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Introduction

In this paper the following self-adjoint eigenproblem on a Hilbert space V
is considered:

(1) find xR and 0 #= % e V such that
b(u,v) =pu(u,v) VoveV.

This problem is approximated by a family of eigenproblems on
finite dimensional spaces V,:

(2) find u, e R and 0 %%, € V, such that
bu(tn, 03) = pn(Upy v)y, V0 € Vs

There are many papers concerning approximation of the problem (1).
Their results are based generally on internal [3] or nonconforming [4]
approximation of the space V for primal or dual formulation of the eigen-
problem. In this paper a different approach has been applied. We present:
some sufficient conditions for a convergent approximation of the problem
(1), i.e. we give sufficient conditions for convergence of solutions of an
arbitrary family of finite dimensional eigenproblems to the solution
of the problem (1). The proof of convergence is based on the minimax
Poincaré’s characterization of eigenvalues [7]. However, on this way we
have no error estimation. Some error estimations presented in the paper
are based on the Canuto’s ideas [1] and obtained by assuming that the
considered approximation has some additional properties for eigenfunc-
tions of the problem (1). The Sturm-Liouville problem approximation
illustrates the theoretical results of the paper.

[6698]
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1. Formulation of eigenproblem and its approximation

Let V be a complex Hilbert space with a scalar produet (, ), and let b:
V xV—-C be a continuous sesquilinear hermitian form. We consider an
eigenvalue problem of the following form:

(1.1) find peC, 0 #=u eV such that
b{w,v) =pu-(u,v) VoeV.

Since b(u, v} and (u,v) are hermitian forms, the eigenvalues of (1.1)
are real, i.e. u € R.

Let us concentrate ourself on approximation of eigenvalues of (1.1).
Suppose that a family {V,},., of finite dimensional spaces is given. It
should be emphasized that V, is not assumed to be a subspace of V.
The scalar product of ¥V, will be denoted by (, ), and the norm by [ |,.
Let YVhes# b,: V,xV,—~C be bounded sesquilinear hermitian form,
We consider the following approximate cigenvalue problem:

(1.2) find 0 = u, eV, and g, € R such that

by (%5 05) = iy (Ug, M) Vo, eV,

We will assume that oato
HI1. V & there exists a linear map»,: ¥V —> ¥V, such. that

llryll < 79 < o0, for some constant r,;

H2. VYueV |rul,—ul as h—0;
B3. YueV b,(ryu, r,u)—>b(w, ) a8 h—0;
H4. there exists a topological complement 9, of the null space N (r;)
of the operator r;, i.e. N(r,)@M, = V, such that
bp(rate, vpu) —b(u, u)

(1) &, -3 sup -0 as h—0;

ey, e ?

. af || — ||y U
) (L — ) & sup L el
wam,

Let us note that assumption H4 (ii) is equivalent to

—0 a8 h—>0.

ax . o lrpull
a, = inf ——~

-1 as h—0.
uely, [l

In the next section of the paper we will prove a convergence of eigen-
values of the problem (1.2) to the suitable eigenvalucs of the problem (1.1)
under the above assumptions. Now, we present some remarks concerning
introduced assumptions and formulation of the eigenproblems.
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Remark 1. The approximation described above can be expressed in
terms of internal approximation of V. {i,} defined in H4 is the family
of finite dimengional subspaces of V. Moreover,

at -
Qn = rh|mlh"7'n

is a linear projection of V onto M,. If we detine b,: M, xWt,—~C as b,
= b,ory,, and (w, V), = (3%, 139), for u, v €My, then the problem (1.2)
is replaced by the following omne:

find u; € R and 0 # 4, €M, such that

by (il B3) = " (fi, o, V0, €My,
Assumptions H1-H4 can now be formulated as follows:
H1'. |@4ll < 7o/ap < oo (it follows from H1 and H4 (i));
H2. YueV I_Ile[mrh—ﬂluIl;
H3'. VueV b,(Q,u, Quu)->b(u, u);
by (w, ) — b (u, u)

H4'. (i) sup 5 -0 as h—0;
uedy, ”’M”
= el — el
(i) SUp ———— % 50 as h—0.
ueily, ”u’"

In applications the first formulation (without the assumption: V, = V)
seems to be more convenient.

