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We consider operational rewrite rules, expressing the dynamic behaviour of
configurations of objects. This gives an algebraic way to generalize Petri net
theory. We give a detailed description of operational rewrite rules for various
process algebras, and show that in each case, the operational semantics thus
obtained, is equivalent to the regular denotational semantics of processes.
This theory can be used to describe features like true concurrency and real-
time behaviour for concurrent, communicating processes.

Introduction

Previous papers on process algebra (see e.g. Bergstra and Klop [6], [7]) give
semantics for such algebras that are mainly denotational in nature, such as
the model of projective sequences, the initial algebra and (to a lesser extent)
the graph model. In this paper, we present a more operational semantics for
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process algebra. We do this with the use of operational rewrite rules (called
transformation rules in Bergstra, Heering and Klop [5], where they were
introduced), that adjoined to an algebra (mostly the initial algebra of a set of
equations over a signature) give an operational rewrite system or object-
oriented algebraic specification. We remark that operational rewrite rules can
be used to provide an algebraisation of Petri nets, so that any concurrency
issue that can be discussed with the help of Petri nets, can also be discussed
in an algebraical setting with the help of operational rewrite rules. Then we
proceed to define in detail operational rewrite rules for various process
algebras, namely BPA (Basic Process Algebra), PA (Process Algebra, with a
merge operator, without communication, with or without a constant for
deadlock) and ACP (Algebra of Communicating Processes), and discuss in
addition a constant ¢ (different from 1!) denoting the empty process. In each
case, we prove in a precise way that the operational behaviour of a process is
equal to its denotational behaviour. For this proof, it is necessary, to first
rename the internal operational transformation steps into ¢ so to abstract
from these steps.

For several other ‘¢ = .# proofs’ (operational semantics = denotational
semantics) see De Bakker [4].

Our operational rewrite rules for algebras with merge allow us to put
processes in parallel, so that at each point we are dealing with a multiset of
objects (or terms), called a configuration, and because operational rewrite
rules can work simultaneously on disjoint subconfigurations, we can execute
processes in parallel, and discuss issues like true concurrency and real-time
behaviour. In the last section, we give as an example an explicit real-time
semantics for concurrent, communicating processes. To illustrate this
semantics, we give an elficient parallel implementation of a four-bit buffer,
that works twice as fast as a sequential implementation.
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1. Operational rewrite rules

1.1. Most of the notations discussed in this paragraph were introduced
in Bergstra, Heering and Klop [5], where also more detailed information can
be found.

Let ¥ be a many-sorted algebraic signature, and let AeAlg(Z) be an
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algebra of signature X (often called an abstract data type). Elements of A are
called points or objects. A multi-set ol objects we call a configuration.
Configurations exhibit dynamic behaviour, may perform transformation steps

CwC

Transformation steps are instantiations of transformation rules, or
operational rewrite rules. We will always have that A = T,(Z, E), i.e, A is the
initial algebra of a set of equations E over 2. If R is a set of operational
rewrite rules, we call ((Z . E), R) an operational rewrite system (ORS) or an
object-oriented algebraic specification.

1.2. An operational rewrite rule is a notation of the form

configuration before transformation
rule name

configuration after transformation

or r(C/C’). Here C, C' are finite multisets from Ty(X) (the set of terms over X
with variables from some set of variables X). Actually, we should consider
terms modulo the equality relation generated by E (which correspond to
elements of the initial algebra). Now if C,, C}, C, are finite multisets from Ty
(the set of closed X-terms), so that there is a valuation (a mapping from
variables X to closed Z-terms 7Ty such that applying the valuation to the
elements of C will result in the elements of C, (up to term equality), and
applying the valuation to C’ gives C), then

C]UCZ—"C'IUC2

is a transformation step (or step for short).

1.3. It can be noted that operational rewrite rules give a generalization
of Petri net theory (a general reference to Petri net theory is Reisig [11]).
Another algebraisation of Petri nets is given in Boudol, Roucairol and De
Simone [8], where this issue is discussed in more detail.

To illustrate this remark, if a net has a set of places P, and a set of
markers M (we allow different kinds of marker), and O(m, p) is the statement
that marker m is at place p, then a firing is given by an operational rewrite
rule of the form

rulename (

O(mls pl)a rery O(m", pn))
O (mj, py), ..., O(m, pi)

(with m;, m;e M and p;, pjeP for 1 <i<n, 1 <j<k).
ExampLE. Let a Petri net be given by Fig. 1.

The places are named as indicated, and we have only one kind of
marker, so we can omit the mention of markers in our rules.

4 — Banach Center 21
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a b

Fig. 1

The net is given by:

. (@) i (O(a),O(b).O(b) ) ) (O(a),O(c))
‘\ow)/ *\ o@, 00 )\ o@ /

and the configuration displayed is {0 (b), O (b), O(c)}.

2, Basic process algebra

21. Now we start the investigation of operational rewrite rules in
process algebra, an algebraic theory of concurrent, communicating process,
described in Bergstra and Klop [7]. In order to modularise our investigation,
and as a simple first illustration of the use of operational rewrite rules, we
consider Basic Process Algebra or BPA (see Bergstra and Klop [6]). BPA
starts with a finite collection of atomic processes and has two binary
operators, namely +, denoting alternative composition, (nondeterministic)
choice or sum, and -, denoting sequential composition. Furthermore, we have
a constant & denoting the empty process and successful termination, that will
simplify the algebraic description. The constant ¢ was introduced in
Koymans and Vrancken [10].

The sort of atomic actions, A, is a subsort of the sort of processes, P.
For more information about specifications and initial algebras using
subsorts, se¢ Goguen [9].

22. DeFINITION. BPA, = (Zgpy4,, Eppa)y Where the signature Zgp,, is
given by:

S (Sorts): A, P,with A P,
F (Functions): + : PxP—P,
Zoras: - : PxP—P

C (Constants): ee P— A4,
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and the set of equations Egp,, is given in Table 1.

X+y=y+x
(x+y)+z=x+(y+2)
X+Xx=x
(x+y)z=xz+yz
(xy)z = x(yz)

EX = X
XE =X
Table 1

Here x. y, z are variables ranging over P, called process variables. We
call a BPA,-term closed if it contains no process variables. Such a term may
contain atomic steps though (variables ranging over A). Note that the axiom
x+x=x is equivalent to e+e=¢, for x+x =¢ex+ex =(e+e)x =ex = Xx,
and the other direction is immediate. We do not explicitly require that A be
finite, although that will be the case in all applications. Using these axioms,
we can show that each closed term can be written in the form e, ar or 1, +1t,,
with ae A and ¢, t,, t, closed terms. Induction arguments (and recursive
definitions) will usually consider these three cases.

23. Now we consider the dynamic properties of processes given by
BPA,-terms. We will have three operational rewrite rules, corresponding to
three basic actions of a process:

— performing {executing) an atomic action (an ae A4);

— making a nondeterministic choice;

— terminating (modelled by é&).

Specifically, we have the rules

a (%) (for acA), i+ (%l), € (E)

Note that when we give operational rewrite rules, we display a
configuration C = l¢,, ..., ¢,} by writing ¢,, ..., c,, and we display the
empty configuration () by leaving an empty space. The rules of Meije (see

Austry and Boudol [1]) are similar, and can also be considered as
operational rewrite rules.

