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1. Introduction

In the numerical solution of differential equations it is useful to generate lower
and upper bounds for the desired solution. The problems under consideration
are weakly nonlinear two point boundary value problems. It is possible to
introduce special discretization techniques generating bounds by means of
monotonicity -principles. More precisely, the proposed approach takes advan-
tage of weak maximum principles leading to operators of monotone kind. In
contrast to other approaches it is not necessary to use a priori information or
correction terms based on estimations of the local error.

In the present paper we summarize the results from [2], [3], [4], [6]
supplemented by some new considerations. '

2. A first order method
Let us consider the weakly nonlinear boundary value problem
(2.1) —u"+g(-,u)=0 in Q=(0,1),
u(0) =u(l)=0,
under the following assumptions on g: & xR — R:

(22) (i) g(x,s) <g(x, 1) for all xeQ and s <1;
(i) g is a continuous function.
Let us denote by U the Sobolev space H} (0, 1), by U* the related dual space

and by (-, > the dual pairing between U* and U.
Introducing the operators L, G: U — U* delined by

1
(Lu, vy:= [u'v'dx,
0

{Gu, vy:= [g(x, u(x)) v(x)dx

O ey =

[257]
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we formulate (2.1) as an operator equation: Find ue U such that
(2.3) Lu+Gu =0.

Under the proposed assumptions problem (2.3) admits a unique solution, the
operator L+ G is strongly monotone and of monotone kind.
Now let be given some grid on the interval [0, 1], Le.

O=Xxp<Xx; <... <xy_1<xy=1.

The corresponding step sizes and subintervals we denote by h;:= x,—x;_;,
Q= (x-1, X;), i=1(1) N, the mesh width of the grid is characterized by

;= max h;.
1<isN

In the sequel we concentrate ourselves on generating upper solutions. We
call an operator G, U— U* bounding operator if the inequality

(2.4) Gvz= Gy for all velU

holds. It is possible to construct bounding operators using
(2.5) G,:=P,G with w= P,w for all we C(Q).
We obtain a first order method by setting, for instance,

(2.6) [P,w}(x):=ming (¢, w(§)) for xef, i=1(1)N.

eld;
Our approximate problem is defined by: Findu,e U such that
(2.7) L“,‘+Gh uh = 0.

If G, is defined by (2.5), (2.6) one can interpret (2.7) as a C*-collocation method
or as a three point difference scheme. To explain these facts let us introduce the
representation

N—1

2.8) )= Y o)+ T Wi ()

i=1 i=1

with (u, is piecewise quadratic because P,w being piecewise constant)

| (e=x;-1)/hy, XEQ.‘:
P;(x) =9 (Xie 1 — X his (s XEQ:H,

0 otherwise;

W) = {%(x_x"_l)(x’_“)’ xed,

0 otherwise.
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Then, our approximate problem (2.7) is equivalent to the C!-collocation
method

(2.9) u,eC'[0, 1], [Lu+Gul(&)=0, i=I1(1)N,
where the collocation points ¢, are defined by

g(f,-, uh(‘f.‘)) = ming(ﬁ, W(é))

&y
The corresponding three-point difference scheme is characterized by

(2.10) —Dyu+ g, (g, Uy, Ui ) =0
with
. 2 Ui—1 1 1 Uiy
Du=——— —= ik}
O Du m+mﬂ(hi Qﬁ%H)”+mH)
(2.11) L L
@) g,= —hi+_;1i+1 w; (4~ 1, ui)—r_{j%ﬂ’le (u;, Uiy 1)
and
W.‘(ui—n u,-)

x;—¢&, Ei—xi—y 1 ‘ _
h +u; I +Wi§(€i_xi—1) (xi—éi)) = 0.

! 1

+g( i Ui—

Now, let us assume
212)  lg(x, s)—g(y, ) I (x—y|+[s—t]) for |s|<r, <,

where I: R* - R* denotes some nondecreasing function. For the method
defined by (2.7) with (2.5), (2.6) we proved in [2]

THEOREM 1. There exists an h* > 0 such that the discrete problem for all
he(0, h*] admits o solution, further the relations u(x)< u,(x) and
llu—u,l|| < Ch are valid:

Here and in the following ||| - ||| denotes the maximum norm. The proof of
Theorem 1 is based on the strong monotonicity and inverse-monotonicity of
the operator L+G.