Remark 2. Assumption H4 is a natural generalization of the agsump-
tions of the first Strang lemma (cf. [2], th. 4.1.1). In the case where V, c V
assumption H4 (ii) is equivalent to the following one:

Vo,eV, (o, 0h=alvl® and a1,

It means that the approximate sesquilinear forms (, ), associated with
a family of subspaces V, are uniformly V,-elliptic with the constants
a;—>1 as h—0.

Remark 3. Let A4 and 4, be operators on V and 90, respectively,
defined as follows:

b(u,v) = (Au,v) Vu,veV, bylu,n) = (4d,u, ")y, Y u,velll,.
If we replace conditions H4 by the stronger ones:

1Ba (16, 2) =B (w, )|

Hb. (i) &, = su
R A T ’
R (%, v}, — (%, ?)
ii) 8, = su —=0
) o ety (%, v) ’

8 — Banach Center ¢, XIII
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then it follows from H5 that
—A
sup ((A h)ui'v)
w,velty floa| « 1ol
The similar condition (|(4 —A,,,)lmh||—>0) is amalysed in [3],
Exavpre 1. Let us consider the space H3(0,1) and let

< &+, 14 g, | 0.

1
(u, v) = fu’v’dt.
0
Let r,: Hy—~R,_, where n = 1/h, and
VueH, r,(uw)=[uh),.. ,u(n-1)4)].

In this case
N(ry) = {ueHy: w(ith) =0,4 =1,...,n—1}.

Let
1
Mm, = [u e HinH*: fu’v'dt =0V eN(rh)}.
0
The condifion

1
fu"v’dt =0 VYVoeN(,)
0

18 equivalent to the following one:
in
Vi=1,...,n YweH(({-1)k,ih) [ w”wat =o.
(=1)h

Hence %" = 0 almost everywhere, and

u(ih) —u {(i —1)h) )2 -h
I )

1h
f (w')2dt = (

-1k

Thus V » e M,

(0, 5) = b 2 (u(ih)—uh((i—l)h) )‘*.

t=1

It for v, = [v},...,9"_,] we put

LENYES SR R
(1.3) (’Uh, ’U’L)h - h Z (’D‘l—h'vt;l-) ’ W]lel‘e 'vg = U,}: = O’

fom]

then ¥V ue®, lrpul, = |
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Since Sffth is dense in the orthogonal topological complement AR, of
N(r,) in H}, we have

rawls int Vatlh
ey, [[ll usiy, lleel]

So, condition H4 (ii) is satisfied with ¢, = 1.

Remark 4. Liet V;,and W be linear vector spaces and let A, B: Vo—=W
be two linear operators. Let us consider the eigenproblem
(1.4) A4 = ABu.

This problem can be formulated in the form (1.1) under some addi-
tional assumptions (cf. [7]).

Assume that there exists a sesquilinear form f: W x V,—C satisfying
the condition

C1. if f(w,v) =0 VoveV, then w = 0.

If we define sesquilinear forms a, b: V, xV,—C as follows: a(u, )
= f(Au, ), b(%,v) = f(Bu,v) Vu, veV,, then the problem (1.4) is
equivalent to

(1.8) find 0 % u eV, and 1eC such that
a(u,v) = Ab(u,v) VYVoeV,.
Suppose that
C2. ¢ and b are hermitian forms;
C3. a is positive definite on V,;
C4. de>0VueV, |b(u,uw) <calw,u).

Then ||ul| = Va(u, %) is a norm on V,. Let V be the closure of ¥,
in this norm. Under assumptions C2, C3, C4 the problem (1.5) can be
extended to (1.1) with the continuous sesquilinear hermitian form b: ¥V x
X V—C {ct. [T]).

2. Eigenvalues as successive maxima

For the proof of convergence of considered approximation the represen-
tation of eigenvalues as successive maxima of respective Rayleigh quo-
tients will be used. Such an approach to eigenvalue approximation is
presented for instance in [7]. The Rayleigh quotient for (1.1) is defined by

b(v, ”)]
2.1 R(v) =
(21) ) =T

for veV.