24. ExampLEs. Let xe Ty, a, b, ce A. Then
1. {x) 75— Ix} for x = x+x;
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2. lal 3 e 2 O for a=ac;
3. la+b} s b} for a+b =b+a;
4. {(a+b)c} 5 lac} for (a+b)c = ac+bc.

25. As we saw in 2.4, many transformation sequences are possible from
a given closed X-term. This leads us to consider transformation graphs. Before
giving a precise definition for a general operational rewrite system, we give
some examples for BPA, with the rules of 2.3.

ExaMmpLEs. Let a, b, ceA, and distinct. Term a(b+c¢) has the
transformation graph in Fig. 2a, term ab+ac has the graph in 2b.

Fig. 2a Fig. 2b

2.6. DeriNiTiON. Let ((Z, E), R) be an operational rewrite system. Let G
be the set of all rooted, directed, finitely branching, labelled multigraphs. By
the previous sentence we mean that each ge G has a set of nodes and a set of
edges (with each edge going from one node to another) and a root (an
element of the set of nodes). Furthermore, each node in g has finitely many
edges going from it, there can be more than one edge between two nodes,
and each edge has a label. We identify graphs that only differ in the names of
nodes and edges. For more information, see Baeten, Bergstra and Klop [3].
In this case, we take as the set of labels the set R of names of operational
rewrite rules. Now define a map

o: ;-G

as follows: if teT;, then the set of nodes of ¢(:) is the set of all
configurations, reachable by transformation steps from configuration (¢}, the
root is given by ‘r!, and if, for two nodes C, C' in ¢(t), there is a
transformation step C = C! (r €R), then there is an edge in ¢ (1) from C to C*
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with label ». We call ¢(¢) the transformation graph of t. Two examples for the
ORS (BPA,, Au le,i+)) are given in 2.5.
Next, if I = R, we define a map

8': G_’G

as follows: if ge G, we obtain ¢, (g) from g by changing all labels from I to &.
Finally, we define

T, = lg00(t): te Ty,
the set of I-abstracted transformation graphs. We will prove that for
(BPA,, AU g, i+}),

T;.. is isomorphic to the initial algebra of BPA,, by considering the
standard model G/<,.

2.7. The standard model. G/<, of BPA,, obtained from G (without a
label i+) by dividing out the congruence relation <2, (¢-bisimulation) was
introduced in Koymans and Vrancken [10]. In this article, much information
about ¢-bisimulation can be found. Here, we just give the basic definitions.

28. DerFiniTion. Let g, heG. We say that g and h are e-bisimilar,
notation g <, h-iff there is a relation R between nodes of g and nodes of h
such that:

1. the roots are related;

2. for each node n, in g and each node n, in h, if n, Rn,, and, starting
from n,, we can do a number of &-steps (possibly 0) followed by a step ae A
to a node nj, then there is a node n in h such that n| Rn} and, starting from
ny, we can do a number of ¢-steps (possibly 0) followed by a step a to n3;

3. for each node n, in g and each node n, in h, if n, Rn,, and, starting
from n,, we can do a number of e-steps to an endnode, then, starting [rom
n,, we can do a number of &-steps to an endnode;

4, 5 same as 2, 3, but with the roles of ¢ and h interchanged.

2.9. ExaMPLEs. (a, be A)

Fig. 3
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=g

Fig. 4
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Fig. 6

2.10. TuEOREM. G/<, = BPA,.
Proof. We define an interpretation from BPA, into G/<, as follows:

1. for each ae A, [q)= i

2. lel= é)

3. we define operations +, - on G as follows: if g, he G, then

(append h to each endnode of g);

these operations are the interpretations of the functions+, - of BPA,. The
rest of the proof can be found in Koymans and Vrancken [10].

2.11. THEOREM. For each closed BPA,-term 1 we have

8:,-+}0(P(f) ‘:c [r]
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Proof. We use induction on the structure of r.
l. 1 =¢. Then

8:.‘+:O(0(3) = & ?i')= f)ete g = e

2. 1 = ax, with ae A, and we know by induction hypothesis that

€410 (x) 2, [x].

Then

=|ax
e 1= e

3. r is a sum of terms, and for each summand x we know by induction

hypothesis that ¢, ,,0¢(x) <, [x]. We write = Y x,, where each x, is not a
: k=1

sum itself (so of the form ax’ or ¢) and all x, are different. For simplicity, we

shall take n = 3 (the general proof is similar). Then, ¢(¢) is displayed in Fig.

7a, and it is not hard to see that ;. ,0¢(r) e-bisimulates with [1], displayed

in Fig. 7b.

[t

Fig. 7a Fig. 7b

(Note. Graphs ¢@(x,), ¢(x3), @(x3) will share nodes.)

2.12. CoroLLARY. T4 k= BPA,, if on T;,, we use the operations +,
induced by the +, - on BPA,-terms.
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Furthermore, we can observe that T;,, is in fact isomorphic to the
initial algebra of BPA,.

2.13. Remark. The proof of 2.11 is semantical in nature, takes place in
the model G/<,. Next we will formulate a translation, back from G into the
algebra, and give a syntactic proof of 2.11, and extend it at the same time.
First we need some additional algebraical machinery.

2.14. DeriNiTION. Let (2, E) be an equational theory, and X a set of
variables. A recursive specification is a set of equations F = |x =1,: xe X},
with t, € Ty(X). If x, €X is some specified variable, U a Z-algebra and a, in
2 we say that ag is a solution of F (in U for x,) iff equations F hold in 2
substituting a, for x, (and other elements from %A for the other elements of
X). (For more information about recursive specifications, see Baeten,
Bergstra and Klop [3])

2.15. DeFiNiTioN. Let F = {x =t,: xe X} be a recursive specification
over BPA,. An occurrence of a variable y in a right-hand side ¢, is called
guarded iff t, has a subterm of the form aM, with ae A and y occurring in
M, unguarded otherwise. Note that the term ex is unguarded. We call
specification F guarded iff there is not an infinite sequence x4, x;, X3, ..., In
X such that for each neN, x,., occurs unguarded in ¢,

2.16. THeOREM. Each guarded recursive specification over BPA, has a
unique solution in G/<,.

Proof. Adapt the proof in Baeten, Bergstra and Klop [3] to the setting
without 1, but with e.

2.17. DerintTioN. Theorem 2.16 leads us to formulate two algebraic
principles, RDP and RSP. RDP is the Recursive Definition Principle, which
says that for each guarded recursive specification there is a process satisfying
its equations. RSP is the Recursive Specification Principle, which says that for
each guarded recursive specification there is at most one process satisfying its
equations.

2.18. ExampLE. 1. Let F be x =ax (so X = {x}). There is, by RDP
+ RSP, exactly one process satisfying this equation.

We call this process a®, and could consider g as a new constant, added
to the signature (@€ P).

2. Let F be {x=ay, y=ax}. By RSP x=y, so by 1. x=a" and
y =a".

2.19. DerFiniTiON. Now, with each ge G we will associate a recursive
specification F, which has g as its unique solution. First, as the set of
variables we take the set of nodes of g which are not endpoints; say this set is
X and the root has name x, (in case g =¢, take g’ = —0-%0 instead, a



OPERATIONAL SEMANTICS FOR PROCESS ALGEBRA 57

bisimulating graph). Then, if xe X has edges starting from it with labels

a, ..., a, to nodes x,, ..., x, and edges b,, ..., b,, to endpoints (n+m > 0),
the equation for x is

X=aXy+a;x;+ ... +a,x,+b,+by+ ... +b,,.

