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§ 1. Preamble

This article is essentially a survey of recent work consisting of two main
parts; in § 1 to § 5 the boundary integral equation method for solving elliptic
boundary value problems is described in some detail as much to introduce
the required notation as to highlight a number of fundamental difficulties
associated with the method. The remaining sections of the article are
concerned with a means of removing these difficulties, presenting a construc-
tive method of solution and indicating areas of research activity.

§ 2. Introduction

Many physically significant problems can be represented in the form of a
linear elliptic boundary value problem and as such they tend to fall into one
or other of two main classes; those governed by Laplace (type) equations and
those by Helmholtz (type) equations for which certain differences of approach
are required. However, for both classes it is well known [5], [8], [22] that if
the exact Green’s function is known for the problem in question then that
problem has a solution which can be represented quite simply as an integral
taken over the region of interest. Unfortunately, however, the exact Green’s
function is not an easy quantity to obtain in practice.

An alternative approach is to use, instead of the exact Green’s function,
a fundamental solution of the equation in question. This two-point function
of position, sometimes also called a “free space” Green’s function, satisfies the
same equation as the exact Green’s function but is not required to satisfy any
boundary conditions other than possibly some regularity condition at infini-
ty. This extra freedom associated with the fundamental solution allows
notions of volume and surface potentials to be introduced and these quanti-
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ties in turn have properties which allow the given boundary value problem
to be replaced by an equivalent integral equation.

When treating exterior problems, that is, problems defined in the
unbounded region exterior to a closed bounded boundary surface, the
volume potentials are defined over this unbounded region and often present
considerable technical difficulties. The surface potentials are therefore much
to be preferred for two main reasons. First, all integrals could now be
defined over a bounded region, the boundary of the unbounded region of
interest. Second, an elliptic boundary value problem can be given an
equivalent representation as a Fredholm equation of the second kind and
such equations are particularly attractive from the numerical analysis point
of view. These surface potentials form the basis of the so-called boundary
integral equation method.

Attractive as it may appear to be at first sight, the boundary integral
equation method does present a number of intriguing problems which have
variously either entertained or tantalized but which have certainly provided a
good living for a number of mathematicians over the years.

In this article we shall give a flavour of the boundary integral equation
method by considering exterior problems associated with the Helmholtz
equation. Such problems arise in a number of areas of mathematical physics:
notably acoustics, electromagnetism and elasticity. The reason for concentra-
ting on the Helmhoitz equation is that the associated boundary integral
equation method has associated with it certain problems which simply do
not present themselves in an equivalent discussion of the Laplace equation.

There are essentially two ways of obtaining the boundary integral
equations equivalent to a given elliptic boundary value problem; by either
the layer theoretic method or the Green’s theorem method. In the layer
theoretic method boundary integral equations of the second kind are derived
on the basis of the assumption that the required solution of the given
boundary value problem can be represented in the form of either a single
layer or a double layer surface potential. This leads to boundary integral
equations for the exterior Neumann (Dirichlet) and interior Dinchlet (Neu-
mann) problems which are adjoint in an L, sense. Alternatively, boundary
integral equations of the second kind can be derived from Green’s theorem
and these equations are related to but not identical with those denived via
the layer approach. Whilst it might be argued that the Green’s theorem
approach is more general than the layer theoretic method in the sense that in
the former no a priori assumptions regarding the form of the required
solution are made, nevertheless, the resulting boundary integral equations
exhibit in each case the same difficulties, particularly when subjected to
numerical analysis. We shall discuss these difficulties in the following sections
indicating how they arise and how they are being resolved. Before doing this,
however, we shall describe in some detail how the various boundary integral
equations are obtained by the two approaches.
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§ 3. Formulation of boundary integral equations

Let B_ denote a bounded open domain in R® with a smooth closed,
bounded boundary dB. We denote by B, the exterior of 0B, that is, the
complement in R?® of B=B_ U dB.

Let R = R(P, Q) denote the distance between two typical points
P, Qe R’. A fundamental solution of the Helmholtz equation

(A+kHu=0, k*>0,

is a two-point function of position in R* denoted by y(P, Q) which for
convenience we take in the form

ik R

" 2R’

3.1) (P, Q) = P,QeR’.

Typical of the exterior problems associated with the Helmholtz equation
are the following. Determine u(P) satisfying

(3.2 (A+k¥)u(P)=0, PeB,,
. | o |
(3.3) lim {rp ['—(P)—zku(P)]} =0
rp— @ arP
and either
(34 u(p) = f(p), pedB (Dirichlet problem)
or
' ou
(3.5) E(p) =g(p), pedB (Neumann problem),
P
Ou :
(3.6 a(p)+au(p) =h(p), pedB {(Robin problem).

P

Here 0/0n, denotes differentiation in the direction of the unit normal 7,
normal to 0B at the point pe 0B and Pec B, is assumed to have spherical
polar coordinates (rp, 0p, @p) relative to a Cartesian coordinate system
erected with origin in B_. We emphasize that throughout we shall assume
that n, is the outward drawn normal with respect to B_, that is, n, is
directed from 0B into B. . Further, we shall write d/dn, and &/dn, to denote
the normal derivative in the limit as P — pe 6B from B_ and B, , respective-
ly.
We now define

37 (SW(P) = [ (P, du(@dS,, PeR*\aB,
dB

(3) (DV(P) = [ =L(P, v{@)dS, PeR*\3B,
B q
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which we shall refer to as single and double layer potentials, respectively, with
continuous densities ¢ and v as indicated.

It can be shown [5], [8], [22] that as P — pe 0B the single and double
layer potentials satisfy certain jump relations across the boundary JB.
Introducing the notation

(3.9 (Kw(p) = j %(p, @ 1(9)dS,, pedB,

(3.10) (K* p(p) = §—(p, q)u(q)dS,, pedB,

@1y (Dnv)(p) = I (p, q)v(q)dS,, pedB,
p OB

the jump conditions can now be convem'ently written in the form

5,
(3.12) En—i(su)(p)=(iI+K)#(p), pe 0B,
p
(3.13) lim Dv(P)=(FI+K*v(p), pedB.
p—pt .