The sequence {u,};., (8 < oo) of eigenvalues of Rayleigh quotient E ia
defined by reccurrent formulas.
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For n =1:

dat
i, = sup R(v).
velV

If the supremum is attained at w,, then we define

dt
fiy = sup E(v).
vV
\ 19_L'U1

In the opposite case the sequence {u,} confains one element u, only.
For > 1:if u;>... > u,_, are successive suprema attainable at

the points 4, ..., %,_,, Tespectively, then
at
(2.2) u,= sup R(v).
ve¥V

If the supremum u, is not attainable, then y, is the last element of the

sequence {u,} and s =%
So, the sequence {u,} terminates if and only if for some # the supre-
mum is not attained or when V is finite dimensional.

THEOREM 1. Let {u,}s., be a sequence of eigenvalues of the Rayleigh
quotient (2.1). Then ¥V n < s u, t8 an eigenvalue of (1.1). Conversely, there
are no eigenvalues of (1.1) above u,, and if u is an eigenvalue of (1.1) that
satisfies pu > u, for some m, then p = u, for some k <n. If dAim¥V = o
and § << oo then u, is the largest member of the essential spectrum of the

operator T: V-~V defined by: b(u,v) = (Tu,v) VoeV.

The proof of Theorem 1 is contained in [7].
In the same manner we can represent each eigenvalue of the approxi-
mate problem (1.2) as an ecigenvalue of Rayleigh quotient

(Vny Vadn

on the space V,. Since dim ¥, < oo, the sequence {u*}2n, of the eigen-
values of B, is identical to the monotonic nonincreasing sequence of all
eigenvalues of (1.2) repeated according to their multiplicity.

The following theorem will play the basic role in the proof of con-
vergence of the approximation.

Let V; and V, be two Hilbert spaces with the scalar produets (, ),
and (, ),, respectively, Let b,(u«, v) and b,(%, ») be sesquilinear bounded
forms on ¥, and V,, respectively. Let u{ > ul) > ... be the eigenvalues
of the Rayleigh quotient b,(w, u)/(u, u); on V; and let u® = u® >...
be the cigenvalues of b,(v, v)/(v,?); on V,.

{2.3) R, (v) =

ToeoreEM 2 (Mapping prineiple). Let S, « V, be a subspace containing
the ecigenfunctions wl,ui, ..., u. corresponding to u, ..., u. Let M De
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a linear transformation from 8, into V, salisfying Mu =0 iff u = 0. If
there exisis a mondecrcasing function f(£) such that the inequalily

by(u, )

2.4) by (M, Mu) >f( L

) (Mu, Mu),

holds for all nonzero w in 8, then

(2.5) 1D = f(uld).
For the proof see [7], Chapter 3.

3. Convergence

Let uy > py>= ... and ul > ub > ... be sequences of eigenvalues of (1.1)
and (1.2) respectively, where cach eigenvalue is repeated according to
its multiplicity.

In this section the distance between Ith eigenvalue of the problem
(1.1) and Ith eigenvalue of the approximate problem (1.2) will be esti-
mated using Theorem 2.

LevmmA 1. Let assumptions H1 and H2 be satisfied. If U, ts finite
dimensional subspace of V then

In, Vhi<hy VO £uel, ru#0.
Proof. Suppose that it is not the case. So,
3 {hj} a {uj} 0 #’Mj e Un Vj 'rhju'j = 0.

Since dim U,, < oo, the sequences {#,} and {4} can be choosen in such
a way that |lu;—u,l—>0, a8 j—>oo, for some u, € U,, |lu,/ = 1. From thig
and from H1 it follows that

"Thj Uslly = ”"};juo"h - ”"hj (u; — o) Iy, = ”"hj'u'n”h — a J|ut; — Uyl
The right-hand side tends to 1, by H2. Hence
350 Vi i sy %yl > O
‘what contradicts the definition of u;.

