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Introduction

In this paper we introduce a generalization of PDL and dynamic algebras in
which the operation of iteration procedure «* is replaced by a more complex
recursion operator on programs I, (a,, ..., a,). To illustrate the idea of the
generalization let us recall the meaning of a* via the fixed-point semantics.

A natural semantics of PDL is the notion of dynamic set-algebra. In
such algebras programs are identified with binary relations in a fixed set U
(the domain), the program operations o (composition) and U (nondeterm-
inistic choice) are identified as the composition and union of relations respect-
ively, and the program constants O (nowhere defined program) and !/ (the
program of identity function) are the empty relation O and the identity

o

relation ! respectively. The iteration is defined as follows: a* = [J o'. It is
. i=0

easy to see that a* is the least solution of the inequality /ua 00 < 6, which

also satisfies the equality /ua oa* = a*. So a* is the least fixed point of the

program term [(a, ) =l a0b.

Now let I'(¢y, ..., &,, 0) be an arbitrary program term built from the
variables &, ..., &,, @ and constants O and !/ by means of the operations o
and u. Then it is easy to see that for any relations a,, ..., , the inequality
I'a,, ..., a, 6) =0 has a least solution I', («,, ..., a,) which is a fixed point
of the map 8+ T (ay, ..., a,, §). In agreement with the standard fixed-point
semantics of recursive programs, I',(ay, ..., %, can be understood as a
nondeterministic recursive procedure, calling itself a number of times in the
process of its execution. Obviously, the iteration procedure «* is a special
case of recursion.

An arithmetical axiomatization of a first-order dynamic logic with
recursive procedures in the above-described sense is given by Harel [2]
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(Harel calls his logic a context-free dynamic logic — CFDL). In this paper
we consider a kind of a propositional version of CFDL. Namely, for any
program term I'(,,...,¢,, 6) we define a propositional dynamic logic
denoted by I',,-PDL and give for it an infinitary axiomatization in the style
of Mirkowska [S] and Goldblatt [1] and a completeness theorem with
respect to the fixed-point semantics described above. For that purpose we
first introduce the notion of I' -dynamic algebra and give an analog of the
Stone set-representation theorem for some class of such algebras.

1. I' ,-dynamic algebras

The notion of I',-dynamic algebra (I',,-DA) generalizes the notion of dyna-
mic algebra introduced by Kozen [4] and Pratt (6]. I',-DA is a two-sorted
system (B, P)={((B,0,1, A, v,=,7), (P,0,l,0,u, T, T,),[],7) comb-
ining two algebras: B =(B, 0,1, A, v, =, 7) which is a Boolean algebra,
and P=(P,0, 1,0, u, I', I',), called here the programming part of (B. P).
The elements of P are called programs, O and [ are elements of P standing
here as an abstract of the nowhere defined program and the program of
identity function respectively. The binary operations © and U are called
composition and nondeterministic choice. The operation I': P"*!' — P is an (n
+ 1)-ary program operation which is a superposition of O, /, o and u. The
operation I',: P"— P is an n-ary program operation connected with I' and
standing here as an abstract of the nondeterministic recursion described in
the introduction above. The box operation [ }: PxB— B and the test
operation ? : B — P are inter-sort operations and have the same meaning as
in dynamic algebras.

The axioms are the following, with g, re B and a, b, ce P:

1. [al(g ~ r)=[alg A [a]r.
[a]l =1.
[O]lg =1.
[1g=gq.
[aob]q =[a][b]q.
[aub]lq =[alq ~{b]q.
[r?]g =r=g.

To formulate the remaining axiom concerning the operations I" and I,
we introduce the following sequence for any ay, ..., a,e P:

ro(al, vy a") = 0, rk.‘,](al, ceny a,,) = r(al, cvey Ay, F,,(al, ey a,,)).

NowhwN

Then the last axiom is the following:

8 For any a,,...,a,,ceP and geB the inofinite meet
N [coTl(a,, ..., a,)]q exists in B and is equal to [col,(a,, ..., a,)]q.

k<w
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Following Pratt [6] we call (B, P) separable if for a, be P
(VgeB)([alq=[blg)—a=b.