Furthermore, we notice that

(3.14) (Dv)(p) =(K*v)(p), pe B,

=7 D)(@) = (D) (P, pedB.
n

P P

With this notation representations of solutions of the Helmholtz equa-
tion obtained by applying Green’s Theorem (Green’s second identity)

(3.15)

(3.16) fludv—vAu}dr, = j{u(p)%(p)—v(p)%}(p)dsp

B 4

have the following forms. For radiating wave functions, that is, functions ¢,
satisfying (3.2) and (3.3), we obtain

29.(P), PeB,,

0y
(3.17) (S 6n+)(P)—(Dfp+)(P) =<90+(p), pedB,
0, PeB_,
whilst for any solution ¢_ of the Helmholtz equation in B_ we obtain
P 0, PeB,,
(3.18) (Drp-)(P)—( %)(P) ={p_(p. pedB,
: 20_(P), PeB_.

We remark that the form of the radiation condition given in (3.3) is satisfied
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by y(P, Q) defined in (3.1) and thus it represents a point source of spherical
waves which are outgoing at infinity. If k is replaced by —k then y(P, Q)
would have to be replaced by its complex conjugate y(P, Q).

Now consider the extertor Neumann problem (3.2), (3.3) and (3.5). In the
(usual) layer theoretic method we assume that the required solution has the
form

(3.19) u(P) = (Sw)(P), PeR’.

We then use the jump relation (3.12) together with the boundary condition
(3.5) to obtain the boundary integral equation

(3.20) (I+K)w(p) =g(p), pedB.

for the unknown density w.
The alternative Green’s theorem method involves applying the boundary

condition (3.5) to the representation (3.17). Taking the limit P — p* € dB of
the first equation in (3.17) yields

(3.21) (I+K*)w(p) =(S9)(p), pedB,

where w=u|éB. If (3.21) has a solution w then (3.17) imphes that the
required solution has the representation

(3.22) u(P) =3{(Sg)(P)-(Dw)(P)}, PeB..

However, although there is no a priori guarantee that the function defined by
(3.22) actually satisfies the boundary condition (3.5), nevertheless this can
always be ensured by applying the expressions for the normal derivatives of
single and double layer potentials (3.12) and (3.15) together with the bounda-
ry condition (3.5) to the representation (3.17) to obtain

(3.23) D,w(p)=(-1+K)g(p), peB.

Thus (3.22) gives a representation of a solution to the exterior Neumann
problem (3.2), (3.3) and (3.5) provided w solves both (3.21) and (3.23). A more
detailed discussion of the relevance of the addition equation (3.23) is given in
[10].

A similar analysis for the other boundary value problems leads to
similar boundary integral equations and these are given in Table I

The boundary integral equations all have the typical form

I+A)w=g,

where A =K or K+8 and g is a known term. When dealing with the
Helmholtz equation the quantity A is, strictly speaking, an operator-valued
function of the frequency parameter k appearing in the Helmholtz equation
and we should write A = A(k). As we shall see this dependence of 4 on k

16 — Banach Center 1. 19



242 G. F. ROACH

Table I
Boundary Representation Boundary integral
condition in B, equations
Dirichlet
5
u=fon 3B u — }(Sw—Df) (I-K)w = —ai(Df)
n
z=—Dw (I-KY)w={f
Neumann
i _
~—=/fon B u =1(S/— Dw) (I+K*w=S5f
én
u=3w T+Kyw=7f
Robin
u _
E—+u=fon aB u = 3(Sf—aSw—Dw) I+K*+aS)w=S5f
n
u=Sw I+K+oS)w=f

will raise difficulties when we try to invert the operator I+ A. We return to
this later. A full discussion of the properties of these boundary integral
equations 1s given in [10].

§ 4. Concerning existence

The question of existence of solution to the various boundary integral
equations, and hence also of the boundary value problems which generate
them, can be settled as a consequence of a few standard but independently
derived results. For completeness we shall give these results here and indicate
how they are used.

The integrals we have so far considered ((3.7) to (3.10)) all have the
typical form:

A(p,
[(pq)

ds,, R=|p—q|.
[T w(q)dS, p—ql

Although some of the properties of such integrals have already been men-
tioned more precise statements are summarized in the following theorems.
THeorem 4.1 ([5], [18]). If
(1) OB is smooth,
(i) w is a continuous density on B,
then
(iii) Sw is continuous in R’,
(iv) Dw is continuous in R*\ 0B,
(v) on OB the following jump relations hold:
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(i+3w)(p) =(x1+K)w(p), pedB,
on;

im {(Dw)(P)} =(F¥I+K*)w(p), pe?B,
popt
where i

P—p* (P—>p”) = P—peiB from B, (B_),
d/ony; = differentiation in direction of normal to 9B in the limit
as P— p*edB.

THEOREM 4.2 ([22]). Let
(i) B = R” be a bounded domain,
(i) A(x, y) be a kernel with the properties:

(a) A(x, y) is bounded Vx, ye B,

(b) A(x, v} is continuous Vx # y.
Then

@y () = g’”"’ )

Rm u(y)dtya R =|x_y|) x) yeR"’

defines an operator
4.2) A: L,(B)— Co(B)
which is compact for
m<n—-.
Furthermore, if
(iii) n > m = n—n/p,
(1v) 3 integer s < n such that s > n—(n—m)p,

(v) B, = s-dimensional section of B,
(vi) 3 q such that

Sp
C a4 n—(n—m)p
then
A: L,(B)— L,(B))
is compact.