THEOREM 3. Let assumptions H1-H3 be satisfied. If u; is 1-th etgenvalue
of (1.1) and 1 < s then

1
14-¢

Proof. Let U, denote the subspace of ¥ spanned by the first I eigen-
vectors g, ..., %; of the problem (1.1) corresponding to the eigenvalues

Ve>03h Vh<h, w>py
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B1s -+, . For the proof we shall apply Theorem 2 for V, =V, ¥V, = V,,
8 = U;and M =: r,.Since U, is finite dimensional, it follows from Lemma 1

that
VOozuecl mu%0 for kh<h.

Moreover, by H2 and H3
Vedh(e) Vh<l{e) Vuel,
[yt 7 )y, — (6, )| < &, w),  |By(rpt, 100 — b (%, 4)] < e(u, u).
Thus
(rpty rpu), < (L--8)(u, u),  bp(rye, rpu) = b(u, u)—e(u, w)
and
by, (Thy ¥y%) > blu,w) 1 & .
(Ta%) "o %) (w,u) (L+e) 1+e¢
Thus according to Theorem 2

1 £
1+e 146’
The theorem above does not yet give the convergence of u} to g in

the genceral case. However, it implies this convergence in the special
cases.

w=m

Remark 5. Let us consider the case ¥, = V. Then according to Poin-
caré’s principle {(¢f. [7], Th. 5.1, Chap. 3)
4 = sup min E(v) > sup min E(v).

Scy veS ScVyp vesS
dim S=] dim §=!

From this it follows that

uF— ;< sup min R,(v)— sup min R(v).
ScVy velS Scyy veS
dmS=I dim S§=1

If we assume that R,(v) = R(v) on V¥, (as in the Galerkin method) then

pt —py < 0. This inequality together with Theorem 3 gives convergence
ub—>u; ag h—>0. It is a know result (cf. [5], [7]).

THEOREM 4. Let assumplions H4 be satisfied. If u; is l-th eigenvalue
of (1.1) and 1< s, then
1
—5 (a+e)-

ap

He <

Proof. According to 4 V = N(r,) ®M,,. Let for any h

M, = (rala,) "
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So, M} is a linear one-to-one transformation from ¥ onto M,. By assump-
tion H4 (i)
e Yuell,  b(u, u) > by(rys, r,8)— &, (4, u).
Thus, for % €My,

b(u, ) = by(rn, v, %) . (Fptty T %)y
(%, %) ("h%, TRU, (%, u)

& = ﬂnRh(Th’“) — &

Applying now Theorem 2 for V,=V,, ¥V,=V, 8 =V, and
M = M, we obtain

> ot —
what proves Theorem 4.
COROLLARY 1. If assumptions H1-H4 are satisfied then
Vedn Vi<h,
~ (-;—m++:) < —m< (73;2- —1) o+ %
COROLLARY 2. If A; = 1/uy, A = 1/ud then under assumptions H1-H4
Yedn YVh<h,

% (@—1)— ey < < e(1+24,)
1+ensy

4. Error estimates

In this section we assume additionally that b, are uniformly bounded, i.e.
3 y >0 V ‘Mh € Vh
1Dy (2, Un)] < lfiag -

Let w; eV, |yl =1 be an eigenvector of (1.1) corresponding to u;.
Moreover, let u} e V,, |u}l, =1 be an eigenvector of (1.2) correspond-
ing to ul'.

For each eigenvector u, we define P,w; € V), as follows: P,u; is the
solution of the equation

1
(4.1) (Patizy Vpp = 7‘7 ba(ratty, ) Y vpe V.

The term ||P)u;— 1%, will be applied to estimate a distance between
the eigenvectors % and 4 in the discrete norm |u}—7,u%/, and next
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for an estimation of |p;—u}|. Let us set

by (Thyy 74,0) — b (ug, v)
4.2 & = gup ——2 -
( ) : UEEWI; ””” ’
(4.3) = sup (y, ©) — (rn g, T4 0)a
- l _—

velly, Il
LeMmA 2. If H4 (ii) s satisfied, thew

1 1
1Pty — rpthylly < — ("7;"]' — 3?)
ay, t

Proof. Let

ar -
w} = ("% [my) Y Py — 13 %)
From the definition of P, it follows that
(Pt — 7320, Pty —13%)

n h .
= (g, W) — (7%, TR W+ (Pr iy T3070 — (2, W}

1
< ”7?“’“’?" + -I-‘—l (bh("'h‘“n "h'w?) — b (uy, ’w?))

