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1. Contact and symplectic structures

Let M?"*! be an orientable C*-manifold. A globally defined 1-form w is said
to be a contact form if w A (dw)" # 0. Such a form determines complementary
distributions of dimensions 2n and 1 in the tangent bundle TM?"*! the
former being called the contact distribution D associated to w,

D.=!xeT,M*"": w./(X)=0!.

If the subbundle D is orientable (and this is always the case if n is even), then
TM?"*1/D is an orientable real line bundle, and M?"*! admits a nowhere

vanishing vector field ¢ such that
w(E) =1 and dw(Z, X)=0 for all vector fields X on M?"*1,

¢ is called the characieristic vector field of the contact form.

Note that the condition w A (dw)" # 0 implies that D is not integrable,
indeed in a certain sense the theory of contact structures i1s complementary
to that of codimension one foliations. Classically contact forms arise as
natural structures on constant energy levels of a Hamiltonian system (see
Example 1 in Section 2 below).

Tueorem 1.1 (Darboux). If (M*"*! w) is a contact manifold each point
xe M*"*! belongs 10 a chart U(xy, x3,..., Xap4,) such that

wlU = xydxy+xy3dx,+ ... + X5, 1 dX3,—dXs,, .

For a proof see [Go], VI, Théoréme 4.1.

This result suggests an alternative definition of a contact manifold. The
local diffeomorphism f of a neighbourhood of the origin O R*"*! is said to
belong to the contact pseudogroup if f*w = Am, 4 some non-vanishing

* The hnal version of this paper will appear as part ol a monograph on contact geometry.
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locally defined C*-function and w = Y x,;_,dx;;—dx;,,;. Then our
j= 1

orientability assumptions imply that (MZ'{“, w) 1s a contact manifold if and

only if M admits an atlas such that the coordinate transformations belong to

the contact pseudogroup. Since in this paper we will be concerned with

highly connected manifolds, there is no loss of generality in taking the two

definitions to be equivalent.

Darboux’ Theorem implies that locally all contact forms are equivalent;
globally this is not the case, and we shall give examples below of contact
forms on $?"*! which induce distinct almost contact structures on the
tangent bundle.

DEFINITION. M?"*! has an almost contact structure if the structural
group ol its tangent bundle may be reduced to U(n)®l.

If a global contact form w exists, the decomposition of TM?"*! into
complementary subbundles of dimensions 2n and 1 shows that the structural
group reduces from SO(2n+1) to SO(Zm)@1. The further reduction to
U(n@1 is obtained by restricting w to a standard chart, and observing that
the coordinate transformations for the subbundle D inside any overlap must

01
be compatible with the matrix ( "). Therefore such a coordinate

transformation has image of the form ( B A)' and lies in the unitary

subgroup of SO(2n).

The existence of such reductions from SO(2n+1) to U(n)@1 is therefore
necessary for the existence of a contact form on M?"*'. In general the
sufficiency of this condition, that is the compatibility of a family of locally
defined forms, is a hard problem in partial differential equations. Our aim in
this paper is to provide évidence that, at least for a large class of
highly connected manifolds, the condition is sufficient. Since our method is
topological we are actually proving that for certain manifolds M2"*! there
exist some reduction of the structural group of TM?*"*! for which the
integrability conditions for the associated system of partial differential
equations are satisfied.

The even dimensional analogue of contact structure is provided by pairs
(M?", Q) where Q is a globally defined 2-form such that

(1) dQ =0 (2 is closed) and

(1) Q" #0.

Such a form is called symplectic, 1s locally unique (see Godbillon [Go], op.
cit.), and induces an almost complex structure on the tangent bundle TM?".
One obtains an important family of examples as follows: Let P,(C)
be complex projective space with the usual atlas ol complex charts
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U;j=1[z]: z;#0}, j=0,1,...,n. and define real valued [unctions f;:
C"—R by

Sitw) =log(1+ Y Iw,]?).
r=1

By composition we obtain a family of functions K;: U;— R, j=0,...,n,
which by an easy calculation are such that on U, nU; € P,(C). the complex
2-form @ = —2i7CK; is well defined. I we write @ in the form @ =