The definition of the operator P, according to (2.6) is connected with some
trouble in the implementation of the method. But, of course, it is possible to
define P, in some special cases in a more suitable way taking into account
special properties of g(x, u). Let us assume, for instance, that the function
g admits the representation

@) 90x, 1) = e(9)+f (9

with some Lipschitz-cohtinuous, monotone function f(-).
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We denote the finite dimensional space of all functions v,(x) of the form

N—-1

(2.14) 0, (0 = Y v+ 3 wihi(x)
i=1

i=1
by V, and define a mapping from V, into the space of piecewise constant
functions using

(2.15) [Pv,](x):=e;+f (1) for all xe®,
with

e,

t

N

e(x) on @, le(x)—el<Ch, for all xe&,
b= min (vl'— {s v,)+%min(0, Wi) h?

Further we define a mapping n: C[0, 1]- V, by

N-1 N

(2.16) [ry] (x): = .Zl v,-(,t),-(x)—l-z1 w, (%)
with

v, = y(x),

W, = fi(y(xi—uz)" J’(xi)+Y(xi-—1))

h; 2

(xi—1,2 is the midpoint of Q). Finally, a “bounding operator” is defined by
(2.17) G, = Pxn.
The new “bounding operator” (2.17) only fulfills
(2.18) Gv, =z G,v, for all v,eV,,

but this property allows us to prove that u,(x) is an upper bound of the exact
solution because from

(U, V) +(Guy, 0) =((G—Gyuy, 8) =0 for all v=0
it follows u,(x) = u(x).
Similarly, it is possible to transler all other parts of the proof of Theorem

1 to our new bounding operator, thus the new discrete problem admits
a solution, too. An error estimation is based on

llu—uylll < CNGuy—g (-, ulip=,

and it is not difficult to show that (2.14), (2.15) result is a first order method.

3. The application of the first order method
to a singular perturbation problem

Of course, it is also possible to analyze our discretization method, described
by (2.7) with (2.5), (2.6), in the context of a finite difference method.
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We shall do this for the singularly perturbed boundary value problem
(3.1) -2 +g (-, u)=0,
u0)=u(l)=0

additionally assuming (0 < & < 1))

(i) gecC?,

(3.2) )
(i) 0<p><g,0xu)<B.

It is well known that now the solution u belongs to C* and that near the
boundaries boundary layers exist.
For the consistency error we have

(3.3) [ el < Ke? (|hig g —hyf [ (x|

+max (h?, h%, ;) max [u® (s)|)

SE.(—) i

+ K max (h;, h;;+ ;)max | (s)].
.TE.Q.'

(we denote by K some constant which is independent of ¢ and h).
In contrast to the usual discretization method
(3.4) —&* Dy +g(x; u) =0

the difference scheme (2.10), (2.11) applied to our singular perturbation problem
is not stable uniformly in &. This is due to the fact that the partial derivatives
dg,/0u;—,, 0g,/0u;_, are not negative and thus, in general, the system (2.10)
does not correspond to an M-function. But in the special case

(3.5) h<./2/Be

the theory of M-functions is applicable and the discrete problem is under this
restriction uniformly stable with respect to the parameter.

The consistency error is not uniformly bounded in & because the
derivatives of the exact solution grow unboundedly near x =0 and x = | as
e tends to 0. For the derivatives it holds the estimation

(3.6) [u® (x)] < K(1+&7*(exp(— fix/e)+exp(— B (1 —x)/e)).

It is possible to bound the consistency error uniformly by using a special
discretization mesh. Let us use the grid generating function due to Vulanovic

[12]

W (t):= Aet/(g—1), te[0, 1],
(3.7) A=< n@):=y@+¥'@e—1, refr1],
1—-A(1—1), te[%, 1],
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where g, A are constants with ge(0, 1 Ae(0, g/e), t satisfies

(3.8) t = (q—(Age(1—2q+246))' )1+ 24e)
and define the special grid by
(3.9) x;=Alt), t,=1in* i=0(1)N, N=2N,.

In [12] it was shown that the consistency error for the approximation of u” (x,)
admits the order 2 uniformly with respect to ¢ and that the estimate.

max (h;, by )e7 ! < Kh*
holds. Thus, we have

THEOREM 2. Let us apply the first order enclosing discretization technique
described by (2.7) with (2.5), (2.6) to the singularly perturbed boundary value
problem (3.1) under the additional assumptions (2.3). Let us use the special grid
defined by (3.7), (3.8) and assume that ¢ is not too small, that means, h < J?./_Bs.
Then, it holds

lllu—wlll < Kh*

where K does not depend on the parameter e.

4. Higher order methods

To generate higher order methods it is necessary to improve the approximation
properties of the operator G, (respectively Py, if G, 1s defined by (2.5)). In [4] we
described such bounding operators G, defined by (2.5) using piecewise
interpolation and shifting to define P,,.