THeEOREM 4.3 ([22]). Let
(i) B < R? be a bounded domain with smooth boundary 0B,

(ii) A(x, y) be a C! kernel for xe B, ye 0B.
Then

A,
o) = (28D ugyas, R=1x-y),

oB
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defines an operator

which is compact.
THeOREM 4.4 ([18]). Let
(1) B = R" be bounded,
(ii) A{x, y) be bounded for x, ye B,
(i) A(x, y) be continuou%for X # Y,
(iv) ue L, (B) solve

A, )
u(x) - éfﬂ Rm

u(y)dS+f(x), m<n.

Then
feC(B) = ueC(B).
To illustrate the use of these several results consider once again the

exterior Neumann problem: find an element ue C*(B,)n C!(éB) which
satisfies (3.2), (3.3) and (3.5).

Adopting the layer theoretic approach we look for a solution in the
form

u(P) =(Sw)(P), PecR®,
and assume
Al: (B is a smooth, closed, bounded boundary surface.
A2:  weC(dB).

Consequently, Theorem 4.1 can be used to deduce that

4.3) ue C(R?
and
44) I+K)yw=g.

Furthermore, Theorem 4.3 implies that the operator
K: L,{éB)— L.(AR)
is a compact operator. Consequently the Fredholm Alternative [18] can be

applied to a discussion of (4.4) and the question of existence can be settled.
Specifically, if it can be shown that the equation

(4.5) (I+K)v=20

has only the trivial solution v = 0 then there exists a unique we L,(dB)
which satisfies (4.4) for any given ge L,(0B). As it happens this is not quite
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good enough since we must satisfy A2. To ensure A2 we must first assume
A3: geC(0B).

Theorem 4.4 then guarantees we C(0B) as required.
Consequently, for the boundary integral equation method, as described
here, to be a-practical proposition we have to address two main problems:

Pl: Ensure uniqueness results hold for equations of the form (4.4).
P2: Develop constructive methods of solutions.

We would remark that many of the assumptions made above can in fact
be weakened quite considerably and in this connection we would refer to
[17-[3] and the references cited there. '

§ 5. Irregular frequencies

Questions of uniqueness of solution to boundary value problems governed
by the Laplace equation are innocent enough. However, this is not the case
when dealing with the Helmholtz equation since the various boundary
integral operators depend on k and this causes difficulties. To see how these
difficulties arise recall

DeriNiTION 5.1. k is a characteristic value of an operator + A (k) if and
only if there exists a nontrivial element w in the domain of A (k) such that

(IF A(K))w = 0.

Furthermore, it follows that if k is a characteristic value of + A (k) then
it is also a characteristic value of + A (k), + A*(k) and + A* (k). The following
result can be obtained:

LemMma 5.2 ([10]). k is a characteristic value of A(k) (— A(k)) if and only if
k is an eigenvalue of the interior Neumann problem (interior Dirichlet problem).

With this preparation we can illustrate the difficulties associated with
the dependence of the boundary integral operators on the frequency related
parameter k.

Consider the exterior Neumann problem (3.2), (3.3) and (3.5). When the
data function g is taken to be zero then a uniqueness theorem can be proved
[22]. This implies that for g = 0 the only solution of the exterior Neumann
problem is u = O for all values of k. However, if we adopt a layer theoretic
approach and assume that the exterior Neumann problem (3.2), (3.3) and
(3.5) has a solution in the form ¥ = Sw then in the case when g = 0 this leads
to the boundary integral equation

(5.1) (I+K(k)w(p) =0, pedB.

Lemma 5.2 indicates that (5.1) has a nontrivial solution w(p) whenever k is
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an eigenvalue of the interior Dirichlet problem and this is turn implies that
the exterior Neumann problem with g = 0 also has a nontrivial solution in
contradiction to the independently obtained uniqueness theorem [22]. These
values of k which are responsible for this contradiction are called irregular
frequencies and, as can be seen, they give rise to a “pathological” nonunique-
ness problem.

§ 6. Modified Green’s functions

As we have seen, the boundary integral equations associated with the
Helmholtz equation present a number of intriguing problems, mainly concern-
ed with questions of uniqueness of solution and with difficulties near
eigenvalues. Of course, these problems can be removed entirely if the exact
Green’s function for the problem is known. Unfortunately, the exact Green’s
function is only known for a few simple surfaces. Despite this, however, an
attempt has been made [20], [23] to use, instead of the free space Green’s
function, a Green’s function which is known exactly for some neighbouring
region. This approximate Green'’s function technique.leads to similar bound-
ary integral equations to those obtained when the fundamental solution was
used, which is not surprising since the approximate Green’s function is itself
a fundamental solution. Whilst the boundary integral equations which are
obtained by using an approximate Green’s function offer good prospects for
numerical analysis, nevertheless a number of problems remain, in particular
the pathological nonuniqueness problem. Recently Jones [7] introduced a
theory of modified Green’s functions in order to overcome the uniqueness
problem arising in the boundary integral formulation of the exterior Dirich-
let and Neumann problems for the Helmholtz equation. In this theory the
fundamental solution, or free space Green’s function, for the Helmholtz
equation was modified by adding radiating spherical wave functions, that is,
outgoing solutions of the Helmholtz equation, and the coefficients of these
added terms were chosen so as to ensure that the boundary integral
formulation of the problem was uniquely solvable for all real values of the
wave number. Ursell [23] simplified the proof of a key theorem in [7] but
confined his remarks to the exterior Neumann problem in two dimensions.