—2i Y |ygdz, ~ndZ,. then hy; is positive definite Hermitian, d =0, and
z.p=1
the relzil part of @ defines the (Fubini—Study) symplectic structure on P,{C).
One can further show that this structure is integral in the sense that the
cohomology class [Q2] = [Re®] belongs to the image of H*(M, Z) in
H} (M, R). By naturality such an integral symplectic form is inherited by
any projective algebraic variety contained in P,(C).
We will next describe one way of relating contact and symplectic forms;
if (M2"*! () is contact, then all the Stiefel- Whitney numbers of M?"*!
vanish, and M?*"*'! = N2 (see [Gr], Thm. 232). In a collar
neighbourhood of the boundary M x[0, 1) £ N with normal coordinate ¢,

n

we may locally extend w to (1 —1)dx,,+,+ ) X3;_;dx,;. The local exterior
j=1
derivative ol the extended form is closed, takes the form —di A dx,,.,

+ Y dx;;_y A dxy;, and hence satisfies the symplectic condition. Thus any
ji=1
coiwtact manifold is the boundary of some, not necessarily closed, symplectic
manifold. Il M?"* ! is actually the boundary of some compact (2rn + 2)-manifold
N such that TN has structural group U(n+ 1), then by an argument of M.
Gromov the symplectic form in the collar extends to N—D?*""2; the
possibility of extension over the final disc depends on questions of
integrability already alluded to. Hence if certain algebraic conditions are
fulfilled (for example on the Chern classes of TM?*"*!D1) it is possible to
regard (M2"*! @) as a submanifold of (N?"*2, Q). Suppose conversely that
(N*""2,Q) is given, and that M*""! is a smoothly embedded codimension
one (orientable) submanifold such that the restriction of the 2-dimensional
class [2]e H3x (N, R) vanishes on M, eg. if M is at least 2-connected. Then
in the neighbourhood of M, @ is the exterior derivative of some 1-form #,
which induces a contact form on M, provided that there exists a family of
coordinate charts ¢,; U, — R*"*?, such that the pair (o, U, = R***?
@ (MUY= (V> 2 W2 1) has the property that no tangent space to W
contains the origin of coordinates in ¥V = R*"*2, (x). This is a transversality
condition, and it i1s at very least plausible to suppose that by slightly

17 — Banuch Center Publications
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perturbing the embedding of M*""' it can always be satisfied. For a proof
that the condition (x) i1s sufficient for the existence of a contact form see
[B1], page 8.

Dually to this embedding problem we may try and submerse (M2"*! w)
in (N?", Q). One way round we assume that we are given the pair (N?”, Q)
such that there exists a submersion p: M2""! — N2" satisfying the algebraic
condition p*[Q] =0 in Hjg(M, R). Then if the complementary line bundle
to p TN in TM?"*' is trivial, that is TM?>"*' has structural group
U(n@®1 there exists an open subset U of M?"*! admitting a contact form w
such that p* Q = dw. In one important special case (see Example 2 in Section
2) below this method of construction leads to a contact form defined
everywhere on M. Conversely, given (M*"*! ) there exists a submersion
into a symplectic manifold (N?", Q), provided that « satisfies a suitably
strong geometric condition, for example w is regular in the sense that the
characteristic field & is regular. This means that each point xe M***! has a
cubical coordinate neighbourhood U such that each integral curve of ¢
passes through U once only as a line segment parallel to the x,,,, axis.

For a more leisurely introduction to the basic ideas of contact geometry
we refer the reader to the book of C. Godbillon {Go] and to the notes by D.
Blair [Bl]. The former lucidly explains the relation of the geometric ideas to
classical mechanics, and the proof of Darboux’ Theorem is strongly
recommended. Blair’'s notes are more geometrical in flavour, and also
provide an introduction to otherwise rather inaccessible Japanese work on
the relation between contact and almost contact structure. This is an aspect
of the subject, on which we do not touch in the sections that follow.

2. Methods of construction

In this section we explain a number of constructions, which will be later used
to show that a “prime” (n—1)-connected (2n+ 1)-manifold satisfying the
necessary tangential condition often supports a contact form. We can then
use the connected sum theorem (2.3) to combine different methods of
construction in order to obtain a theorem valid for composite manifolds.