If the recursive specification F consisting of these equations is guarded, then
it can be shown that g is the unique solution of F in G for x, (up to &-
bisimulation).

2.20. DerinitioN. Now we extend BPA, by adding a renaming operator
¢;. More specifically,

BPA,+ =(Zgpsc+ Eppac+),

where
S:
Zopacr = 2ppar W\ F: ¢ P—=P (where I c A)
C:
and
gle) =¢

g@)=a if a¢l
Eppac+ = Eppac V| &(a) = ¢ if ael
g{x+y) =g (x)+&(y)
er(xy) = g (x)&;(y)

Table 1

for each n x, =i, x4, +y. (i,€l)

an

& (xg) = z er(ya)

n=0

Table 2

EAR

here aq, i,€ A (for ne N); x, x,, ¥, y,€ P (for ne N). The first five equations
define ¢ on the initial algebra of closed terms: elements of I = 4 are
changed to &, other elements are unchanged. These equations enable us to
eliminate the operator ¢ from any closed term.

The last equation is a conditional equation, the Epsilon Abstraction
Rule (EAR), and is needed to deal with (solutions of) recursive specifications
(infinite processes, as opposed to the closed terms, which are finite processes,
and need to terminate in finitely many steps). Note that all these axioms are
true in G/<,. Heuristically, we see I < A as the set of internal steps, steps we
do not want to see when viewing the process from the outside. We abstract
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from steps in I by using ¢, renaming them into ¢. A drawback of this &-
abstraction is that the choice-structure of a process is not preserved. By this
we mean the following: process a(ib+c) (a, i, b, ce A) has a point where b is
possible but c is not, i.e., the tree in Fig. 8a has a node with an outgoing
edge labelled b but no outgoing edge labelled c; while process ¢, (a(ib+c))
= a(b+c) has no such node. This drawback is not present in t-abstraction,
which is not dealt with in this paper (EAR is the ‘c-analogon’ of the t-rule
Koomen's Fair Abstraction Rule, see Baeten, Bergstra and Klop [3)):

Fig. 8a Fig. 8b

2.21. THEOREM. In BPA,+, we have for each closed term t: if F is the
specification belonging to the graph ¢(t), and x, corresponds (in F) to the root
of @(t), then g1 (x0) =1.

Proof. Note that specification F contains an extra atom i+, and that F
in each case will be a guarded recursive specification. We prove the theorem

by induction on t.
o) = epf.

1. t =¢. Then
so F is xo =(i+)xo+¢, and by EARegy,,(xo) =e.
2. t = ar’, and suppose the theorem holds for ¢’ (ae A). Then

) so Fis
Xo =(i+) xo+ax,,
equations F’ belonging to ¢(t) with variable x, for the root.
By induction hypothesis we have ¢;,,(x,) = ¢, so, by applying EAR

€+ (Xo) = £y (ax)) = a4 (X)) = at’ = 1.
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3.t is a sum of terms, say t = ) f,, where each 1, is not a sum, and

k=1
suppose the theorem holds for each r1,. The specification F will have a
variable x, for each subset ¢ of {1, ..., n}, with rootvariable x,, . Look at

Fig. 7a for the case n = 3. F consists of the following equations:

a=g
oA Q

%x‘, = Y (i+)x, for each ¢ = {1, ..., n} with |g| > 2,
equations F, for t,, with variable x,, for the root (for each 1 <k < n).

By induction hypothesis &;,,(xy,) =1, if 1 <k <n, and so, applying
EAR to equation

Xan = ((+)xp g +(+H) xp+(i+)x, (I<k<l<gn),

we obtain
vy (X)) = €jis) ((i+)x{t} H(i+) X)) = €44y () + 854 (X)) = 414

Similarly, since
Xpam = ) Xppgom H+) Xy + () X m +(+) Xy +(+) X0 +
| i) xg i) xm (1 <k<l<m<n),
we get
gy (Xpptm) = e+ D)+ (O ) H(E A )+ G+ 4 Uy = G+,

and the general result follows.

2.22. Remark. Note that x_:sx_—i—g (ac A) is not a valid conditional

equation: the equation x = ex+a, an unguarded recursive specification, has
infinitely many solutions, even in the initial algebra (for instance {a+b:
be A} are all solutions).

2.23. Remark. Theorem 2.21 can be extended to infinite processes. To give
an example, if a® is the solution of the guarded recursive specification
{x = ax} (see 2.18), then @(a®) is the graph in Fig. 9.



60 J. C. M. BAETEN, J. A. BERGSTRA and J. W. KLOP

This graph has specification {x, =(i+)xo+ax,}, so by EARe,.,(xo)
= a°.

2.24. Remark. There are several ways in which we could formulate the
operational rewrite rules of 2.3, for which we still have Theorems 2.11 and
2.21. An alternative is to have rules

a(ax+y) (for ae A) and 5(8+x),

X

thus avoiding the use of an ‘internal’ step (i+), and the need for abstraction
(y+)) in Theorems 2.11 and 2.21.

3. Process algebra

3.1. Note that in BPA,, if the initial configuration is a multiset of 1
element, then each resulting configuration wilk have 0 or 1 element, so we
actually do not use the multiset aspect of 1.2, namely that operational rewrite
rules can work on subsets of a configuration. This is changed when we
extend BPA by a parallel composition, an operator merge, obtaining the
system PA, Process algebra (see Bergstra and Klop [7]). It is unfortunate;
that we have to drop the extra constant ¢ at the same time. This is because
problems have arisen in connection with the combination of || and e.
Defining ell x = x, as is done in Koymans and Vrancken [10], leads to a
merge operator which is not associative, an unpleasant situation (to see this,
calculate terms ((a+¢)lib)|lc and (a+¢)|/(b]l c), where a, b, ce A). If we want
an associative merge operator, we should not allow the execution of the -
step in (a+¢)||b, and then, term (a+¢) behaves different in a merge than
outside a merge, making the formulation of operational rewrite rules very
difficult for recent developments, see [12]. Therefore, we consider the system
PA without ¢, but we will still use the model G/«, for the analogon of
Theorem 2.11, and the system BPA, for the analogon of Theorem 2.21.

3.2. DeriNTioN. PA =(Z5,, Ep,), Where

(S: A, P, with A =P,

F: +: PxP—-P,

<+ PxP—P,

[i: PxP— P (merge),

|l . pxP—P (left-merge),
L C,

ZPA =
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and Ep, is
X+y=y+x
(x+W+z=x+(y+2)
X+x=xXx

(x+y)z=xz+yz
(xy)z = x(yz2)
x|y = x“_y+y”._x
a|.|_x = ax
(@)ly = a(xily)
(x+y)U_z = x“_z+y“_z

Table 3

(here x, y, ze P and ae A).

3.3. Comments.

1. The left-merge IL_is an auxiliary operator, which enables us to give a
finite axiomatisation of merge ||. Intuitively, xl_ y is x|y, but with the
restriction that the first step must come from x.