In [10] a systematic account is given of the boundary integral formula-
tions of both the Dirichlet and Neumann problems together with a number
of properties of the boundary integral operators arising in both the layer
theoretic method and the Green’s theorem method. In particular, it is shown
that uniqueness of the boundary integral equation formulation of exterior
problems can be retained even at eigenvalues of the corresponding adjoint
interior problems by treating a pair of coupled equations. Similar results for
the Robin problem are given in {1] where it is shown how classical problems
for smooth boundaries may include boundary values in L,.
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In a recent paper Kleinman and Roach [11] have shown how Jones’
modification can be incorporated into the boundary integral formulation
presented in [10]. Furthermore, Ursell's simplification has been adapted to
three dimensions and explicit results have been obtained for both the
-Dirichlet and Neumann problems. In particular, it is shown in [11] that a
single boundary integral equation is uniquely solvable in each case even at
interior eigenvalues of the adjoint problem by suitably modifying the Green’s
function in the way suggested by Jones [7]. Furthermore, it is shown in [11]
that by abandoning the restriction to real coefficients in the modification
which Jones and Ursell found sufficient to eliminate nonuniqueness of
interior eigenvalues, the coefficients may be chosen to be optimal with
respect to certain specific criteria. This was motivated by a desire not only to
ensure unique solvability but also to provide a constructive method of
solving the boundary integral equations. In particular, in [11] results are
presented which show how to choose the coefficients so as to minimize the
difference between modified and exact Green’s functions for the Dirichlet and
Neumann problems. In [12] it is shown that the coefficients can be chosen to
minimize the norm of the modified boundary integral operator. This provides
a bound on the spectral radius of the modified boundary integral operator
and hence an indication when the associated boundary integral equation is
solvable by iteration. In [12] an explicit definition of these “optimal”
coelficients is given togeéther with an alternative definition which, although
not optimal, nevertheless simplifies the computation of the coefficients consi-
derably, at the same time ensuring unique solvability. These results for the
Dirichlet and Neumann problems have been extended to the Robin problem
in [1].

Here we give a brief description of the modified Green’s function
technique together with a summary of results obtained so far.

The basic problems with which we are concerned are given by (3.2), (3.3)
and one of either (3.4), (3.5) or (3.6).

We now change notation slightly in order to emphasize any modifica-
tion we may introduce. Specifically, we denote a fundamental solution of the
Helmholtz equation by

eikR

- 2nR’

If now g(P, Q) is a radiating solution of the Helmholtz equation in both P
and Q then

(6.2) (P, Q5 k) =y,(P, Q) :=710(P, Q) +4(P, Q)

is also a fundamental solution. We refer to y, as the modified (free space)
Green’s function.
If we L,(0B) then we may obtain standard or modified forms of the

(6.1) Yo(P, @i k) =70(P, Q) := R =|P-0l
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single and double layer distributions of density w according as y, or ¥, is
used as a fundamental solution. Specifically, we have for j =0, 1

(6.3) (S;w)(P):= [v(P,9w(q)dS,, PeR’
aB

(64) D)= | P, gwig)dS, PeR.
0B q

Corresponding to (3.9} to (3.11) we also introduce the obvious notation
K;, K¥, D,;, j =90, 1. Consequently, we obtain the same form for the jump
relations (3.12) to (3.15) and Green’s Theorem (3.17) and (3.18), except that
now all the integral operators have a subscript j to denote whichever
fundamental solution is used. Similarly, we also recover Table I but with all
the boundary integral operators suitably subscripted.

Turning now to the question of uniqueness of solution we first notice
that all the boundary integral equations in Table I have the typical form

where A; denotes K; or K;+0S; and g the known terms. As we have already
remarked, strictly speaking A; = A;(k) is an operator-valued function of the
frequency parameter k in the Helmholtz equation. Consequently, considera-
tion must be given to the influence of the so-called characteristic or irregular
values of A;(k) which are defined to be those real values of k for which
(I+ A;(k))~ " does not exist. It is these values of k which give rise to problems
of nonuniqueness and difficulties near eigenvalues. Consequently, we now
enquire into the possibility of modifying yo(P, Q; k) in a systematic way so
that the resulting modified fundamental solution vy, (P, Q; k) generates boun-
dary integral equations for which there is no problem of nonuniqueness. In
the modification (6.2) the choice of the function g 1s still at our disposal.
Therefore we shall define

(6.5) g(P, Q)= Z o, v (P) v, (Q),
=0
where
. . cos mp, |leven,
) €.l := el Pm
(6.6) v A 25 (kr) PT (cos 0) {sin mo. ! odd,

with
z(kr) = KD (kr),  z,(kr) = j,(kr),

ik (n—m)1 12
Anm _{?8"'(2"“) (n+m)!} ‘

=1, ¢,=2, m>0,

I =3n(n+1)+m, O0<m<n.
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The object now is to choose the coefficients «,; in the definition of g so as to
ensure that the boundary integral equations associated with the modified
fundamental solution (6.2) are uniquely solvable.

We notice first that Lemma 5.2 does not generalize to the operator K,
because g is not defined throughout B_. Nevertheless, it is possible to
estabhish the following [11].

THEOREM 6.1. If g(P, Q) is defined by (6.5) so that
|20+ 1) <1 for all |,
then K, and —K,—0S,; have no characteristic values.

Thus the modification of the fundamental solution as indicated by (6.5)
removes the characteristic values of the associated boundary integral opera-
tors and in doing so also removes the nonuniqueness problem. Furthermore,
the following useful results can be established [11].

THEOREM 6.2. If k is an eigenvalue of multiplicity m of the interior
Neumann (Dirichlet) problem then there exists a modification g(P, Q) with only
m nonzero coefficients such that k is not a characteristic value of K, (—K,).

THEOREM 6.3. If ky, k4, ..., ky are eigenvalues (not necessarily ordered) of
multiplicity my, m,, ..., my respectively of the interior Neumann (Dirichlet)
problem then there exists a modification g(P, Q) with ZL m; nonzero coeffi-
cients such that k., k,, ..., ky are not characteristic values of K, (—K,) and
hence also not characteristic values of K, (—K,), K¥ (—K?¥) and K* (-K?%).