(1) The cotangent sphere bundle

Let T*M"*! be the total space of the cotangent bundle of an arbitrary
(n+ 1)-dimensional manifold with coordinates (p, ... p,+4) in the fibre and
(4 --- 9u+ 1), ¢ = x;0(projection) i =(1,..., n+1) in the base. The 1-form

n+1

B= 2 p; dq;

i=1

restricted to the subbundle of unit cotangent vectors is a contact form, since
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each fibre is homeomorphic to S”, and no tangent space to a point in the
fibre contains the origin of the fibre in T* M. Here we have applied
condition (*) from Section 1.

(2) Regular contact manifolds

THEOREM 2.1. Let N*” be a symplectic manifold such that the cohomology
class [Q] of the defining form is integral. If M2"* " is the total space of the S'-
bundie over N?" with Chern class equal to [Q], M?*"*! admits a regular
contact form @ such that p* Q = dw. Here p: M*"*' — NZ2" denotes the bundle
projection.

Proof. Cover N?" with a family of open discs U;, iel, over each of
which the bundle is trivial. On U, there is a 1-form #; such that QU,; = dp,,
consider the 1-form on p~ ! U; = S’ x U, given by dr+ p*n;. Since p*[Q] =0
by definition of the Chern class these local 1-forms may be chosen to be
compatible, that is they combine to give a global 1-form w on the total space
M?"*1. Since d(dt+p*n) =d(p* ) = p*(d,) = p*(QU)), p*Q =dw. The
contact condition is local, and hence may be checked using the form
dt +p* n;,

(dt+p*m) A p*(dn)" =dt A p*(dn)"+ p* (m A (dn)").

The second term on the right vanishes because N has dimension 2n, and the
first term defines a volume form for the product S'xU;. The form w is
regular, since the flow lines of its characteristic vector field are the fibres S!
Of M2"+l.

The converse to this theorem is also true. If (M2"*!, w) is regular then
some multiple Aw, for some non-vanishing C*-function A, has a characteristic
vector field whose flow lines are the orbits of a principal S'-action. The orbit
manifold M?"*'/S! = N?7 is symplectic, and the (integral) defining form Q
satisfles p* 2 = dw. This result is intuitively clear, for full details see either
[BI], page 14 or [B-W].

In Section 3 below we shall give examples to show that Theorem 2.1
and its converse extends to odd-dimensional manifolds which are Seifert
fibered over a suitable symplectic manifold, that is we allow an action of S'
to have finitely many finite isotropy subgroups. This leads to the definition
of a quasi-regular contact form as one whose characteristic vector field has
flow lines meeting a suitable cubical coordinate neighbourhood in at most
finitely many line segments parallel to the x,,.,-axis.

(3) 3-manifolds as open books

It is a classical result of Alexander that if M3 is a closed, connected,
orientable 3-manifold then there exists a surface P?> bounded by single copy
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of S', and a dilfeomorphism h: P> — P? (equal to the identity near ¢P), such
that

M3 =(D*xS") U P(h.
slosl
Here P(h) is the mapping torus of h; the decomposition is called an “open
book™ with pages the fibres of P(h) and spine the axis {0} xS' of the solid
torus.

THEOREM 2.2. The manifold just described admits a contact form.

Proof. Let dn be a volume form for the bounded surlace P. Since the
dimension is 2, dn is also symplectic. Let S' x[1, 1+¢) be a collar of the
boundary of P with collar coordinate r, and using a partition of unity extend
the I-form rd0 to all of P in such a way that it vanishes outside the collar.
By means of a suitable smooth function 4, and using the convexity of
symplectic forms in dimension 2, we may replace n by

n=01—=An+4ird0,

a l-form which agrees with rd@ inside some possibly smaller collar of the
boundary and which is still such that dn, 1s symplectic. Again using
convexity there is a 1-form »n, on the mapping torus which restricts to n; on
each fbre, and for a suitably large value of K

Wy =1, + KdQD,

where ¢ is the angular coordinate in the base space S of P(h), satisfies the
contact condition. This defines the contact form on the union of the pages of
the book. Near the spine take w, = r*d@+d0, and join these two forms by

o = fi(r)do+f;(r)de,

where fi(r)=1, f1(r)=r? (r<e¢) and fi(r)=r, f5(r)=K (r=1). An easy
calculation shows that w also satisfies the contact condition if f, f; —f7 f, # O,
a condition which can clearly be fulfilled.