2. The first equation says that we consider x|y to be the arbitrary
interleaving or shuffle of processes x and y.

3. The last three equations recursively define the left-merge on closed

terms. Note that a definition by recursion now has cases a, ax and x+y, in
the absence of «.

34. LemMma. Let x, y be closed PA-terms. Then:

L xfly=yllx,

2. (x| iz = x| (¥l 2).

Proof. 1. Immediate; 2. See Bergstra and Klop [6].

3.5. Operational rewrite rules. We could use operational rewrite rules for
PA, analogous to those given in 2.3, since the operators || and L can be
eliminated from any closed term (see Bergstra and Klop [6]). However, we
do not want to do that, but want to split a term x|l y into a configuration
ix, y}, in order to be able to discuss issues like true concurrency later on.
Then, we are forced to abandon a rule like (i+), as the following example
(3.6) shows. For the same reason, we cannot have a rule of the form

((xlly)+z
x,y /)

for such a rule would also mean that a choice is made without executing a
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real step (an ac A). A consequence is, that we cannot ‘split the merge’ in a
term of the form (x|| y)+ z directly, but have to evaluate x|| y first, until an
atom guards the term. We now present the operational rewrite rules for PA.
We treat + as indicated in 2.24

a(a+x)’ a(ax+y) (for each ae A),

X

L (xly
il— )
X,y
Note that the first rule is a combination of rule a and ¢, when we have
the constant &.

3.6. ExaMpPLE. Suppose we have a rule (i+) as in 2.3, in addition to the
rule (i|]) of 3.5. Let a, b, ¢ € A, and consider the term (a+b)|| c. Forgetting
trivial rule-applications, its transformation graph will be the graph in Fig. 10,
and after abstracting from i+ and i|[, this graph e-bisimulates with the graph
of (a+b)c+c(a+b)+ca+cb. which is not correct. The two oflending edges
are indicated.

3.7. ExampLES. Let a, be 4, and let x be any closed PA-term.
1. {a) - @, since a = a+a. Likewise {ax} - {x};

2. {allb} 5> la, b} = {b} 7 O;

3. {allb} 5 la, b} ¢ la} 2 @.

4. {a||b) - b}, since a||b = ab+ba.

3.8. Remark. Since operators ||, L. can be eliminated from every closed
PA-term, we have that each closed PA-term is equal to a BPA,-term, and so
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G/<, becomes a model for PA. Let [r] be the standard interpretation of a
closed PA-term in G. E.g.,, put

l[a]=>0—5>0,lax] = :]
a

and

Now we want to prove the analogon of Theorem 2.11 for PA-terms. In this
proof, we will need to use induction on multisets of terms, so we need a weli-
founded ordering on them. We define such an ordering in 3.10.

3.10. DerFINiTIONS. 1. Let ¢ be closed PA-term. We define the length of t,
|} (intuitively the maximal number of atomic steps that t can do),
inductively: |a] = 1 for any ae A4; |xy| = |x|+| y| for closed terms x, y: [x+ )|
= max {|x|, | y|} for closed terms x, y. Note that this definition ensures that
x=y=|x| =]y

2. Let < be the normal ordering of multisets of natural numbers (so for
example {4} < {4, 4} £{5}). This is a linear well-ordering. Then, if C,, C,
are two multisets of closed PA-terms, we define C, < C, iff {|¢|: teC,}
S {)t|: teC,!, and we obtain a partial well-ordering.

3.11. TueoreM. In G, we have for each closed PA-term t:

1,00 () 2, [1].

Proof. If C is a multiset of terms, then ¢(C) is the transtormation graph
obtained by taking C as the initial configuration (so ¢({t}) = ¢(1)). We use
induction on finite multisets C, ordered as defined in 3.10, to prove that

eq;00 (0=, || ¢]
teC
(here ||Ct means ¢, || ... It,, if C = {t,, ..., t,}). Since there are no PA-terms
te

of length 0, the basis for the induction will consist of those multisets C with
a single element of length 1.
Case 1. C = {r), with |t = 1. Then it is easy to see that we must have r

a;, for some a;e A. Also, because of the crucial observation |x|| y| = |x|
1

[ ask
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+|yl, rule i||] cannot be applied to ¢, and we can only apply rule g;
(1 €i < n) to configuration @,

gy 0@ () = (1) 2, [r]

follows, because the two graphs in Fig. 11 e-bisimulate (we took n = 3).

Fig. 11

Case 2. Otherwise. By induction, we can suppose we have proved the
theorem for each multiset D < C. Three kinds of steps could be possible from
C:

1. If a reC is of the form a+ x, with ae A, then we can do a step a to
D=C-1t};

2. If a reC is of the form ax+ y, with ae A, then we can do a step a to
E=(Cuix})—it};

3.If a teC is of the form x|y, then we can do a step i|| to F
=(Cu ix, y)—1t}.

Note that D, E, F <C, so induction applies. Thus we have
@(F)=,[|| 1=[| t], so that applying i|| gives the right result. It is not

teF teC

hard to finish the proof.

Now we prove the analogon of Theorem 2.21 for the ORS (PA,
Auli|l}). Note that a specification of a graph from G/<, will be a
specification in BPA,, so that the following proof can take place in BPA,. .

3.12. THeOREM. In BPA,+, we can prove for each closed PA-term t. if F
specifies ¢ (t), with variable x, for the root, then &;,{xo) =1!.

Proof. Besides atoms from A, F will contain an extra atom i||. In each
case, F will be guarded. As in 3.11, we use induction on nonempty finite
multisets C, to prove: if F specifies ¢ (C), with variable x, for the root, then
&)y (Xo) = t||C‘-

Case 1. C = {t}, with |t| = 1. We then know that t = } a; for some

i=1
n

g€ A. We see that F = {xo = ) 4}, and the result is immediate.
i=1

Case 2. Otherwise. Three kinds of steps are possible from C:
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1. Suppose k atomic steps are possible, say ay, ..., a,, to nonempty
configurations B,, ..., B, (k = 0);

2. Suppose ! atomic steps are possible, say b, ..., b, to the empty
configuration, @ (! = 0);

3. Suppose there are m distinct ways to write a te C as t'||t”. Then m
steps i|| are possible, to configurations D,, ..., D,,. Note that configurations
B;, D; are < C. Specification F will have a variable y; for configuration B,
and z; for configuration D;. F consists of the specifications for By, ..., B,,
D,, ..., D, plus equation

k

| m
Xo = ): a;y;+ Z b,+ z (ill)z;-
p=1 Ji=1

i=1

By induction
ey (2)) = |L t, 50 gy, lz)= | ¢,
teD; teC

and
k i
€y (Xo) = Z a; &4, (V) + Z b,+ ” L,
i=1 p=1 teC

and it is not hard to finish the proof.

3.13. Deadlock. We can extend our theory by adding a constant § for
deadlock (or lock), the acknowledgement of a process that it cannot do
anything anymore, has no alternative. & will therefore be used for
unsuccessful termination. To be precise:

o= (267 Ea)) with 26 = F:

and

X+0=2x
ox =20

Table 4

E§=

Here xeP. We can add 6 to BPA,, obtaining BPA,,;; to BPA,+,
obtaining BPA,;+, and to PA, obtaining PA,. In BPA,;+, we must require
that for each £;, §¢1, so that ¢(8) = 9.