Thus, we have indicated here that the familiar boundary value problems
for the Helmholtz equation can be replaced by a single boundary integral
equation which is uniquely solvable, even at eigenvalues of the interior
adjoint problem, by using a suitably modified Green’s function.

§ 7. Optimal medifications

In this section we present results based on different criteria for choosing the
coefficients in the modification (6.5). These are obtained by a desire not only
to ensure unique solvability but also to provide constructive methods of
solving the integral equations. For instance, we might wish to choose the
coefficients so as to minimize the difference between the modified and exact
Green’s functions for the Dirichlet and Neumann problems. Alternatively, we
might take as a desideratum the minimization of the norm of the modified
integral operator as this will provide a bound on the spectral radius of the
operator and so give an indication of when the modified boundary integral
equation can be solved by iteration. The derivation of the results which are
simply presented in Table II can be found in references [1], [11] and [12].

In Table II the symbol S, denotes an auxihary sphere completely
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containing the given surface 0B; furthermore, |v;} denotes a dual basis to
{t,,] with the property that (v}, v,) = d,,. Here (-, ) and ||-|| denote the
usual L.(cB) inner product and norm.

We remark that in this notation [11], Lemma 2.1, ensures that {v,}/Z,
and {dv/0n}2, are linearly independent and complete on L,{dB).

Obviously any subset of these functions will also be linearly independent
though not complete.

Since !r,!\L, are linearly independent on B, though not orthogonal,
there does exist a dual basis of the span of {y;} denoted by {v;"}\L, with the
property that

(U,, U,f,') = 5!m‘

In fact the functions v, may be represented in terms of v, by

vm(P) = Z Crj 1;(P),

where the coefficients C,,; are solutions of the equations
N _ N
Z ij(Ut, Uj) = Z ij(vj, v) =6,
j=0 =0

For each m, the set of N+ 1 equations is uniquely solvable because the linear
independence of {v,} implies that the coefficient matrix with elements (v, v;)
is nonsingular.

The linear independence of the expansion functions and the question of
invertibility of associated matrices is treated in detail in [11], [12].

8. A numerical example

If we restrict our attention to two dimensions the various quantities introdu-
ced in the previous sections assume the following particular form:

V5 (P):= J —ig/2 HY (kr)cos 10,  t5,,(P):= / —ig,/2 H{" (kr)sin 16,
vy (P): =/ —igy2J,(kr)cos 16, Va4 (P) 1=/ —ig/2 J,(kr)sin 16,
Yo(P, q) = —EH“)(kR (P, 9) = _Z P )vi(Ps),

where

P, rp<r, P, rp>r,
P.:= P, =
qa, ry<rp, q, rg>rp,

(P, q) = yo(P, @)+ _Z vi(P)vi(q _Z P.) 6i(P)+oy(vf(P.)).

I
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We now consider the question of how to define the coefficients a; in the
modifications of the Green’s function so as to minimize (|K,||, because if we
can ensure that |[K,|| <1 then the associated boundary integral equations
will be solvable by iteration. A particularly useful result in this direction is
provided by the following [12].

THEOREM 8.1. If
oB:= [peR* r, =a+¢f (0,)},

0 _,{(vi, u§)+(ad,/an, aug/a,,)}
S I TN T ETE

then ||K || = O(e).

We remark that this theorem provides a relatively simple definition for
the coefficients in the modification which makes the operator norm small for
small perturbations of a sphere; this same definition also ensures that there
are no characteristic values of the modified operator for all Lyapunov
surfaces without restriction. Indeed, the following result can be obtained.

THueoreM 8.2. [11]. If a; are defined as in Theorem 8.1 for all |, then
I+ K, is invertible for all real k.

It is now natural to enquire if ||K,]| will be reduced if the modification
contains only a finite number of nonzero coefficients. To demonstrate that
this is indeed the case we shall assume that the coefficients are chosen as in
Theorem 8.1 for [ < 2N+ 1 and zero otherwise, and present numerical results
corresponding to the case when 0B is a sphere of radius a.

The spectral radius of the operator K, is denoted by

ok, (k) : = sup {4, (k): (A, (k)1 —K,)w = 0} < [IK,.

In the particular case of a sphere of radius a it is known that
A (k) = 1 —ikanJ,(ka) H! (ka) = — 1 —ikanJ,(ka) H\" (ka).
Fur?hermore, if
J(ka)=0 then A,=1
and k is an eigenvaiue of the interior Neumann problem, and if
J,(ka) =0 then 4i,=—1

and k is an eigenvalue of the interior Dirichlet problem.
If now we choose «; as in Theorem 8.1 for / < 2N+ 1 and zero otherwise
then

ok, (k) = sup{|2,]: (,]—K,)w =0}.

n>N

The manner in which le(k) varies with N and k is illustrated in Table III.
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Table 111

Number Spectral radius oy . (k)

of terms  4;_01 05 10 15 20 25 30 35 40 45 50

1.01 .20 135 131 114 120 121 113 118 1.14 1.16
0.11 018 049 082 107 120 121 113 118 114 116
0.11 015 023 033 051 076 098 113 118 1.14 116
0.11 015 023 033 042 050 054 074 093 110 116
0.11 015 023 032 042 050 054 055 053 072 090
0.11 015 023 032 042 050 053 055 053 048 054
0.11 015 023 032 042 042 053 055 053 047 041

—_—ND =] W W= O

1

These results clearly indicate that the number of terms in the modifica-
tion required to reduce significantly the spectral radius increases with ka.
Nevertheless, we note that even for ka = 5 (well into the so-called resonance
region} only 11 terms are required in the modification to reduce the spectral
radius below 0.5. Results for noncircular boundaries are given in [9].

§ 9. The null field equations

The null field method (also known as the T-matrix, extended boundary or
Waterman method) has been extensively used as a constructive method for
solving the Dirichlet and Neumann problems for the Helmholtz equation in
an exterior domain. In this and the following section we shall show that
there is a close connection between the null field method and the modified
Green’s function technique described here.