This argument i1s due to W. Thurston and E. Winkelnkemper. Although
we will not attempt to extend it to higher dimensions in this paper (but see
[Th] for an outline of a proof in dimension 5), the number of manilolds
which admit “open book” decompositions is large, and it should be regarded
as a potentially useful method.

We now come to perhaps the most important result in this section.

THeoREM 23 (C. Meckert). If (M*"*' w), (M?*""!, ') are contact
manifolds the connected sum M # M’ admits a contact form w" equal to w on
M—U and to w on M'=U’, where U and U’ are sufficiently small open sets
containing the connecting sphere S*".

Sketch proof, for the full details see [M]. In order to [orm the connected
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sum delete the interiors of n-discs D2"*t! = M2t pr2ntl o pp2etl and
identify the resulting copies of S*" by means ol an orientation reversing
diffeomorphism h.

We may suppose that D < U, D" < U, where U and U’ are so small that

n

wlU =Y (Xgj-, dxgj—3x5y;dx,,- ) +dxg, .,
ji=1

w|U = Z }’zj—ld)’zj—")"an-
j=1
The first form being obtained by a modification of the proof of Darboux’
Theorem.
Write r=(xi+ ... +x3,.)"% A(r)=r% and define the glueing
diffeomorphism he Dilf(R*"* '\ {0}) by

X

h(x;) = y;, with y,-=—;, i=1,2,...,2n+1.

~

Consider the sequence of spherical shells in R*"*' defined by the
sequence of radial distances
ro=a<i<3i<3<R<c<yr =4

We shall show that on the union of these shells, bounded by the spheres of
radii 3 and 4, there is a contact form equal to r* h*w" near Sy and to w near
S;. This will be enough for the construction of @’ on M#M'.

" 2
(0) %SI‘S‘%, wO =r4h*(1}’ = Z (ij_ldej—_ij_lejdr)
= r
ji=1
2
—-r de"+1+2x2"+lrdr.
n
1 3 _ 1
M) 2<r<y, o, = Z [xzj—ldxz;'—("—i)xzjdxz,'—lj

i=1

| '
_rzdx2"+]‘+‘2(X2"+l—r_2 Z ij_l ij)rdr.

j=1
n
() 3<r<3, w, = Z (ij—ldXZj_%xljdxlj—l)
i=1

(M)

I
_%(3—r)[}‘2(i,\'2n+1+r7 Z ij_IX2jrer+2x2n+lrdr.
i=1
(lll) 3 g<r S%Q, Wy = Z (x2j_1dej—%ijdxl"_l)'*'zxZ,H.lrdr
=1

+3(r—3)dx,,, .
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n
(v <r<t, w, = Z ('T2j-ldxlj—"%XZjJXZj—l)+dx2n+l
j=1
+6(5 —r) x5, rdr.
n
V) B <r<4, 5= ) (xg5-dxy;—¢X5;dx,5- )+ dxy,. .
j=1
It is easy to check that w; = w;, for r =r;,, 0 <i <4, and slightly harder
to check that each form w; does satisly the contact condition throughout its
range of definition. This done, one has constructed @w” as a C°-form on
M #M’, and it remains to smooth «" at the spheres separating the various
shells. In order to do this one defines a suitable smooth function ¢(r),
0< ¢ <1, and considers the form

pw;+(1—-@)w;, ;.

Since the set of contact forms is not convex in dimensions = 3 it is far from
obvious that this intermediate form defines a volume element. That this is
however the case [or the forms we have defined (note that w;,,—w;, =
(r—a)n o, =1/2,....11/3) follows by explicit calculation (see [M], “lemme
de lissage™).

3. The classification of (11— 1)-connected (2n + 1)-manifolds

In this section we first summarise the main results from C. T. C. Wall's paper
[Wa], and then show how certain prime manifolds, that is manifolds which
cannot be non-trivially decomposed as connected sums, may be represented
as Brieskorn varieties. On such a variety it is an easy matter to write down
an explicit contact form.