3.14. Notes. 1. In BPA,;, the axiom x+4 = x is equivalent to ¢+6 =¢
for if e+6 =¢ holds, we have x+d =ex+dox =(¢+J)x =¢ex = x.

2. In PA,, we can prove by a straightforward induction that for all
closed terms x we have x||é = x4.

3.15. TueoreM. G/, is a model for BPA,,+ and for PA,.

5 — Banach Center 21
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Proof. Define [4] = 65. Note that then

B ot
—lx],

Fig. 12

and [dx] = [J] since [§] has no endpoint. Also EAR still holds, in fact we
can give an algebraic definition of & by putting é = ¢.,, (¢“), where a“ is the
solution of {x = ax}.

3.16. Operational rewrite rules. For BPA,;, we use the same operational
rewrite rules as for BPA,; for PA;, the same rules as for PA, so there is no
rule for 6. Thus, we get the ORS (BPA,;, (A—{8})u le, i+ ) and the ORS
(PA, (A-=/8}) u {i|l}). We formulate theorems as before, and indicate the
difference in the proofs.

3.17. THEOREM. In G, we have for each closed BPA,s-term t,

&i+,00(r) =, [1].
Proof. If t =48, we have

51:+}O(P(5) —311+' 6 i+)= 6 e = [4].

Since {t} = {t+8} —=— {6} ==— {9}, each node in each ¢(r) will have an
extra summand

so for instance

but these summands can disappear after abstraction.



OPERATIONAL SEMANTICS FOR PROCESS ALGEBRA 67

3.18. TueoreM. In BPA,,+, we have for each closed BPA,,-term t, that if
F is the specification belonging to graph ¢(t), and x, corresponds to the root,
then 8:,‘+:(X0) =1,
Proof. If t =48, we have F = {xy = (i+)xo} = {xo = (i+) xo+8}, so by
EAR ¢4, (x0) = 0. Other cases are similar;
3.19. THEOREM. In G, we have for each closed PAs-term t,
Eiqn O (f) ‘:s[r]'

Proof. We define |6| = 0. Since & = /|6, we get @ (&).= ~ -l -
and, after abstraction, this graph bisimulates with [§]. We remark, using
3.14.2, that only terms ending in § will be different than in 3.11. Those terms
will get in addition infinite sequences of i|| steps, bisimulating with [8] in each
case.

3.20. THEOREM. In BPA,,+, we have for each closed PAsterm t, that if F
specifies (1), with variable x, for the root, then £, (xo) =1t.

Proof. If t =6, we have F= [x,=(i|])x,+,: neN), and by EAR
Eys (xo) = 8. As an example of a different term, consider t = ad (some ae A4
—16)). F consists of equations

xn;ayn+(i||)xn+l and yn=(i”)yn+1s (HEN).

Since all equations for y, are satisfied by y, the unique solution of
W=Dy}, y, =y for each n by RSP. Then ¢ ,(xo) = a-&;,(y) = ad, by
applying EAR twice.

3.21. True concurrency. We consider two parts of the transformation
tree of aj|b in Figs. 14 and 15.

o a o
il e 5

Fig. 15

In Fig. 14, we split the merge a|| b, and get configuration {a, b}. Then,
we can either do a step a, working on subconfiguration {a}, or a step b,
working on subconfiguration {b}. Thus, two steps are possible, working on
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disjoint subconfigurations. In Fig. 15, we consider a||b not as a merge, but
as ab+ ba. Again, we can do a step a or a step b, but now note that these
two steps work on the same configuration. With the term true concurrency,
we mean the idea that in a computer having more than one processor,
processes can run on different processors in parallel, if not simultaneous
then at least faster than they would run sequentially on one processor. This
is also the idea that can be modeled by Petri nets. As we saw in 1.3,
operational rewrite rules constitute a more powerful, and more algebraical,
approach than Petri nets. We saw in Sections 2 and 3, that operational
rewrite rules can capture the operational behaviour of processes, without
losing their denotational identity. Splitting a merge x|} y into a configuration
{x, y} captures the idea of putting parallel processes on different processors,
so that, in Fig. 14 steps a and b can be executed simultaneously, or if not
simultaneously, at least faster than a sequential execution as in Fig. 15.
In Section 4, we will enlarge this approach to encompass parallel processes
with communication, so we will define an operational rewrite system for
ACP, the Algebra of Communicating Processes. In Section 5, we will give
a real-time semantics of processes, that encorporates the ideas about
parallelism above.

4. Algebra of communicating processes

4.1. Now we want to extend the system PA with a communication
function, so that in a merge x||y, we could also do a communication step
alb with a a step from x and b a step from y. a|b will again be an
atomic step or 4, so | is a function from A xA to A If a|b=4, we
say a and b do not communicate. In applications, we will always specify the
communication function on atoms. In order to give an equational definition
of the (communicating) merge, we will extend | to a function from P x P

to P. For more information, see Bergstra and Klop [7].
4.2. DeFINITION. ACP = (2 ,cp, E cp), With

(S: A, P, with A <P,
F. +: PxP—-P,

- PxP— P,

|: PxP—P,

Zor= l:PxP-P,

[: AxA—A

|: PxP—-P

Oy: P— P (for H< A,
| C: 6e A,

and E,cp is displayed in Table 5. Here x, y, ze P; a, be A, H € A.
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ACP. .
x+y=y+x Al
x+(y+z)=(x+y)+z A2
X+x=x A3
(x+y)z=xz+yz A4
(xy)z = x(y2) AS
X+0 =X A6
ox =96 A7
alb=b|a C1
(@|b)|c=alD]c) C2
dla=246 C3
x||y='x].|_y+y|.|_x+x|y CM1
all_x =ax T CM2
(ax)”_ =a(x||y) CM3
(x+yll_z=x z+y“_z CM4
(ax)|b =(a|b)x CMS5
al(bx) =(a}b)x CMé
(ax)|(by) = (alB) (x|l ¥) CM7
(x+y]z=x|z+y]|z CMs8
x|(y+2) =x|y+x|z CM9
Cy(a)=a if a¢H D1
Oy(a) =6 if aeH D2
Op(x+y) = 0g(x)+0y(y) D3
O (xy) = Oy (x) Ou (¥) D4
Table §

43. Notes. 1. |: A xA — A is the restriction of |: PxP =P to A xA.

2. In addition to the axioms presented in Table 5, we assume the
Handshaking Axiom (HA),

x|ylz=20

Table 6

which says that all communication must be binary. We call all atoms in
Al|A={ceA—{86}: 3a, beA c=a|b} the communication actions; thus,
handshaking means that communication actions do not communicate
themselves.

44. LemMma. The following hold for all closed ACP-terms x, y, z and
atoms a, b:

L xty=ylx;

2. xlly=yllx;

3. (x1y)lz = x|(y]2);
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4. (x| pltz = x|yl 2);

5. x||é = xé.

Proof. 1, 2, 3, 4: see Bergstra and Klop {6}

5. By induction:

1. a||d =ad+dba+a|d =ab6+6+6 = ao:

2. ax||é = a(x||8)+dbax+ax|d = axd+ 6+ = axd;

L+ =(x+nll o+6l (x+p)+(x+y)6=xLs+yll 6+6+
+x|6+yl6=(xlLé+slx+x18)+(y[Lé+sly+y10)=xl16+yl16 =
x0+yd =(x+y)d.