Let (B, P) and (B’, P’) be I',,-DA’s. An isomorphism (homomorphism) [rom
(B, P) into (B', P’) is a pair (h, g), where h and g are isomorphisms (homo-
morphisms) from B into B’ and from P into P, respectively, with h([a]q)
=[g(a)lh(q) and g(q?) = h(q)? for any gqeB, acP.

Let P, = P, B, = B, and define by simultaneous induction:

Posr=P,0 10,1} U g qeB,jutabl a, beP,, Oelo, u}}
uil, @y, ..., a)l ay, ..., a,e P},
Byyy = B,ui0, 1] U l[alql ac Py, qeBy)
v {qOr| q,reB,, Oe{n, v, =1}u{7gl qeB,}.

Let X be a class of I',-DA’s. We say that (B, P) is free in X il there exist
B, =B and P, = P such that the following two conditions are satisfied:
() B=\) B, and P= |J P,.
k<w .. k<o
(2) If (B', P)eX, hy: Bp— B and g,: P, — P, then (hy, go) can be
extended to a homomorphism from (B, P) into (B’, P’); we call such a pair
(By, Py) a free generator of (B, P).

2. Set I' ,-dynamic algebras

Let U be a nonempty set. For any g < U and a, b < U xU we define:
O =@ (the empty relation), [= {(x, x)} xeU},
aob = {(x, y)| Az((x, z)ea and (z, y)eb)},
aub = i(x, ) (x, y)ea or (x, y)ebi,
[alg = {xeU| (VyeU)((x, yyea—yeq)},
q? = {(x, x)| xeq}.

Let I': (U xU)y'*' - U xU be a fixed function which is a superposition
of0,l,0oand U and let I, k =0, 1,2, ..., be defined as in the definition of
r,-DA. Then for any a,, ..., a, S U xU we define:

r,(a,,...,a)= U Iay,...,a,).

k<o

By applying the Tarski fixed-point theorem ([9], see also [8]) to the
mapping 8 —I'(a,, ..., a,, 0), it can easily be seen that I',(a,, ..., a,) is the
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least solution of the inequality I'(ay, ..., a,, 8) = ¢ which is a fixed point of
r,ie, I'lay, ..., a, Ty(ay,...,a)) =T.{ay, ..., a,).

Then the following theorem is true.

Tueorem 1. The algebra (2Y,2"*Y)=(2Y, 0, U, A, v, =, ),
vv,0,1,0,0,Ir,), [ 1,7 where (2, 0,U, A, v =,7) is the
Boolean algebra of all subsets of U and (2V*Y,0,1,0, U, I',T,), [ ], ? are
defined as above, is a separable T ,-DA, called the set I',-DA over U.

The proof is straightforward.

3. Representation theorem

Let (B, P) be a I' ,-DA. We call x a filter in (B, P) if x is a filter in B; x is a
I ,-filter in (B, P) if x is a filter in (B, P) and for any q€B, c, a,, ..., a,e P,

Vk({col(ay, ..., a)]gex)—~[col,(ay, ..., a)]qex.

Let x £ B, aeP and define [a] x = |geB| [a]qex!. It is easy to verify
that if x is a I,-filter then so is [a]x.

For x = B, by th(x) we denote the smallest I -filter such that x < th(x).

THE DEepucTioN LEMMA. If x is a I',-filter and qe B, then for any re B,
g=rex iff reth(xu {gq)).

Proof. The if part is trivial. For the only if part we consider the set y
= {peB| q=pex). Clearly, y is a filter and x U {g} < y. Since x is a I',-
filter we conclude, from the conditions for ? and o, that y is a I, -filter. This
justifies the lemma.

A T -ultrgfilter in (B, P) is an ultrafilter in B which is a I',-filter in
(B, P). (In [7], I',-ultrafilters are called Q-filters.)

We call (B, P) a countable I' ,-DA if B and P are countable sets.

THE SEPARATION LEMMA. Let (B, P) be a countable I' ,-DA. If x is a I',-
filter in (B, P) and pe B\ x, then there exists a I ,-ultrafilter y such that x < y
and p¢y.

Proof. We shall use a construction similar to that in [1].

Let po, p1, ... be an enumeration of all infinite meets of the type

N [col(ay, .., a)]q and let ry, ry, ... be an enumeration of all elements
i<ow

of B. We set g3, =rm, qams+1 = Pm- We define by induction on &k an
increasing sequence Xxg, X, ..., X, ... of I -filters.