Assume u 1s a solution of either the exterior Dirichlet or exterior
Neumann problem for the Helmholtz equation. Applying Green’s Theorem
in B, to u and a radiating wave function §(P) we obtain

ou(p) Ov;
9.1 i (p)— ds, =0, Vi
9.1) L{ an, vi (p)—u(p) n, (p)dS, =0,
Now employing the boundary conditions we obtain, for Dirichlet data,
ou(p) . avj
9.2) [ = vip)dS, = | [(P5—dS, VI,
o Onp oB Np

and for Neumann data

3 Ju(p) i

B

ds, = [ f(pvi(p)dS,, VL.
aB

P

Equations (9.2) and (9.3) are the null field equations for the Dirichlet and
Neumann problems respectively. Once du/dn for the Dirichlet problem and u
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in the Neumann problem are found on 0B, the Green representation theorem
may be employed to represent the solution in B, .

In the null field method cu(p)/dn, and u(p), pe @B, are expanded in
terms of nonorthogonal bases for L, (¢B). In [19] it is shown that the system
of “projected” spherical harmonics Y,,(w), w = f~'(p), pe B, form a basis
and also a Riesz basis for L,(¢B), where [ defines ¢B.

Often the outgoing cylindrical or spherical functions {vj! and {dvi/dn)
are employed as expansion functions. They are known to be complete and
linearly independent in L,(éB) for any'% [11], [17], as are (v} and [dv,/dn!
when k is not an eigenvalue of either the interior Dirichlet problem or the
interior Neumann problem, respectively. Therefore they form a closed mini-
mal system (or Hamel basis) for L,(0B). Unfortunately, they do not necessa-
rily also form a (Schauder) basis for L,(dB). When they do, the Rayleigh
hypothesis 1s said to be satisfied.

It may be noted here that if one uses spherical wave expansions on 0B
for impenetrable scatterers (i.e. for Dirichlet, Neumann, or Robin boundary
conditions), the k value in these expansions need not coincide with the given
exterior k value in the problem. Therefore, if the given exterior k value
happens to coincide with an interior eigenvalue, of the Dirichlet or Neumann
problem as the case may be, one can choose a slightly different k value for
the expansions on 6B. However, when the given exterior k value can be used
also for the expansions on 0B, useful simplifications and interesting relations
are obtained. Technically, the simplifications usually result from an applica-
tion of the formulas

Ao e ]
(9.4a) j livf,,%—vi =" lds = o,
B ]
dvy, o]
(9.4b) | [u,,, i 45 =0,
i av’i € al]im —
(94C) (-.7[3 |:U,,, %—' U; EL_] ds = 25,,,,,

{where the k value is the same everywhere!). It can be shown [13], [14] that
when ©f, v}, &vf/dn, Ovi/On are bases, the various “Q-matrices” that occur in
the null field method are in fact invertible.

As an illustration of these general remarks, we show that by a suitable
choice of expansion for u and du/0n on OB, an interesting relation between
the Dirichlet and Neumann problems can be obtained.

Assuming that both {¢7} and {0vf/0n} are bases for L,(dB), introduce the
expanstons

(9.5) u(p) = )Y caViu(p), pedB,
m=0
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9.6) ., pedB.

- ﬂvm(P)
= 2 dn—3
m=0 P
Observe that we do not assume that ¢, =d,,. Nevertheless, when we
substitute (9.4) and (9.5) in (9.6) we obtain

9.7) { y d,,, Z et }dS 0, Wi
,B o on

m=0
By taking (9.4a) into account, (9.7) may be written, provided that the
interchange of integration and summation can be justified, as

9.8) S (dn— j v,a’S 0, W
m=0

Furthermore, it can be shown [13] that the matrix

[ | du5/0n-vidS]

B

1s invertible. Therefore we find that
(9.9) Cp=4d, Vm.

This says that the coefficients of an expansion of u in terms of |vj} on
(B are the same as the coefficients of an expansion of du/dn in terms of
!évf/én) on ¢B. In a sense this provides a solution of the boundary value
problems because it has these implications: for the Dirichlet problem the
coefficients of an expansion of the unknown function du/Ch in terms of
' (vj/dn} on CB are the same as the coefficients of an expansion of the data, f,
in terms of zf]; and for the Neumann problem the coefficients of an
expansion of the unknown function u in terms of ¢vf] on 0B are the same as
the coefficients of an expansion of the data, f, in terms of |dvj/0On}. Moreover,
if this result is incorporated into the Green’s representation of the solution
we find

9.10) u(P)= %yo(P q) iqav,(q) Cfo

(P q) Z Cl”l(‘])}ds PeB,,

‘I I=

and upon interchanging summation and integration

e 4 al;c
©O.11) u(P) = Z%cd{you’,q) @) _%op gy ,(q)} PeB, .

i=0 B an, fn,

But since o} is a radiating solution of the Helmholtz equation, Green’s
theorem implies that (9.11) becomes

9.12) ' u(P) = f: cvi(P), PeB,,
=0
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where we repeat that the coefficients are those in an expansion of the given
data on 0B, ie.

(9.13) f() =3 ¢vi(p), pedB, Dirichlet case,
=0 .

9.14) f(p) = Z c,aT(p), pe 0B, Neumann case.
=0 P

The series (9.11) or (9.12) must converge uniformly with respect to P in order
to justify the interchange of summation and integration in (9.10). This is
known to be true for all Pe B, when the Rayleigh criterion is fulfilled (see,
for example, [17]).