45. Remark. By Bergstra and Klop [6], we can eliminate operators ||,
L, Oy from all closed ACP-terms. Thus, G/+=, becomes a model for ACP,
when we define the interpretation of 6 as in 3.15.

4.6. Operational rewrite rules. Again note, that since we can climinate all
operators ||, L, Oy from closed terms (see Bergstra and Klop [6]) the rules
of 2.3 would work in this case too. However, we want to consider the merge
as we did in 3.5. Then it is not too hard to extend the rules of 3.5 to the case
with communication. Specifically, we would have the rules:

a(a+x)’ a(ax:—y) for aeA-1{6};

i”(ily_)’ and alb(a+x,b+y), alb(ax+y,b+z),

X,y x

alb(ax+y, bz+w
X, z

) if a,bedAd and alb#3d.

However, we also want to have a rule for the encapsulation operator 0Oy.
For, in general, a network of communicating processes will be given by a
term of the form

O (xg [ X211 - |1 Xn),

where H will contain all communication ‘halves’, 1e, H
={aeA: I3beA alb#6 (and a and b occur in x,,..., x,)}, so that
communications among Xxi, ..., X, are encapsulated, shielded off from the
environment. Without a rule for d; we cannot ‘split the merge’ in the term
X¢|l ... || x,- But then, we have to remember in some way which actions
cannot be performed, and also the relative positions of the 04y and the
merges. To give an example, if a, be A, a# b and a|a = b, then

a{a} @]l a{a} (@ =4 but a{a} (alla) =b.

Therefore, we will define operational rewrite rules not over the initial algebra
of ACP, but over an algebra of tuples {¢,, ..., t,, t,+1>, where n=>0,1,,, is
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a closed ACP-term, and if 1 <j<n, then t; < A4 or t,e{l, r} (we use the
symbols /, r (left, right) to indicate where a split of a merge takes place). If o
= (81, ...y Spe1y and @ = {ry, ..., ryy > are two such tuples of equal length,
then we define e = iff 5, =ry,...,s,=r, and ACP|-5,,; =rns,. A piece
of notation: if ¢ and ¢ are two tuples, then ox¢ is their concatenation.
Configurations will be multisets of tuples, and the initial configuration for a
closed ACP-term 1 is {{(tD>}. In 4.8, we will present a set of operational
rewrite rules for ACP, that takes these features into account. First we will
define the length of an ACP-term (compare 3.10).

4.7. DeFinITION. If ¢ is a closed ACP-term, then |t|, the length of ¢, is the
maximal number of atomic steps that ¢ can do, counting communication
steps double. Inductively:

1. |6] = 0O;

2. Jaj =2 if a is a communication step (i.€., ac A| A);

3.Jag=1 if a is an atom which is not a communication step
(e, ac A—(A| A));

4. |xyl = |x]+| ¥ if x, y are closed terms;

5. |x+y = max {|x|, | y|} if x, y are closed terms.

Again note that with this definition we have ACP+HA|F x = y=|x|
= |y|. Also, note that |0, (x)| < |x| for all H = A and all closed terms x. We
remark that length could also be defiped for infinite processes, that are
defined by a finite recursive specification, by stipulating that the length of a
process is the maximal number of steps to termination, or until a previously
attained state is reached.

4.8. Operational rewrite rules for ACP. Let o, 9,, g, be tuples consisting
of subsets of 4 and the symbols I, r. We have the following rules:

(o-u(a+x>) (cn-(ax+y)
al—=), a|——=
ow{x)
{2
oxll, x), oxlr, y)
i3 (0*<0n(X))
ox{H, x)
(a*gl*(a-i-x), oxgyx{b+y) b (a*g,*(ax+y), cxgyxlb+2z)
> 4 Q1 #<{X) ,
alb (amglt(ax+y), axgyx(bz+w)
OxQy*{X), O%Q%(2)
the last three if a, be 4, a|b # 6 and

) if ac A— {6} and a¢H for each H in o;

) if x,y+#9;
) if H< A and |04(x)| = |x|;

alb
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1. first (o,) =1, first (@) =7,

2. a¢ H for each H in g,

3. b¢ H for each H in p,,

4. a|b¢H for each H in o.

Notes. 1. In rule i||, we have the condition x, y # 4, or equivalently, |x|,
|| 2 1. The condition ensures that {|x||y]} > {|x], |yl}, which is useful in the
following inductive proofs.

2. In rule id, condition |04(x) =|x] is also useful in the following
inductive proofs. This is not an unreasonable assumption to make, for if
|0y (x)] <|x|, we have that dg(x) ends in deadlock, a condition we would not
want any program OJg(x,|| ... || x,) to satisfy (note: this is why we need to
count communication steps as double steps).

4.9. ExaMPLE. Suppose a, b, ce A are distinct, and a|b = ¢. Then

{<Biat) (Op.cy @ Do, BN} o {<{@, B, By (@] Orae; (B} 7>
{{a, b}, 1, 04y (@), ({a, b}, 7, 0oy (B} —...
. T {<{a’ b}' l’ {b9 C},G), <{a’ b}a r, {aa C}, b>} '{'0,

but also

{<a{a.b}(a{b.c}(a)” 6{0,:}(b))>} = {<C>} i Q.

4.10. TueoreM. For each closed ACP-term t we have in G that
&,00(t) <, [t] (where I = li||, id}).

Proof. We consider multisets C of tuples as defined above, and define
term (C) = {last(o): o€ C}, the multiset of terms of C, and we order these
multisets according to term length, so C <D< {|f]: teterm(C)}
< {|t]: teterm(D)}. We observe that in a graph ¢(r) (so starting from a node
{{t)}),- only multisets C can appear of the following 2 types:

1. C = {o%{d)} for some o;

2. for all teterm(C) we have t # .

This is because of the restriction in i||. Thus, we are done if we prove
that for all multisets C of this form, we have

@ zop©@=[ || .

teterm(C)
In order to prove this, we need to prove another statement as well,
which does not have a simple form. We will prove (a) and
(b) if C > C', then g0¢(C)2,¢,0¢0(C) by induction on C.
Case 1. C = {o+(8)} for some 6. The only rule we can apply is i,
namely C ;> {g+(H, 8)} for each H < A. ¢(C) is shown in Fig. 16, and (a)
and (b) are easy.
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A

4

Fig. 16

Case 2. t # 6 for each teterm(C). We can assume that (a) and (b) hold
for all configurations D < C reachable from C. Four kinds of steps may be
possible from C:

1. If geC is of the form ex{(t), and t can be written as dy(x), with
H<A and |x|=]t, we can do a step id to a configuration C’
=(Culo*{H, x>})— {g}. Note that C’ is not less than C.

2. If geC is of the form ax{a+ x), respectively gx{ax+y), with ae 4
and a¢H for each H in o, then we can do a step a to configuration B = C

- 1o}, respectively B =(Cu |o*(x)])—!o!. Note B <C.

