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1. Basic definitions and results

1.1. Let I" be a graph without loops and without orientation, I' its set of
verticies and I, its set of edges. For each be I'| we write 3(b) for the 2-point set
of ends of the edge b. We define an equipment v of I as a collection v = {v,} of
functions v,: 9(b)— {0, 1}. Hence in the equipped graph we have four types of
“equipped” edges: 0220, ot—o0, 0o1-20, 0c->to. Sometimes it is con-
venient to present these edges as o«—0, 0—3+0, 0>—0, 0«o0. With every
oriented graph I' , without loops we can associate an equipped graph I'” in the
following way: an edge io<oj in I', transforms into the edge io®Loj or
jo——oj in I'".

1.2. Let I'" be an equipped graph. We associate with I'" a modular Iatﬁice
L(I') in the following way. The lattice L(I™) is defined by generators {v,, w,},
iely, bel,, and relations (}):

Ly: v;(}j#iv;) =0 for each vertex iely;

L,: if §(by={i,j}. then w, < v;+v; for each edge bel;
Ly, of vy (i) =0, then w,v;, = 0;

Lay: if v,(i) = 1, then w,+v; =v;+v;.

In the following example v, and w, denote not only the generators of L(I"*),
but also the corresponding vertices and edges of I'":

ExaMPLE 1 (see Fig. 1). The generators are v, ..., Us; Wi3, Wi3, Wi
w,s. The relations are the following: v,() ;»;0;) =0, w,; < v, +v; for all

ij =

This paper is in [inal form and no version of it will be submitted [or publication elsewhere.
(") We denote the operations of intersection and union in a modular lattice L by - and +, so
that xny = xy and xuy =x+y and \/;x; =Y, x,.

25 — Banach Center t. 26, cz. 1 [385]
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i,jel,, and w,v; =0, w40, =v,4+v,; W303=0, w;+vy=10,+0;;
W14+Ui =W14+U4= Ul+U4; W4SU4= W45115 =0-

1.3. Let L be a modular lattice with maximal and minimal elements v and
0. Let V be a finite-dimensional vector space over a commutative field k and let
Z(V) be the lattice of all vector subspaces of V. A representation o of L in V is
a lattice morphism g: L— ¥ (V) such that ¢(0) =0 and ¢(v) = V. Thus
¢ associates with any x, y € L subspaces ¢(x) and g(y) of V in such a way that
e(xy) = e(x)e(y) and g(x+y) = e(x)+e(y).

If ¢, and g, are representations of the same lattice L in spaces V, and V,
(over the same field k) then a morphism of representations y: o, — 0, is a linear
map y: V, = V, such that y¢,(x) < ¢,(x) for every x e L. It is easy to check that
we have thus defined the category of representations (L, k) of L in
finite-dimensional vector spaces over k. In this category the notions of direct
sum of representations and of decomposable and indecomposable represen-
tations are defined in the usual way.

Let I'"={I,, 'y, 3, v} be an equipped graph. In [6] the category of
representations Z(I'*, k) of I'* in finite-dimensional vector spaces over k has
been defined in the following way. An object oe Z(I'", k), o ={V, V,, W,;
iel,, bel,}, is a k-vector space V with a system of subspaces V, and W,
satisfying the following relations: 1° V = @, Vi; 2° if $(b) = {i,j}, then
W, = V;+V,, and if moreover v(i) = 0, then W, V; = 0, whereas if v(i) = I, then
W,+V; = V,+V,. A morphism yi: ¢ —¢' in #(I"", k) is a linear map y:V—V’
such that YV, <= V) and yW, = W, for all iel', and bel,.

PROPOSITION L.1. The category Z(I", k) of representations of an equipped
graph I'* is equivalent to the category R(L(I"), k) of representations of the
modular lattice L(I').

Proof is an easy check of definitions.