Let n > 4, n # 7, and for technical reasons suppose that n # 0, 1 (mod 8).
If M2"*! is closed and (n—1)-connected, M admits a handle decomposition
with one 0-handle, k n-handles, k (n+ 1)-handles and one (2n+ 1)-handle for
some suitable value of k. (If the (2n+ 1)-handle is missing, we shall say that
the resulting bounded manifold is almost-closed and write M.) Hence M is
the union of two handlebodies, one of which, N say, is obtained from D?"*!
by attaching k copies of D" x D"'! (corresponding to the generators of =, (M)
to the boundary along S" ' x D"*!. The complement N’ consisting of {n+ 1)-
and (2n+ l)-handles is diffeomorphic to N, and hence the problem of
classification has two parts:

(i) classify the. handlebodies N, and

(i) determine how automorphisms of the boundary of N give rise to
different closed manifolds M. Looking more closely at this problem one
arrives at the following list of invariants:

A, H, (M, Z) together with its quadratic structure. This consists of a
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nonsingular bilinear map b defined on Lhe torsion subgroup taking values in
Q/Z with b(x, x) = 0(r =even), or of a quadratic map with associated
bilinear map 2bh(n = odd).

xe Hom(H,(M. Z), 7, (SO))
feH™ (M, 1,(S0)) = H,®n,(S0)
pe H" ' (M, Z/2) = H,®Z/2 (n = even. n # 4, 8).

The embedding of S'"' in @D?*"*!' associated with the generators of
H,M, Z)=n,(M), i=1,..., k, has a canonically trivialised normal bundle.
The map x compares this trivialisation with that inherited from f(S" !
x D"*!). The invariant f§ similarly describes the stable framing of the (n+ 1)-
handles; alternatively  arises in the discussion of C*-automorphisms of N
(part (11) of the general classificatton programme). These two invariants
together determine the stable tangent bundle of the manifold M, since the
Atiyah-Hirzebruch spectral sequence reduces to the short exact sequence

Tangential
* invariants

0 — Hn+l(M’ 71’,,(50))—’ KO(M)— H"(M, n—"_l(SO))—r 0.

Indeed the table below shows (hat, since we exclude values of n
=0, 1(mod8) either » or f vanishes.

The third tangential invariant ¢ arises, because the framing of the
(n+ 1)-handles actually involves a map taking values in the non-stable group
7,(50,); the suspension map is bijective for odd values of n (we exclude n
=7) or if n = 4, 8. For other even values of n the kernel splits off as a direct
summand of order 2, for many of these calculations see the paper of M.
Kervaire [Ke].

The possible values for « and f lie in the groups listed in Table 1 below:

Table |
n a B
2 kZ/2 0
3 0 kZ
4 kZ 0
S 0 0
6 0 0
7 0 kZ

We can now state the main result of [Wal, Theorem 7, page 284.

THEOREM 3.1. If n =>4, n#£ 7, n # 0, 1 (8), the diffeomorphism classes of
almost-closed (n— 1)-connected (2n+ 1)-manifolds KM?*"*' are in (1-1)
correspondence with the sets of invariants A and B defined above. Moreover, if
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M and M’ are two manifolds of the type considered the invariants of the
(houndary) connected sum are the direct sum of those of M, M’

One obtains a theorem for closed, as opposed to almost-closed
manifolds by setting « =0; this amounts to confining attention to
boundaries of the (2n+ 2)-disc with (n+ 1)-handles attached (see [Wa],
Theorem 8). This is a restriction only il n =2, 4.

Remarks: 1. If n=2, 4 (mod&), x distinguishes between different §"*!
bundles over S", if x =0 we have §"*! x§".

2. If n =3, 7 (mod8), f is expressible in terms of the non-vanishing
Pontrjagin class p, . -

3. The non-stable invariant ¢ distinguishes between the product §"*'
x 8" and the non-trivial $"-bundle over $"*', which is the (co) tangent sphere
bundle. The vanishing of @ corresponds to the triviality of TS""'@1.