3. If g, €C is of the form a,*{a+y) or g, *x{ax+y), ¢,€C of the form
o,%¢(b+w) or a,*(bz+w), and the conditions of the communication rule
are satisfied, then we can do a step a|b to a configuration D, where D is

C—lo1, @2}, (C={o1, 021 U {o, (x>}, (C— o1, 02D U(02% (D)
or

(C—101, 02)) v {o1%{xD, 6% (2}

Note that in every case D < C.

4. If geC is of the form o+ (x|l y), with x, y # 4, then wg can do a step
i|l to configuration E =(C—{g}) U {ox(l, x), ox{r, y>}. Note E <C.

Now, we can use induction on configurations B, D, E. Note that, when
we have C = C’, then the same steps of type 2 and 3 are possible from C’
as from C, but possibly more or less steps i|| of type 4. However, after
abstracting from i|| and i, any step possible from a configuration E of type
4 is also possible from C as a step of type 2 or 3. In this way, we prove (b).

We illustrate these remarks by considering the term a. Of course,
{<ad} 7+ {<H, a)} for each H < A— {a}. But also, if a is 2 communication
step, say a=>b|c, we have |{ad!4—\(H,b|c)] for each H with
{b,c} =H = A—{a}, and i|| can be applied to the last configuration. For
this example, we show the graph in Fig. 17, and indicate how claims (a) and
(b) are proved.
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Fig. 17

The general proof will not be given here, but deferred to 4.11.
Now we prove the analogue of 2.21 for ACP.

4.11. THEOREM. In BPA,;+, we can prove for each closed ACP-term ¢,
that if F specifies ¢(t), with variable x, for the root, then &, (xo) =t (with |
= {ill, id}).

Proof. Note that in each case, F will be a guarded recursive specification
over BPA,,, with || and ié as extra atoms. As in 4.10, we use induction on
nonempty multisets C, with C = {g«{d)} or t # é for each reterm(C), to
prove that if F specifies ¢(C), and F = {x =1,: xe X} for some set of
variables X, with xoe X denoting the root of ¢(C), then:

(a) if t,, has a summand (i) x, (x,, x,€ X), then g (x,) = &(x,);

(b) &/(xo) = I L.

teterm(C)

Case 1. C = {o6%({8)>} for some tuple 6. Put X = {x,: ¢ is a tuple of
subsets of A}, xo = x; (4 is the empty tuple), then if we take variable x, for
‘node [g*a»(6)} in graph ¢(C), we obtain the recursive specification

F={x,= ) (iD)Xq XX}
HcA

of ¢ (C). Note that here, in order to have finite terms, we must require that
the set of atomic actions A4 is finite. Now consider the guarded recursive
specification F' = {y = (i6) y}. If process y satisfies F’ (y exists by RDP), we
infer that y satisfies all equations of F, so by RSP y = x, for each x,e X, and
(@) is certainly satisfied. Finally, applying EAR to F', we get ¢/(x,) =
g(y) =4.

Case 2. Otherwise. We have t # é for each reterm(C), and (a) and (b)
hold for each D < C reachable from C. Note that there only finitely many
ways to write a teterm(C) as dy(t"), with H = 4 and |t} = |t'], because C is
finite, we assume that A is finite and there are only finitely many terms of a
given length. Suppose there are n such ways. If dy(+') is one such rewriting,
then again there are at most n ways to write t' = 0. (¢""), with H' = 4 and ||
= |t”| (possibly less). Three kinds of steps are possible from C:
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1. n distinct ways to apply id, to configurations A4,, ..., A,. Note that
no A; is less than C.

2. Suppose there are k distinct ways to apply an atomic step, say steps
a,, ..., a, to configurations B,, ..., B,. Note that each B; is less than C.
Moreover, if A" is a configuration reached from C by a number of
applications of id, then the same steps a,,...,q, are possible, to
configurations Bj, ..., B, such that each B) is reachable from B, by a
number of applications of id.

3. Suppose that there are 2! terms t}, ..., r;, ty{,..., 1/ such that. for
each pell, ..., I}, t, # 6, t, # 9, there is a teterm(C) w1th It] = It,,llt | and
there is a H = A (possibly H Q) with t = 04 (r, || t,). Then, there is a subset
Sof {1,...,1} (where peS <>we can take H = (2) above) such that for each
peS we can do a step i|| from C to a configuration D,. Note that each D, is
less than C. Moreover, if A’ is a configuration reached from C by a number
of applications of i, then there is a subset S’ of {1, ..., I} such that for each
pe S’ we can do a step i|| from A’ to a configuration D}, and if pe S, then D,
is reachable from D, by a number of applications of id.

Recursive specification F has variables x, for each sequence ¢ from
{l,...,n}, with xo=x; (4 is the empty sequence), variables y7 for
configurations B; (and other configurations reachable from B; by steps id),
and variables zj for configurations D, (and other configurations reachable
from D, by steps id). By induction hypothesis we have, for any two sequences

gy, 0, from {1, ..., n}, that & (y;") =& (y;2), &(z;!) = &,(2;2) for each j, p
Then, F consists of equations

Z (la)xu-(i)+ Z aj.VJ+ z ('")z

ieS, peT,

for appropriate sequences ¢ (reachable from x;) and certain S, < 1, ..., n}
and T, = {1, ...,1}. In order to do abstraction, using EAR, we need to
consider two other specifications. Let r be an atom nor occurring in F. Then,
F* will consist of equations

= Y txthaot Z ayi+ % iz
ieS, peT,
for appropriate 0. Without proof, we mention that ¢, .. (x7) = &(x,). Now
k
er{x3) = Z te; (Xguiy) + Z a;e(y))+ z g (z7).
ieSg j=1 peT,

Note that all actions from ¢;(z7) will already occur in some a;¢;(yj) so
there is a process u such that for all o

u= Z a;e (yD+ Y &al(2),

peT,
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and moreover, by induction we see u= || t, the desired answer. Next,
teC

consider Fy = |g =tg+u}. We see that g (the solution of F,) satisfies all
equations of F* so by RSP g =¢,(x}) for each ¢. Finally, by EAR ¢,,(g)
= u, $0

&(x,) = slu{l}(x:) = &, Of (x3) = 5::;(9) =u= " L,
teC

in particular ¢ (xo) = || .
teC

4.12. Remark. Thus, we see again that for ACP-terms, operational
behaviour equals denotational behaviour. We just note, that operational
rewrite rules can be formulated for the system ACP, (ACP with a priority
ordering, used for instance to describe interrupts, introduced in Baeten,
Bergstra and Klop [2]), and again the previous theorems will hold,
operational behaviour will equal denotational behaviour. In the next section,
we will describe a simple real-time semantics {or the operational rewrite
systems given in this and previous sections.

5. Real-time semantics

In this last section, we show how operational rewrite systems can be used to
give a real-time semantics for concurrent, communicating processes, by
giving a simple example of such a semantics. Of course, this example can be
modified and elaborated upon, to give a more realistic semantics. Here,
however, just showing the way was deemed sufficient for our purposes, and
thus a number of simplifying assumptions will be encountered.

5.1. DeriNiTioN. Let (X, E). R) be one of the operational rewrite
systems given in the previous sections, so BPA, (Section 2), BPA,,, PA,
PA; (Section 3) or ACP (Section 4). Let r be a finite Z-term. An execution
trace of t is a series of transformation steps, starting with initial configuration
{t}, (or {<&t>} in the case of ACP) and ending in the empty configuration.
Inductively, we define the length of an execution trace, the amount of time it
takes to execute this trace.