Let us choose some natural number k > 1 and define

P, = {veL,(0, 1): v|,, polynomial of degree < k}.

We use an equidistant auxiliary grid on every subinterval Q, given by

o= X+, = 0(Dk,
and define a piecewise interpolation operator S,: C[0, 11— @, by S,ulg
:= interpolation polynomial of u with knots o} (j =0(1)k). Further we
introduce the operator p: C[0, 17— £, by

(4.1) [pw](x):=minw(£) for all xeQ,
gy

and deline

(4.2) Py=8,+pI-S5))

(I 1s the identity).
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It is not so easy to prove that the generated discrete problem (2.7) admits
a solution. In our proof we used the theory of pseudomonotone operators [4]
and an auxiliary variational inequality [ 5], respectively. The convergence proof
works like the convergence proof for finite element methods. Analogously as
for collocation methods, we obtain the following result:

THEOREM 3. There exist an h* > Q such that the discrete problem for all
he(0, h*] admits a solution. If all partial derivatives of order less or equal to
k+1 are continuous on €, for i = 1(1)N then it holds the error estimate

e —uylll < Ch*+1.

The numerical experiments meet the theoretical expectation [4].

5. Grid generation via enclosing discretization

In this section we propose a principle for the generation of grids using
information from the lower and upper solution. The basic idea is to subdivide
these intervals where the difference between the upper and lower solutions is
relatively large.

Let some initial grid Z'={x!: i=0,..., N,} be given. The related
subintervals we denote by Q! and assume k(Z') to be small enough that the
discrete problems possess a solution. The algorithm under consideration
generates a sequence (Z*) of grids. The bounding operators on the grids Z* we
denote by G*.

Algorithm

Step 1. Let some initial grid Z' be given. Select some g€(0, 1) and set
k=1

Step 2. Determine u*(x), #*(x) by solving the corresponding discrete
problems (2.7) (with G*, G* instead of G,).

Step 3. With the notation

db: = mai((ﬁ"(x)—y;"(x)) (i=1,...,N,),

xefdy

D*:= max d¥

1<is Nk
I:={ie{l,..., N,}: df > oD},
yii=g0do +xh) (el
define a new grid by
VARNE ARSI A
Set
Nyyy = Ny +cardl,
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and denote the grid points contained in Z**! by xf™' (i=0, 1,..., Ny,
Reset
knev . — kold+1

53 Fo to step 2.

In [3] we succeeded in proving the following

THEOREM 4. Let us suppose that in step 2 of the algorithm above the first
order method characterized by the bounding operator defined by (2.5), (2.6) (and
the corresponding operator for lower solutions) is used. Then, the functions u*(x),
i*(x) generated have the properties

) Syt < ux) < @t (x) < a*(x)  for all xe[0, 1],

Lim [l (x) — * ()| = 0.

k=
In numerical experiments we obtained improved error bounds using the
grid generation algorithm in connection with higher order methods in step 2,
too. However, the theoretical foundation of the fcedback grid generation
cannot be carried out similarly to the f{irst-order technique. The proof of
Theorem 4 is based on the [ollowing two statements, First, for the first-order
method it holds: From v, we C'[0, 1] and

Lv+ G0 < Lw+Gyw,
v <w(0), o(l)<sw(l),

it follows v(x) € w(x) for sufficiently small h. And, second, [or the first order
method an enclosure u, < u < i, 1s sharpened using a finer grid. It is an open
problem whether or not higher order methods preserve these properties.

6. A second approach to enclosing discretizations

As in Section 2 we start from the formulation of problem (2.1) as an operator
equation: Find some ue U such that

6.1 Lu+Gu=0.

In contrast to the discretization technique described above we now shall
formulate an iteration process of the form

(1) (L+D)u**! =s*
(i) ! =min(s", QuttY)

using some auxiliary operators D, Q such that {#*} converges monotone to an
upper (lower) solution of the original problem (6.1). This iteration process is
similar to the technique of Sattinger [10]

(L+ol)d**! = (oI — G) i

(6.2)
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generating a monotone sequence but we propose a modification which is
numerically constructive.,
First, we define the operator D by

(6.3) [Dw]l(x):=d;w(x) for all xeQ,

where the nonnegative constants d; are to specify in such a manner that the
required property of D — G is fulfilled. Now we choose some finite-dimensional
space W, of the type

(6.4) W, = {weL,(0, 1): wlg, polynomial of degree < I}
and define
(6.5) V,=(L+D)!

We choose s°e W, u®e ¥, and define Q to be a mapping Q: V¥, —» W, which
satisfies

(6.6) Qw=(D-G)w for all weV,.