Let xo = th(x u {7p}). Taking into account the Deduction Lemma, we
obtain O¢x,. Let x, be defined.

Case 1. 0¢th(x, U {g)). Then x;,, = th(x, v {q\}).

Case 2. Octh(x, v {q,}). Then g€ x,.

Subcase 2.1. k = 2m. Then x,,, = x;.
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Subcase 2.2. k =2m+1. Then q, = () [co[l;(ay, ..., a,)]q for some
¢, ay,...,a,6 Pand ge B. If Oeth(x, u {'ﬂ[lcgl"‘-(al, ..., @] q}) for all i < w,
then [coT(ay, ..., a)]gex, for all i < w, by the Deduction Lemma, and so

[col,(ay, ..., a)]qex,. But, from 1 () [col;(ay, ..., a,)] g€ x, and Axiom
8, this would imply that Ocx,. Hence O¢th{x,u {7[col, (ay, ..., a)]q})
for some i, <. We put x,, =th(x, v {1[col(a,, ..., a,)]q}).

Let y= |J x. Clearly, x =y, 1pey, O¢y and y is a filter. Any geB is

k<a
g, lor some m. But either g,€x,,,; Of 1g,€X,+;. SO at least one of g, g

is in y. Hence y is an ultrafilter. Suppose [coT;(a,, ..., a,)]qeyforalli <w
and let (\[coTl(ay,...,a)]g=p,. Then if p.é¢y, we have

i<w

VGam+1€Xm+2- But then T[col, . {ay,...,a)}q€x2,+,. Hence Oey,

which contradicts 0¢ y. We conclude that [col,(a,, ..., a,)] g€ y. Therefore
y is a I, -ultrafilter.
This completes the proof.

THEOREM 2. Let (B, P) be a countable separable I' ,-DA free in the class of
all separable I' ,-DA’s. Then there exist a set U and an isomorphism (h, g) from
(B, P) into the set I',-DA over U, (2U, 2V*V),

Proof. Let U be the set of all I' -ultrafilters in (B, P). Let (B,, P,) be a
free generator of (B, P). For ae P, and pe B, put

gola) = {(x, ) x,yeU, [alx =y}, hol(p)=1{x| xeU, pex}.

There exists a homomorphism (h, g) which extends (hq, go). We will prove
that (h, g) is an isomorphism from (B, P) into (2Y, 2U*Y).

Lemma 1. For any qe B and any ac P
(i) h(g) = ix] gexj.

(iiy (VreB)([alrex —(V y)((x, ) eg(a) — rey)).
Proof. B= |J) B, and P = | P,; hence there exists k such that ge B,

k <w k<w

and ae P,. We prove (i) and (i) simultaneously by induction on k.
Base of induction. k =0, 1e., ge By and ae P,. (i) is trivial. (ii) follows
from the Separation Lemma.

Induction hypothesis. For any ge B, and for any ae P,, (1) and (ii) are
true.

SuBLEMMA. Ler T be an m-ary program operation which is a superposition
of O, |, o and w. For any a,, ..., a,c P, and for any reB

[(T(ay,...,a)]rex iff (Vy)((x,y)eg(T(al,...,a,,,))—-rey).

Proof is by induction on the construction of T. We omit it.
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Induction step. Let geB,,, and ae P, ,. The verification of claims (i)
and (i1) is straightforward.

Now we can easily complete the proof of the theorem by proving that
(h, g) is an isomorphism from (B, P) into (2Y, 2Y*Y). Let ge B and ¢4 # 0. By
the Separation Lemma there exists xe U such that ge x, hence xeh(q) and
h(q) # @. Hence h is an isomorphism. Let a, be P and a # b. Since (B, P) is
a separable I',-DA, there exists ge B such that [a]q # [b]g. But h is an
isomorphism, [g(a)]h(q) = h([aJg) and [g{(b)]h(q) = h([b]q), whence
[g(a)]h(q) # [g(b)] h(q). Theorem 1 yields g(a) # g(b). This completes the
proof of Theorem 2.