The solution of these scattering problems is thus seen to depend solely
upon the ability to find the Fourier coefficients of a given function f on éB
with respect to the, in general nonorthogonal, bases {vj} and {0vj/dn}. In
general, in acoustic problems we have either

(9.15) f(p)= —u'(p) (Dirichlet case),
or
(9.16) f(p) = —0du(p)/on, (Neumann case),

where «' is an incident field. The incident field is usually conveniently
represented as an expansion, not in outgoing waves !vj} but in standing
waves v}, So, for instance, if the sources of «' lie outside a circumscribing
sphere of ¢B one can usually readily find a representation of f in the
Dirichlet case as

X

(9.17) fp =73 au(p), pedB.

=0
To obtain the result (9.13) an expansion of the form

ac

(918) Ull (p Z At v:n (p)a pPe 6B=

is required. Assuming that such an expansion is available we obtain by (9.17),
(9.18), (5.13)

(9.19) S(p) = ‘ZO avy(p) = z Z A0y U () = Z Cm U (D).

I=0 m=0

The linear independence of the radiating wave functions on JB enables us to
write

(9203) Cm = Z a, &ty
=0
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which can be written in matrix form as
(9.20b) ¢ =Ty, T = ()

Here T, is known as the transition matrix for the Dirichlet problem. (The
result (9.20b) that the transition matrix coincides with the matrix that relates
v, and v, on ¢B was noted by A. T. de Hoop and P. van den Berg (personal
communication).)

We see that the given problem has now been reduced, at least formally,
to the problem of determining the clements of T;.

For the Neumann problem, the data f is usually most conveniently
expressible as

(9.21) fp) =} biavi(p)fon,, peiB.
=0
Now to obtain the result (9.14) an expansion of the form
"v’ - ¢
(9.22) dul P ”’"(p), pe @B,
on, .z on,

is required. Assuming that such an expansion is available we obtain, from

(9.21), (9.22) and (9.14)

OV G
ZZmev(p) Z"‘ (p)_

I=0 m=0 np m=0 on,,

x ov(p

023 fip=3 b
=0 a

As before, the linear independence of {cv,/0n} on 0B enables us to write

(924) Cm = Z b!ﬁmh
=0

which may be written in matrix form as
(9.25) c=Tb, T =B

and T 1s the transition matrix for the Neumann problem. We see that the
Neumann problem has been reduced, at least formally, to the problem of
determining the elements of T.

Actual construction of the elements of the transition matrices may be
accomplished in a variety of ways. For example, we can obtain from (9.18)

a

(926) (Ull’ U;) = Z aml(v:ns U;)s

m=0

where ( , ) denotes the usual L,(JB) inner product. Equation (9.26) can be
written in matrix form as

(9.27) b =0p T,

I7 — Bunach Center 1. 19
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where

(9.28) Qb = [(v, v)] and Q= [(t}, v)],
and since it can be shown [13] that Q' exists,

(9.29) Th =05 ' Op.

A similar treatment is possible for the exterior Neumann problem [13].

§ 10. Connection with the modified Green’s function technique

We now consider a more general form for the modification of the Green’s
function than that used in § 6. Specifically, we assume a modified Green’s
function of the form

(]Ol) yIID(Ps Q)Z))O(P, Q)— f: i am[vi(P)vsn(Q)s P’ QEB+,

=0 m=0

for the Dirichlet problem and

(10.2) M (P, Q) = y(P, Q)— Z Z Bt 01 (P) U5 (Q), P,QeB,,

=0 m=0
for the Neumann problem. We should remark that the minus sign is
introduced simply for convenience later on. Il we try to choose the coelfi-
cients in the modification so that the modified Green function is the best
least squares approximation to the actual Green function we will want to
choose a,, sO as to minimize

(103) [ JBR(P. QU2dS,dS,
54 7B
in the Dirichlet case and choose f,, to minimize

4

[!S dSp

8y
(104) [

S4 7B

f'”

in the Neumann case, where S, is a circle (sphere) of radius 4 which contams
B_ in its interior. Clearly the quantities (10.3) and (10.4) would vanish if 7
and y)' were the exact Green functions for the Dirichlet and Neumann
problems respectively. We notice that (10.3) may be written in the form

(10.5) VT oi(P) i) = Y 2 tin(@)}|? S, dSp,

S_,‘ B I=0 m=

whilst (10.4) becomes

{0 3,

=0 m=0

(10.6) [

SA B

2
H dS, dSp.
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In this form it is clear that the expression (10.5) hence (10.3) will vanish, and
hence be minimized, if a,; are chosen so that

(10.7) vi(@)— D amti(q) =0, gedB.

m=0
(This is always possible when the Rayleigh criterion is satisfied.) But (10.7) is
precisely the same as (9.18). Therefore, the coefficients that cause 72 to best
approximate the Dirichlet Green function are precisely the elements of the
transition matrix T,; see (9.20b). In fact we may now express the Green’s
function explicitly.

(10.8) Yo (P, @) =v0(P,q9—0" T,v, PeB,,qedB,

where 7 is the vector with elements (tf).

Similarly, (10.6) and hence (10.4) will vanish if §,, are chosen so that
avl( a0 ave )

D_ Z By 28] qe 0B,

Q' 'i

(10.9)

which is precisely the same as (9.22). Hence the coefficients that cause ) to
best approximate the Neumann Green function are the elements of the
transition matrix T (see (9.25)) and

(10.10) WP, q) = o(P, gg—5" Tyb, PeB,, qedB.