1
< (ni'+ — ei‘) ]
Hi
From assumption H4 (ii)
1
Vwedl lwl<— [rwl.
ap,
Thus
h 1
oyl < — 1Py % — 73 %Iy -
ap

Finally we have

1 1
I|P,,u,—rhu,|[§ < - (n?‘—l— —;‘—- af”) WPy g — 75 %l
h 1

what proves Lemma 2.

For the sake of simplicity we shall only consider the case of simple
eigenvalues. The idea of proofs of following theorcms is the same as in [1]
and based on the hypothesis that there are no eigenvalues A» — 1/u} for
k #1 and h < h, in the sufficiently small neighbourhood of A, = 1/y.

In the same manner as in [1] the results can be extended to the case

of eigenvalues of multiplicity greater than 1.
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THEOREM 5. Let u; be a simple eigenvalue of (1.1) and 1 < s. If assump-
tions H1-H4 are satisfied, then

2
(4.4) gty — 21l < (2 + Zd—z) lIrntlg —Prstglly + [[laglt — Il tela] »

where 0 < &, < |4 —A VL

Proof. The idea of the proof is the same as in [1]. Since (1.2) is a self-

adjoint eigenproblem on finite dimensional space V,, the orthonormal

sequence {w}}®) (r(h) = dim¥V,) of eigenvectors of (1.2) is a base of

V3. Thus
r(le‘)
(4.5) Potyg = D (Pyug,y ul)y-ub.

{e==]

Let us write af = (Py 44y 4),. The suitable choice of the sign of «; in-
duces af > 0.
According to definition of P,

1
(Lpgy ’“'?)h = 'ﬂ— by, (ray, ‘”’:") .
1

Since
ba(ry gy u8) = pif (ratiay D,
we get
A (Pry, uly = Ay(rytig, 97)y.
After subtraction of the term 4 (P4, '), from the both sides we abtain
(A —20) (Prug, udly = Ay(r0 —Pytigy 47

So, by the above relation it follows from (4.5) that
r(h)

i 2
Py 2 — el ul|i = Z ( : ) (Pt — Pty u}).

A—2
N A
il

Since for ¢ %1 |A}—4,| > d;, we have
PR )
2 ! . A
HPh”z”‘a?’"%”hé‘Ef §, (1% —Pp oy, (4H
1
Tl

and by the Parseval equality

ﬂ 2
(4.6} VPho — afulls < (-(71-) Ittt — P atylln -
1
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Now, in order to obtain (4.4) we use the inequality
lratey — il < N — ol uill, + laf =11
Since
lef —1| = |lla}uilln, — lrn ualln + lrn2eglla —1|
< llof u} —ratiglls + [lira gl —1/
“we oObtain
Ny 2 — 4 ln < 21l %0y — P ttylly -+ 2 1Py 24,— a0l 4 |llry 24,1 ~1
and by (4.6) it follows from this that (4.4) holds.

TarorEM 6. If u; is a simple eigenvalue of (1.1) and assumptions
H1-H4 are satisfied, then

(4.7) |y — #;”I < {a ”7’};% — Pl + B |||‘“1|| — ||7'h“l”h|}:

1 — firaty— w1l
-where a, f are constants independent of h.
Proof. Since
pey (P vy Pptlg)y = by (1 1%;)
Aand
B (o )y = by Uy ra),

“we have

by (raty — Uy %) = p(Ppthy—ul, oty (e — w) (U7 77,0
Assuming that (4}, r,%), # 0 we get
1

h 3 h
Br— W = 35— [a (7n %y —uyy Trtey) — sy (Pp g — w0y 74%),].
(% y Th )y, ,

Since
A h o, 13
(%7 y Fatigdnl = L (g y 7% — %7 )| = L— |l u; — ulll,

.and b, are uniformly bounded, the following inequality holds:

[(y - mag) 19y, — “?”h + [Py — v tlia ]

b — | <
S A

Now, applying (4.4) we obtain (4.7).