More precisely, we need initial values s°, u° and °, 7° for the iteration process
generating lower and upper solutions, respectively. Let us suppose

0 u <’
67 (i) (D-Gw, < (D G)w, for dll w1 » with ¥ <w, <w, <%
i) (D=6 a® <50, (D=G)u® > °

iv) (L+D)ia° = 3% (L+D)u® <s°.

As above we only state the following theorem from [6] concerning the
sequence {i,} which tends to an upper solution. We omit the bar in the
notation again.

THEOREM 5. Under the assumptions (6.6), (6.7) the iteration process (6.2)
generates a sequence {u,} with the following properties:
0) sy Sy < .0l S ug;
) {w,} tends to some {@} in H'(0, 1) and C[O0, 1];
(iii) For the limit function i it holds d > u and

(6.8) i —ull < CIIQE—(D—-G) il .

The realization of this second approach to enclosing discretizations
strongly depends on the concrete definition of the space W, and the operator Q.
One expects a first order method in choosing W, to be the space of piccewise
constant functions, a second order method by choosing W, as the space of
piecewise linear functions and defining Q in an adequate way and so omn.

In the first case it is cobvious to define

(6.9) [Ow](x):= max (d,w(&)—g (&, w(&)) for all xe,

tefly
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Similarly as in Section 2 it is possible to make the method more practicable
under special assumptions on g. Let us assume again

(6.10) g(x, u) =e(x)+f (u)

(compare (2.13) and the following statements). Now we have the advantage that
it is only necessary to define the operator Q on V. All functions from ¥, admit
a representation

N—-1 N
(6.11) y(X) = ¥, v 0¥ () + ), wi(x)
i=1 i=1
with
sinh (/d, (x—x;-,))/sinh (\/d; h,) for xe(,,
(i)  ¢@f(x) =< sinh (\/ di+l(xi+1_xl))/sinh( div1hivq) for xeQ,y,
0 otherwise;
6.12
( ) (1"4"?‘—1(3‘7)_4)?' (x))/di for xe @,
(i) o (x) = ,
0 otherwise.
Then, it is adequate to define
(6.13) [Qu ) (Q):i= —e;+d; pff(uF) for all xeQ,, v,eV,
with

w¥ = max (v;_,, v) +§max (0, w) k.
The proof of Theorem 5 shows the validity of the estimate
(6.14) 52 (D-G)uk*1.
Therefore, we could formulate the iteration process (6.2) with (6.9) in the form
(i) (L+Dyu**' = sk
(i) st*1 = st—min (st~ (d " (©)—g (&, w1 ().

el

(6.15)

(s* denotes the restriction of s* to Q).

For generating a second order method we choose W, as the space of
piecewise linear functions and use again the idea of the reformulation of the
iteration process in the form (6.15). Let us define &; by

S?(éi)—[diuk+l(§i)'—g( i qu(éi))]
= min {sf ()~ [d; ¥~ (&) —g(£, u* T ()]}

Eel;

Further we denote by fi'(x) the linear interpolant of d;u—g(-, u(-)) with
respect to the gridpoints x;_, and x;, and by t;?(x) the linear function on
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(x;_y, x,] which passes d,u—g(-, u(-)) in x;—, or x; (if §, = x;~, or §, = x),
majorizes diu—'g(-,u(')) over the interval [x;_;, x;] and is tangent to
d;ju—g (-, u(-)) in some point. Using

ta (x) i £5! (x) majorizes diu—g(-, u(-))
th(x) = over the interval [x;_;, x,],
th?(x)  otherwise,

we define the iteration process
(i) (L+D)yu**! =

(6.16)
st () —min [sf () —(du* "1 (&)~ g (&, u**+1(9)))]

(i) ¢+ (x)= geld; if €,e€,,

fhper 1 (%) if & =x;_, or £ =x;

Now, again Theorem 5 holds and from (6.8) we obtain the second order
accuracy of the approximation of # to the exact solution with respect to A.
A more practicable version of a second order method is described in [6].

7. Concluding remarks

In our paper we did not speak about the numerical solution of the auxiliary
problems generated by the enclosing discretization principle of Section 2 and 4.
Special iteration methods have been developed in [5].

The extension of enclosing discretization techniques to partial differential
equations leads to significant troubles because no explicit representation of
L' W, for the function spaces W, used above is available in the multidimen-
sional case.

Some progress has been achieved in extending our enclosing discretization
methods to 1 — D linear parabolic problems [7], [9] using a modification of the
Rothe-method for the discretization in time.
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