Finally, we exhibit the solutions of the Dirichlet and Neumann problems in
terms of the modified Green functions. For this we employ Green’s theorem,
which takes the form

cu(g) 0y, _ Y2u(P), PeB,,
"o, ’““”}ds "%uu», pe B,

q

(10.11) f%qu)

q

for any radiating wave function u. The fact that y, (P, ¢) has singularities in
B_ prevents the integral in (10.11) from vanishing when Pe B_. Now if we
employ the Dirichlet modified Green function (10.1) and seek the solution of
the Dirichlet problem we find

dulg) O
on on

q

(1012) u(P)=73| %)’?(P, 9

‘B

9 (p, )fm} PeB, .

q

Moreover, if PeS,, where S, is any circumscribing circle (sphere), then
we obtain an expansion of the Green function in the form

ac

(10.13)y  y2(P, @) = ¥ vi(P) Wi(@)— ). %mvm(q)], PeS,, qedB.
m=0

=0

If &, are chosen to satisfy (10.7) then y7(P, g), given by (10.8), vanishes for
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qe dB and

D
(10.14) u(P)=—3| —62~(P q) f(@dS,, rp>=maxr,.

i Ong 4B
But, expansion of f in terms of {15}, as in (9.13), yields
€L ').YD
(10.15) u(P)= -1 Z j' , Q) vi{q)dS,, rp>maxr,.
I= q qecB

Since vf 1s a radiating wave function, (10.12) yields

D
(10.16) (P) = =4 | Go(P. a)vila)ds,
OB
which when substituted in (10.15) gives
(10.17) u(P)= 3 cvj(P), rpzmaxr,
=0 qefB

in agreement with (9.12), except that here there is an explicit restriction on P.
Similar results are obtained for the Neumann problem [13].

§ 11. Some final remarks

In the previous sections we have given a flavour of the boundary integral
equation method for solving elliptic boundary value problems, indicated
some of the inherent difficulties and described a method, the modified
Green’s function method, for overcoming these difficulties which offers good
prospects for numerical work. The promise of the modified Green’s function
approach has also been further emphasized by demonstrating its connection
with the T-matrix method.

Although the boundary integral equation method is not at all new,
nevertheless it is still an active area of research. In recent years, apart from
the concept of a modified Green’s function, it has given rise to a number of
other techniques for solving boundary value problems such as boundary
element methods [2] and coupled boundary integral and finite element
methods [6]. At the moment perhaps the majority of research effort in this
area 1s being devoted towards developing boundary integral equation meth-
ods, with the aid of the theory of pseudodifferential operators, so that
problems involving nonsmooth boundaries and more complicated boundary
conditions can be handled constructively.

References

(1] T. S. Angell and R. E. Kleinman, Boundary integral equations for the Helmholiz
equation: the third boundary value prohlem, Math. Methods Appl. Sci. 4 (1982), 164-193.

[2] G. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary Element Techniques,
Springer, Berlin 1983.



[3]
(4]
(51
(6]
7]

(8]
(9]

[10]
(111
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]
(2]

(22

(23]
[24]

[25]

MODIFIED GREEN'S FUNCTIONS 261

G. 1. Eskin, Boundary Vulue Problems for Elliptic Pseudodifferential Equations, Transl
Muath. Monographs 52, AM.S., Providence, R. I. 1981.

I. Gohberg and M. Krein, Introduction to the Theory of Linear Non-Self-Adjoint
Operators, Transl. Math. Monographs 18, AM.S. Providence, R. [. 1969.

N. M. Gunter, Porential Theory and its Applications to Basic Problems of Mathematical
Physics, Ungar, New York 1967.

C. Johnson and J. C. Nedelec, On the coupling of boundary integral and finite element
methods, Math. Comp. 35 (152) (1980), 1063-1079.

D. S. Jones, Integral equations for the exterior acoustic problem, Quart. J. Mech. Appl.
Math. 27 (1974), 129-142.

O. D. Kellogg, Foundations of Potential Theory, Springer, Berlin 1929.

A.Kirsh and R. E. Kleinman, On the spectral radius of boundary integral operators with
modified Greew's function kernels, private communication.

R. E. Kleinman and G. F. Roach, Boundary integral equations for the three-dimensional
Helmholtz equation, STAM Rev. 16 (1974), 214-236.

—, —. On modified Green's functions in exterior problems for the Helmholiz equation, Proc.
Roy. Soc. London Ser. A 383 (1982), 313-332.

—, —, Operators of minimal norm via modified Greer’s functions, Proc. Roy. Soc. Edinburgh
Sect. A 94 (1983), 163-178.

R. E. Kietnman, G. F. Roach and S. E. G. Strom, The null field method and modified
Green's functions, Proc. Roy. Soc. London Ser. A 394 (1984), 121-136.

R. E. Kleinman and G. F. Roach, On the unique solvability of a class of modified
boundary integral equations, Proc. Edinburgh Math. Soc. 27 (1984), 303-311.

J. Kral, Integral Operators in Potential Theory, Lecture Notes in Math. 823, Springer,
Berlin-Heidelberg-New York 1980.

P. A. Martin, Acoustic scattering and radiation problems, and the null freld method, Wave
Motion 4 (1982), 391-408.

R. F. Millar, The Rayleigh hypothesis and u related least squares solution to scattering
problems for periodic surfaces and other scatterers, Radio Science 8 (1973), 785-796.

S. G. Mikhlin, Mathematical Physics, An Advanced Course, Elsevier, New York 1970.
A. G. Ramm, Convergence of the T-mairix approach to scattering theory, J. Math. Phys. 23
(1982), 1123-1125.

G. F. Roach, On the approximate solution of elliptic, self adjoint boundary value problems,
Arch. Rational Mech. Anal. 27 (3) (1967), 243-254.

—, Approximate Greew's functions and the solution of related integral equations, Arch.
Rational Mech. Anal. 36 (1) (1970), 79 88. '

V. I. Smirnov. A Course of Higher Mathematics, Pergamon Press, Oxford 1964.

F. Ursell. On exicrior problems of acoustics, 1, Math. Proc. Cambridge Philos. Soc. 84
(1978). 545-548.

V. K. Varadan and V. V. Varadan, Acoustic, Electromugnetic and Elastic Ware
Scartering — Focus on the T-"Matrix Approach, Pergamon, New York 1980.

P. C. Waterman, J. Acoust. Soc. Amer. 55 (1969), 1417-1429.