1. An atomic action (an application of operational rewrite rule ac A)
takes 1 unit of time, {a] = 1; ‘

2. An internal action (an application of operational rewrite rules i+, i|,
i0 or ¢) takes 0.1 unit of time, we write

[i+]1="C[il]=T[id] =[] =0.1;

3. Action r, followed by r, takes max {[r,], [r,]} units of time if r; and
r, work on disjoint subconfigurations (as explained in 3.19) and [r,]+[r,]
units of time otherwise;
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4. In general, if we have an execution trace ¢ followed by an action
reR, we look at the subconfiguration that r is working on (the
subconfiguration that is matched with the top configuration in rule r). This
subconfiguration resulted from applications of certain rules in g, but is
disjoint from modifications of other rules in g. Now the execution time of ¢
followed by r, [p*{r)], is the maximum of [¢] and [¢']+ [r], where ¢’ is the
subtrace of ¢ obtained by leaving out all actions disjoint {from r, in the sense
explained above.

5.2. ExampLe 1. Consider the PA-term aa. Execution trace g, is given
by l{aa} 2 \a} 2 @, and we see [p,] = 2. Execution trace g, is given by
{alla} 5 {a, a} 2 {a} 2@, and we see [g;] =1.1. Thus, we see that the
parallel execution in trace g, is 0.9 units of time faster than the sequential
execution of trace g,. We can display these traces on a time axis by putting
elements of a configuration below each other. Thus g, is

0 1 2
—_ IS S SR SO S S S L L1 TR L ] ]
[ ] —e- @ —— ]
a a
Fig. 18
and g, is
0 01 1 1
i 1 1 1 1 | R L1 L
il : .
5 »
Fig. 19

53. ExampLE 2. A little bit more involved example is given by the
ACP-term a* (= aaaa), if we assume a = b| b for some be 4 (of course a # b).
We consider three execution traces: g, is the sequential trace, applying rule a
four times, so [g,] = 4.0; for g,, we write a* = Oy (aba|| ba) and do

1<a* >} 7B, aballba)} 5> (<1b}, I, aba), (b}, r, ba)}
(<ib}, 1 ba), (b}, r, bay} 2 (b}, 1, @), (b}, r, ad} 2 (C1b}, 1, @)} 2 @;

and o, uses maximal parallelism, writing a* = (a|la)|/(a]|a). We display
traces g, and g,.
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0z is
Py Y% - 1 4,—-4 - - &
lC .J g L-»- 3 >
Fig. 20
and p, is
? 01 0.2 1 12
1 1 1 L P D R | | L 1
Al °
L a
’" : a
Fig. 21

We see [0,] = 3.2 and [g;] = 1.2. It can be seen that trace g, is the

fastest way to execute term a*, and in general that term a®” can be executed
in 1+ n/10 units of time. In order to give an example that is a little bit more
realistic, we will extend Definition 5.1 to infinite processes.

5.4. DeriniTion. Let ((Z, E), R) be one of the operational rewrite
systems BPA,, PA, PA;, BPA,; or ACP. Let x be a process over X (by which
we mean, that x is given as the unique solution of some guarded recursive
specification, see 2.16 and 2.17). An execution trace of x is a series of
transformation steps, starting with initial configuration {x} (or {¢x)} in the
case of ACP) and ending in the empty configuration or ending in a
configuration that appeared earlier in the trace. The lengrh of such an
execution trace is defined as in 5.1. Thus, to give a simple example, if a* is
the solution of {x = ax! (see 2.18), then a* has trace {a”} - |a*}, of length 1.

55. DeriniTION. As a nontrivial example we will consider a com-
munication protocol. We consider the following network, given in Fig. 22.

K
2 4
1 S &
3 L 5
Fig. 22

Such a network consists of locarions (given by processes, here S, K, L
and R) and channels between them (here 1, 2, 3, 4, 5, 6). Processes can
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communicate along channels, and these communications will consist of the
transferal of a piece of data. So, if D is finite set of data, we have the
following atomic actions:

r{d) = read d along channel i (1 <i < 6);
6).

<
i<6)

s;(d) = send d alongy channel i (1 <
<

¢;(d) = communicare d along i (1

Then, the communication function is defined by: r,(d)]s; (d) = ¢; (d), and
all other communications give o (for this terminology, also see e.g. Baeten,
Bergstra and Klop [3]). Here, S i1s a sender, who will send data to receiver R,
alternatively through K and buffer L. §, K, L and R are given by guarded
recursive specifications, as follows:

K = Z ra(d)ss(d) K
deD
L= Z ra{d)ss(d) L
deD
S=5°S8'S
S = Z ri(d)sy4i(d) for i=0,1
deD
R=R°R!'R
R = Z Ta+i(d)se(d) for i=0,1
deD
Table 7

Note that the recursive specifications of S and R are not really guarded,
but can easily by rewritten in a guarded form. K and L are one-bit buffers.
The process we are interested in is

X =0y(SIKI|ILIIR)
where H = {5;(d), r;(d): 2<i <5, deD).

5.6. Remark. X is a correct communication protocol. By this statement,
we mean that each action r (d) (for a certain de D) will eventually be
followed by s¢(d). In ‘between, however, besides actions from I = !¢;(d)|
2<i <5, deD}, also another r,(¢) could be performed, but not another
s¢ (e), so that actions will be sent along channel 6 in the same order as they
were received along channel 1.
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5.7. Process X has execution traces ¢, (d, e€eD) as shown in Fig. 23.

6

M o TR Rt i GO SN 1

i .63

Fig. 23

We see that after 6.3 units of time, the same configuration is reached as
after 0.3 units of time (namely {<H, [ I,S>, (H,lLr,K) d(H,r 1 L),
(H, r,r, R>}). Thus, X has execution traces of length 6.3. Note that two
executions would take 10.3 units of time, since a copy of the piece of g,
between 0.3 and 6.3 can be fitted in between 4.3 and 10.3 units of time. In
general, n executions of this protocol, using parallelism as above, take 2.3 +4n
units of time. Since, as indicated above, any execution trace must involve 8
atomic actions, a sequential execution trace (having configurations of only
one element) will take at least 8 units of time, and thus n executions will take
8n units. So we see that a parallel execution of this protocol is approximately
twice as fast as a sequential execution.

58. In other papers, we have given considerable attention to the
verification of protocols, i.e., determining the behaviour of the process after
abstraction from internal actions (in this case, the set of internal actions is |
= {g(d) 2<i<S5, deD}). We do not want to do that here, so we will just
state without proof what ¢,(X) is. Define a four-bit buffer B with input
channel 1 and output channel 6 by:

B=B;=) r,(dB,, (Aisthe empty sequence);
deD

Bao(d) = Sﬁ(d)B,,'l- Z ry (e)B(ey-oo(d).

eeD
if 6 =21 or deD!' UD? (a sequence from D of length 0, 1, or 2)
B,y =5¢(d)B, if oeD’
(a sequence from D of length 3).

We claim ¢(X)=B (and also r,(X)=B), and remark that the
architecture of X is an efficient parallel implementation of a four-bit buffer.
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