If n=2 the argument must be modified, see [Ba]. We include this
special case, because it leads to a particularly elegant application of our
methods.

THeOREM 3.2. Two simply-connected S5-manifolds are diffeomorphic if and
only if they have the same 2-dimensional Z-homology groups (plus bilinear
structure). Such a manifold decomposes uniquely as a connected sum of prime
manifolds My |1 < k < oo}, which bound parallelisable manifolds, with possibly
one extra summund X;\j= —1 or 1 <j< ] with w,(X)) #0.

We shall produce models for the manifolds M, below. Among the
manifolds X; only one has a U(2)@1 structure on its tangent bundle (ow,
=0in H’(X;, Z)). This is X, which has an open book decomposition with
typical page equal to P,(C)—D* and identification map h equal to the
identity.

In order to produce examples of highly connected manifolds we consider
smooth actions of S' on M?"*! which are almost free in the sensc that there
is a non-trivial cyclic isotropy subgroup Z/x. We shall suppose further that
M?2"+1/81 = P _(C) and that the projection is the composition of a principal
bundle map and a branched covering map. Let the image of the exceptional
orbits be a hypersurface L of degree J in P,(C), at a point x of such an orbit
the slice representation of the isotropy subgroup Z/x is described by the

matrix
(eZTrl'v/a 0 )
0 lZn— 2

and we may define § uniquely by
O<f<a, (,f)=1 and vB=I1(moda).

By a generalisation of the familiar argument in dimension 3 (see [O-W],
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Theorem 3.15), M2"*! is determined up to orientation preserving equivariant
dilfeomorphism by the integral orbit invariants (é: x, ) with the proviso that
for n even, (d:x, B) ~(6; o, x—p). The total space M*"*! is 1-connected if

and only if | = +(x+4p), and in this case the first non-zero homology group
IS

H (M. Z)x=Z/ax ... xZ)x
N——— —

x(n)

where >0, M =[O -1)"""—(=1)"""/d+(—-1)"" " ([O-W], Theorem 4.9).
For small values of 4 we have the following table:

Table 11
d n. n = odd n = cven n=7
] 0 0 0
2 1 0 0
3 [ PARLE R 2"+ —1 2

Thus M?** ! is a homotopy sphere if and only if d = 1 (6 = 1 or 2) for n odd
(n even).

Now consider the Brieskorn variety
Wdgs. .o tdper) = 2 C2 f@) =20+ ... 4200 =0l n§2m+3,

There is an S'-action on V induced by r(zo,...,z,,H)=(rd/a°zo,...

dfu % . .
cou f "l o) for teC*, d =lem. (4qq -.. a,, ). which gives V the struc-

ture of a Seifert fibration. Note that for unrestricted values of a, ... a,y,
there may be more than one non-principal orbit type.

It is easy to verify that the (2n+ 1)-dimensional C ™-manifold
Vidg,..., d,+,) admits the contact form

‘n+ 1
) =%i[ > l(:jdfj—fjdzj)J (see [L-M]).
j=04;

Now consider the special case aq=2k+1, ay=da; = ... = apyy =2, for
which the orbit space is known to be P,(C) (compare the argument on page
158 of [O-W]), and for which the S'-action has a single non-trivial isotropy
subgroup Z/2k+1. The non-principal orbits project to the points of a
quadric hypersurface, that is 6 = 2. It follows from Table II that if n is even
V(2k+1, 2,...,2) is a homotopy sphere (bounding a parallelisable 2n+ 2
manifold). We have proved

TheoreM 3.3. The homotopy sphere 22" 1 = V(2k+1, 2,..., 2) admits a
contact form. If (2k+1)= +1(mod8), we obtain the standard sphere, if
(2k+ 1) = +3(mod 8) the Kervaire sphere.
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More careful analysis shows that the forms on the standard sphere may
be distinguished by the reductions to U(n)@®1 which they induce on the
tangent bundle. Recall that the complexified tangent bundle defines a class in
T2+ 1 (BU,) which is cyclic of order n!