5. Example

Let us consider the Sturm-Liouville problem
—(pw')’ = 2u,

#(0) =0, «(1) =0,



EIGENVALUE APPROXIMATION bT71

The variational formulation leads to the following problem:
(5.1) find ueR and 0 ## u e Hy such that

b(u,v) = u-a(u,v) VoeH;
where
1

1
a(u,v) = [p@w @)v' @)dt, blu,v) = [u()v()ds.
0 0
If 0o<a<p(l)<f< oo and p € H(0,1), then a(w,») is a scalar
product on H; which implies the norm equivalent to the norm of Hi.
The form b is bounded on Hj.
Let us consider the approximation of Hy described in Example 1.
Let scalar produet (, ), on R** (n = 1/k) and form b, be defined
as follows: for

U= (Ugy eiyUy1)y O =(Vy.yy), uveR

we put %, = %, =9, =9, = 0 and

n
U — U, Vi— Y
(u, o), = b ) p St
i=1

n
balw, v) =% D o,

=1

where p, = p(2,).
The approximate problem has the form
(5.2) find g, R and 0 = u € R*! such that
by(u, v) = u(u,v), VwveR'L

It is easy to verify that assumptions H1-H4 are satisfied. Let us
note that b, (r,%, r,4) converges to b(w,u) uniformly on Hy. We have

n 1
lhz Uy — fuﬂdt‘ < ohlul? where w; = u(z).
i=1 0

So, assumption H4 (i) is satisfied with the constant ¢ = O(h).

Let 9, be the subspace of H} defined in Example 1, and let 9%, be
the closure of iﬁth in H!. In Example 1 it was stated that if p =1, then
agsumption HA4 (ii) is satisfied with ez = 1. Let p = 1. For u e, (cf.
Ex. 1) )

th

n _ 1y
Wl = Z (u(fbh) %;L((@ 1) )) f (5o,
(=1yh

tm=1
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Thus V » M,

llrs 4115
[lasf?

n h_ —17 2 e »
Z(u(z) dC “)) [ @) —plit)az

i=1 (i—1)h
Hes

= 1 —0,(u),

where

cp(u) =

We have an estimation

sup [, (u <V ||'pa||L2

weflty
Since M, is the closure of M,, it follows from the above that V u e M,

1_]/;&' DIl < s wlly, él—l—l/ﬁ- IIP_HLZ.
a [l a

Thus we obtain condition H4 (i) with the constant a, = 140 (V). Here
the rate of convergence ah to 1 depends on regularity of p.
It remains to find & and 4} (ef. (4.2), (4.3)) for our example.

|fuvdt—h5:u¢vil ’Ef (% — u,;)fvdtl—l—'i $jf+1 v—'v.tdtl
0 iml i=1 i=1 oy

After integration by parts of the first term and using the equality

i-1 u

’ur,' 1“‘ j

u; = h 2 o |
i h

F=1

in the gecond, we obtain

n T4l Zi4a
|b(u,w)—bn(rhu,rhv)|<|2’f oat [ u'(s)d5|+
i=1 xzq

n Tip1l ¢ n Tyl i-1 1
+|21‘f x_!v(f)d&%'(t)dt‘—l—lgé[ hg;“f%b'“f fro'(f)dsdtl.

)

Now, applying the Schwartz inequality we get

1B(1, 0) —bp(rpw, ry0)] < B*2 |y ully |10]|g1 .
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Thus according to definition (4.2)
e < oliryull, B

Now, for simplicity, let p = 1. Let v, w € M,,. Then (w, v) = (7,20, r4V),-
Thus, taking into account that @, = r,|g;, 7, is orthogonal (in this case)
projection onto M, and 7,@,u% = r,4, we obtain for » e M,

(g, ©) — (7%, "a0)R] < (% —Qp 0y, V)| + |(Qn gy ©) — (Pp2tgy 740y
= (% —Qutiyy O+ (73 @a%gy 72000 — (1% 722)al
< ollu; — Qpullg vl
Thus
Nt < odist (4, V).
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