhK* j'ﬂ(u)u‘"' 2du+ A% (F,, 0).

Furthermore,
AK(Fy, 0) = (= 1)*F, (0)+ kha} ™ (F5, h)

= khdy~" (F2, h)
h h

=kh{...[F§ V(h+u+...+u_)du_,...du,
o 0
h h kh

=Mh5....‘. j ﬁ(uk)uk_"‘_zdu,‘duk_l...dul20.
0 O h+uy+...+up_q

Analogously,
44 (F3, 0) = (= 1)* F3(0)+ khd} ™' (F4, h)

h
i‘-l—(j;rﬁ(u)u =24y
h phtup oty
hj‘ I j (h+u1+...+u,‘_1)_k
0 0 h

x B(u)ug "~ 2duy...du,,

which completes the proof of (a).
(b) Assume (2.14) holds (of course r # 0). Suppose to the contrary that

Fec. Then for he(0, 1/2r]
|43(F, O)| < ah”

but
! (ll,.‘- h —U— ... —U,_ l)m rﬂ(ur) du
(m—r)'u"'+2 e

h h
|44(F, O =rh|...|
0 0

1

>ch [ Bwu ""2du.

2rh

This completes the proof of Lemma 3.
Finally, Theorem 3 follows from Lemmas 2 and 3, from the estimate

(29) and from the equiconvergence of the integrals

1 1

frBu~""?du and [ra(@u~""'du.
0 0

"+"l+"-+"r—1
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3
We will denote by ¢; positive constants independent of n and t. We write
An,t) ~B(n,t) if c;A(n,t) < B(n,t) <c,A(n,t). Set
WH? :=f: o, t)~¢(), keN,r+1eN.

Apart from the monotonicity and continuity of the function ¢, we clearly
have to assume here that t ¥ ¢(t) is nonincreasing for ¢ > 0.
Let « =r+pf, where r+1€N, Be(0, 1). S. N. Bernstein [2] proved that

(3.1) E,(x*) ~ (1/n%".
Note that x*e W' HY = ... = WOH", ,.
I. 1. Ibragimov [8] proved that
(3.2) E,(x"Inx) ~(1/n®)™, meN.
Note that x"Inxe W™ ' H, =... = WO°H", ,. Ibragimov [8] also obtained

such relations for functions of a more general type, belonging to other classes
W' HY. '
We will write ¢ €S(r, k) (see eg. [1]) if

t 1
(3.3) fru ' o) du+t [u™*"'owdu < cs0(), te(0,1].
0 t

The followiﬁg result generalizes (3.1) and (3.2).

THEOREM 5. For every keN, every r with r+1€N and every ¢ €S(r, k)
there exists f eW" HY such that E,(f) ~n~ ¥ ¢(n”?).

Proof. In [11] we constructed a function f e W H? such that
E,(f)ysn @@ % for all neN.

Therefore it suffices to show that if ¢ €S(r, k), then
34 - E,(f) = can ¥ @(n7?).

Let a(t) denote a nondecreasing continuous function on [0, 1] such that
a(n~2) = E,(f). Obviously, a(t) < cst" ¢(t); to simplify the writing we assume
¢s = 1. It follows from Markov’s inequality that
1

3 o (u)

ro (1)
Ty du), t€(0, §].

t
¢([) < Ce (I—rqdu"rf
] u t
Reasoning as N. K. Bari and S. B. Stechkin [1] we will show that if «(¢)
=a"**t"(t) at some point t €(0, ] (where a = const, 0 <a < 1), then for
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ty:= \/;t we have
'l

1
(3.5 @(t,) <ce(fru™""ta()du+ty fu=""*"a(u)du)
0 e

<8cscdo(t,)In"! (1/a).
Indeed, by (3.3),

1 ‘e
r<p(\/5t,..)1n$< [ rumtowdu < cs0(,),
Vat,

1 t
(t,./t)"<p(t)1n—\/—— <th fu " lowdu< ey 0(,),
a t,

whence

ro(Jat,) < 25 0(t,) " (1/a),  o(t) < 2¢30(t,)a™2In"" (1/a).

Therefore

te 1
frur" e du+ty fumm " P a(u)du
0 o

Jﬂl. L
< [rulo@dut [ ru""'a M o (t)du
0 vat,
t 1
+tk fum N a M T o () dutty fuTt T @ (u)du
t, t
<re; o(Vat)+ @/t a P ad o) +(/t) a7 o)
+e3 (/1) o (1)
<8cleo(t,)In"'(1/a).
We have thus proved (3.5), and hence also (3.4), with the constant c,
= exp(—8(r+k)c3cs). This completes the proof of Theorem 5.

Remark. For k=1 and r =0, Theorem 5 was obtained by E. P.
Dolzhenko and E. A. Sevast’yanov [4].
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