If nis odd, V(2k+1, 2,..., 2) has nth homology group isomorphic to
a single copy of Z/2k+1 (see Table Il again). Using the language of the
classification theorem (3.1) we distinguish between two cases:

(1) Lagv1, Hy(Lyg+y) = Z/2k+1 and 1P1+—c¢/2k+1, ¢ a quadratic
restdue modulo (2k+1), and

() Lypyys Hi(Lyy+y) = Z/2k+1 and 1®@1+—c¢/2k+1, ¢ a non-residue.
Furthermore we have the relation Ly, #Ly ., = Lopy #Lg 1. By ex-
amining the cup product in N""! of the complex hypersurface defining V
one sees that 1®1 = —((—1)/2k+1)"* "2, From this one concludes that if
(2k + 1) equals the odd prime power p’, then

(1) n =1(mod4), L(pH =V (p', 2,..., 2), and

(iv) n=3(mod4), L(p)=V(p,2,...,2) (p=3 (mod4)), and L(p")
=V(p', 2,....2) (p=1(mod4)).

These assertions follow from the fact that for p=1(mod4), —1 is a
quadratic residue, and for p = 3 (mod 4) a non-residue. In the former case the
parity of $(n+1) is irrelevant.

Remark. The manifolds L, ., L5 .; are only well defined up to
homeomorphism, since we can form the connected sum with a homotopy
sphere without changing the homology structure.

4, The Main Theorems

In order to use the classification theorem (3.1) for closed manifolds we shall
assume that the tangential invarniant x =0. In the special case n =2
(Theorem 3.2) this implies that w, (M) = 0, so we exclude the manifold X .
Moreover since the result in this limiting dimension motivates our entire
argument we state it first.

THeorem 4.1. Let M> be a Y-connected 5-manifold such that w,(M) =0
and H,(M, Z) contains no element of order 3. Then M> admits a contact form.

Proof. Up to diffeomorphism M? is classified by H,(M, Z), hence it is
enough to construct a manifold carrying a contact form with the same
homology group. Since S* is a group, its cotangent sphere bundle equals S
xS§? and is contact by section 2 (1). Inspection of Table II shows that
V(p, 3,3, 3) has Z/p" as non-trivial 1sotropy group, that the non-principal
orbits map to a cubic curve in CP(2), and hence that

H,(V(r',3,3,3), Z)=Z/P" xZ/p", p+#3.

Since the pairing b(-,-) is skew-symmetric, il Z/p" occurs in H,(M, Z) it
must occur an even number of times. Hence V(p', 3, 3, 3) represents the
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prime manifoid Mp,. By hypothesis M,, does not occur in the prime

decomposition, and the result follows from the connected sum theorem (2.3).
One can say something about the prime 3. The Orlik—Wagreich formula
for »x(0, n) shows that »x(4, 2) = 6, and hence that

V(3,4,4,4) =3M,,.

This suggests that there 1s no essential obstruction to the existence of a
contact form on any l-connected M> with w,(M) =0.

It 1s clear that the same method will work in higher dimensions. The
following result is the easiest to state, although it is a long way short of the
most general one can obtain.

THEOREM 4.2. (i) Let n = 5(mod 8) and let M*"*! be un (n— 1)-connected
odd torsion manifold. Then M?"*! is homeomorphic 1o a smooth manifold
admitting a contact form, provided that each prime manifold of the form lip,

occurs an even number of times.

(i) Let n = 6(mod 8) and let M*"*! be an (n— 1)-connected manifold, such
that H,(M, Z) is torsion free. Then M*"*' is homeomorphic to a smooth
manifold admitting a contact form.

a

Proof. The congruence class of n ts such that « = § = 0. The invariants
in case (i) reduce to the odd torsion group H,(M, Z) plus its quadratic
structure, and we can realise M up to homeomorphism as a connected sum
of Brieskorn varieties. Now argue as for n = 2. In case (i) the invariants
reduce to the torsion free group H,(M, Z) and the non-stable tangential
invariant ¢. Again we may take the connected sum of Brieskorn varieties;
since n 1S even, we have
yin+t1(2,2,..., 2) =(cojtangent S"-bundle to $"*!,

Varig, 2,...,2)=8" xS,

These identifications are due to L. Kaufmann [Ka]. We must restrict to
homeomorphism in both cases, since taking the connected sum with a
homotopy sphere does not alter the algebraic invariants.