4. Propositional dynamic logic with the operator I,
(standing for the least fixed point)

Language. ®, is a countable set of propositional variables, I, is a finite
or countable nonempty set of atomic programs, 0, 1, A, v, =, 7, [ ] —
logical connectives, O, I, o, u, I',,, ?-program operators, ( ) — parentheses.

The set of programs IT and the set of formulas ¢ are defined by
simultaneous induction as follows:

() Oy=1, }0, =, &g =P, {0,1} =&,
2 If a,b,ay,...,a,ell and gq,re®, then (aoch), (aubh), g,
r,(ay,...,a)ell and (g A1), (@ vr), (g=71), g, [alqe®.

We abbreviate: g<=r=(gq=r) A(r=4¢).
Axioms. All (or enough) propositional tautologies,

[al(g=r=([alg=[alr), [Olq<1, [lg+q, [acblgq<[a][blq.
[aublg<>([alq ~[blg), [g?]r<=(q=>r),
[[,(ay, ..., a)lg=[[(ay, ..., a, [,lay, ..., a))]q.
Rules.

q
[alq’
[col.(a,,...,a)]q for k=0,1,2,...
[col,(a,, ..., a)]q '

(MP) 2 =’r" 9 (Nor)

(I'sR)

A logic is a set L = & containing all axioms, closed under substitution
and the rules (MP), (Nor) and (I, R). The intersection of any collection of
logics is itself a logic. Hence there exists a smallest logic which we call I',-
PDL.
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Semantics. Let (B, P) be a I' ,-DA. A valuation in (B, P) is a pair (h,. ¢,
where hy: ®, — B and ¢yo: I1, — P. We extend inductively (hq, g,) to the
mappings h: @ — B and ¢g: IT1 — P in a usual way. We say that a formula p
18 true in (B, P) if for every valuation (hy, go) in (B, P) we have h(p) = 1.

Let L be a logic and (B, P) a I' ,-DA. We say that (B, P)is a I',,-dynamic
L-algebra if for any pel, p is true in (B, P).

5. The Lindenbaum algebra for I -logics

Let L be a consistent logic, i, L # @. For any q, re® and a, b €Il define
qF';'r iff ge>rel and a 2 biff [a] p<>[b] pelL for some ped, not occurring
in a, b.

LemMma 2 (1) H s a congruence relation in @ with respect to A, =, v, 7.

(1) Lisa congruence relation in I with respect to o, u, T,

(i) If g, red and q"L“r, then q? 3

(iv) If g, re®, a, bell, q*‘L—*r and a Lb, then [a]q"L*[b]r.

Proof. Omitted.

Lemma 2 enables us to form quotients d.‘*/'L‘ and I1/ % and to define in
them the boolean operations and the program operators in the usual way
[10]. The algebra ((P/’L*, H/i) is called the Lindenbaum algebra of L.

THeorReM 3. The Lindenbaum algebra of L is a countable separable I' ,-D A
free in the class of all separable I ,-dynamic L-algebras.

Proof. It easy to see that (di/'—"*, H/i) is a countable separable I',-DA.
To complete the proof, see [10].

6. Completeness theorem for I -PDL

Let p be a formula. The follpwing conditions are equivalent:

(i) p is a theorem of I ,-PDL, i.e, pel,-PDL.

(i1) p is true in any I ,-DA.

(ii) p is true in any countable separable I' ,-DA free in the class of all I' -
DA’s.

(iv) p is true in the Lindenbaum algebra of I',-PDL.

(v) p is true in any set I',-DA.

Proof. (i) — (ii) and (iv) —» (1) — in a standard way.

(11) — (1ii) — (iv) and (111) — (v) are obvious.

(i) — 1(v) by the Representation Theorem.

Note that (i) «<+(v) states the completeness of I",-PDL with respect to the
standard Kripke semantics.
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7. Remarks

1 Let I'=_,0(i,000¢Z,). Then I',-PDL is ITj-complete [3].

2. In an analogous way we also consider logics and algebras with many
I' -operators. In particular, the context-free PDL (propositional analog of
CFDL from [2]) obtained by adding all possible I',-operators is complete with
respect to the standard Kripke semantics.

3. We can extend I -PDL adding special programs and boolean con-
stants interpreted as counters and simple pushdown stores. The above results
remain true.
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