If n =6 (mod8&) we can pick up some torsion manifolds. Thus if p # 3,
Vg, 3....,3) has H,(V, Z) isomorphic to $(2"* 1+ 1)—1 copies of Z/p’, and
as in the case of dimension 5 by taking a, = ... =a,,; =4 we can also
derive some information at the prime 3. From the point of view of
integrability in general it is perhaps important that for each prime number
some torsion manifold admits a contact form.

5. Concluding Remarks

It should be clear that the theorems stated in the previous-section are
provisional in that they provide evidence for the conjecture that all (n—1)-
connected (2n+ 1)-almost contact manifolds admit a giobally defined form.
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The first task is to complete the theory in the case « = f# = 0 (and H,(M, Z)
contains no elements of order 2). For this we need a good geometric model
for 8" xS8""! (n = odd) corresponding to V (8, 2,..., 2) (n = even), and some
sort of converse to Theorem 2.3 to enable us to split a composite odd torsion
manifold in such a way that the Brieskorn form induces contact forms on
each component of the connected sum.

If the stable tangential invariants are non-zero, tne theory ol almost
contact manifolds seems to go as follows. The obstructions to reducing the

SO(2n+1
structural group ol the tangent bundle belong to H“( N (ﬁ \
Undl
s =nor n+ 1, and since both homotopy groups are stable we can use the Bott
: 0]
isomorphism (see [Bt], p. 315), =n,_, (U) =~ n1,(0). Modulo 8 for the

homotopy groups of O we have:

Table Ii
] 3 A 7 0 2 4 6
n, Z]2 VA 0 Z n, £J2 0 0 0
S 0 0 0 Z/2 Taey Z/2 Z 0 Z
n = odd 71 = even

Again neglecting 2-torsion the obstructions vanish for n =0, 1, 4, 5 (mod 8),
and comparing Tables I and II1 for n = 6 (mod 8) also. For n = 2 (mod 8) we
need to interpret an element in H'"' ( , Z) and for n=3,7 (mod8) an
element in H"( , Z). Recall from the discussion in Section 3 that KO (M) is
defined by the short exact sequence

0— H" ' (M, n,(S0)) — KO(M)— H"(M, n,_,(S0)) - 0

with a similar sequence for KU (M) (replace SO by U). Also in the non-
exceptional case, n # 0, 1 (mod8), at least one of the invanants a or f
vanishes, and we need consider only the left or right hand term. We have

KU (M) > KOM)
n =2 (mod¥)
I¥ |t
H' M Z) —— » H"(MZ]2) % ™Mz
and
H"' (M 2) ——=— > KUM)
n=3,7 (mod8§) l l

feH™ M Z) — = = KO(M)
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where & is the Bockstein map associated to the coefficient sequence 0 — Z
— Z — Z/2— 0. Recall also that /3 is expressible in terms of the Pantrjagin
class  p+1ya(TM), and that the Pontrjagin classes of the real bundle
underlying a complex bundle are even. We now have enough information to
deduce that
n=2(mod8): M**! is almost contact if 0 =déw,c H""'(M, Z) (this is
well known if n =2, compare [Gr] and Theorem 3.2 above), and

n=3,7 (mod8): M**! is almost contact if the tangential invariant B is

even.

I do not know whether this is always the case, it is so if n =3, 7, but these
are cases not included in the general classification.

The problem now is to produce models for the prime manifolds with
non-trivial (stable) tangential structure. One possibility here is to describe
such manifolds as open books —this works well in dimension 5, see [A'C], and
the construction of Thurston-Winkelnkemper in dimension 3 at least
suggests a procedure for constructing a contact form.

The third task is to handle 2-torsion. In the non-exceptional case the
programme outlined is probably enough, but for » =0, 1 (mod 8) some new
idea may be needed.

A final remark about non-simply-connected manifolds: here in
dimensions greater than 3 hardly anything is known. One can produce
examples of contact forms on S'-bundles over integral symplectic manifoids,
and R. Lutz has a method of construction for principal bundles fibered by
tori, including T° (see [L]).
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