It follows from Proposition 1.1 and the results of [6] that the following
theorem is true:

THEOREM 1.2. The category #(L(I™), k) of representations of the modular
lattice L(I') of a connected graph I' has a finite number of mutually
nonisomorphic indecomposable representations if and only if T is one of the
Dynkin diagrams A, n=>1); D, (n>=4); E,, E, or E;.
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Let us define an integral-valued function d,: I'y >N by d, (i) = dimg(v,) for
every vertex ieI'y.We shall call the function d, the dimension of the represen-
tation @. Similarly to the results of Gabriel [3] the following theorem is true:

THEOREM 1.3. Let I' be one of the Dynkin diagrams: I'e{A, (n > 1), D,
(n=4), Eg, E;, Eq} and let v be an equipment of I'. Then there exists
a one-to-one correspondence between isomorphism classes of indecomposable
representations of the lattice L(I"™) and positive roots of I', such that if
a representation t corresponds to a positive root o = Z,-Ero n,o;, then d (i) = n,.
Here {o;}icr, is the set of all simple roots attached to the Dynkin diagram T.

Remark. If we have a Dynkin diagram I'e{4, (n=1), D, (n=4),
Eq, E,, Eg} and some indecomposable representation 7, of L(I™"), then using
the function d, = d,, we can uniquely restore dim W, = dimt,(w,) for the
subspace W, which corresponds to an equipped edge b of the graph I

Theorems 1.2 and 1.3 generalize the theorems of Gabriel [3] in the
following way:

PROPOSITION 1.4. Let I' , be an oriented graph without loops and let I be
the corresponding equipped graph. Then the category £, (I" |) of representations
of I, is equivalent to the category R(LI"), k) of representations of the modular
lartice L(I').

Proof. According to the definition (see {1]) a representation (V, f) of I,
consists of a family of finite-dimensional vector spaces V, over the field
k labelled by the vertices i of I', (iel,) and of a family of linear maps f;:
Ve = Vigy- Here s(l), t((l)e I’y are the starting and terminal point of the edge
lel';. Let us construct a representation g of L(I'”) attached to (V, f). The
lattice L(I'*) has generators v;, ie ', and w,, e I",. and the following relations:
1) 0,3 ;2iv) =0 for all iely; 2) w, S vy + 0y for each [e 5 3) wiv = 0;
4) w,+ v, = V54, + Uyy)- Notice that the edge s(I)— (I) of I , corresponds to the
edge s()2—2¢(l) of I'". Let us define ¢ as the representation in the space
V= @ir, V; such that

o(v)=1{0,...,0,x,0,...,0)|x,e V],

Q(WJ) = {(0$ reve 01 xs(“s 05 R Oa _/}(xs(“)s Os sy 0)|xs(l)e I/s(l)’ .f[(xs(l))e I/!(l)}

It is easy to check that g(w)e(v) =0 and o(w)+e(vy) = o(vsu) +e (Vi)
This means that we have defined a representation ¢ of the modular lattice
L(I""). This construction admits inversion, i.e. starting from ¢ € Z(L(I'™"), k) we
can construct the object (V, f)e &, (I' ). It is also easy to check that there is
an equivalence between the categories #(L(I"), k) and Z (I ,).

1.4. Our main aim is the investigation of the lattices L(I"*) by the methods
of representation theory. We will study the structure of the image of L(I™)
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under the representation ¢ = @ 7,,where the sum is taken over all indecom-
posable representations of L(I™).

A representation 7, of a lattice L in a vector space V= Q™ (over the field
Q of rational numbers) is called irreducible if the image t,(L) of L coincides
with the lattice of all vector subspaces of Q™.

THEOREM 1.5. Let I' be a Dynkin diagram (I'e{A, (n>=3), D, (n = 4),
Eg, E,, Eg}) and let 1, be an indecomposable representation of the lattice L(I™)
in the vector space V=Q% with dimV =Y ,r.d,(i)=d>2. Then 1, is
irreducible.

A representation ¢ of a modular lattice L is called preprojective (resp.
preinjective) if there exist only a finite number of isomorphism classes of
indecomposable representations t such that Homf(z, g) # 0 (respectively
Hom(g, t) # 0). For the Dynkin diagrams I" every indecomposable represen-
tation 7 is simultaneously preprojective and preinjective. Let us partially order
the set 2} of all isomorphism classes of indecomposable representations of the
Dynkin diagram I' in the following way: 7, > t; if and only if there exists
a sequence 1, ..., 1,€ #p such that 7, = 1,, 7, = 7; and Hom(z;, 1,+,) # O for
all i (1 <i<s—1). It should be noted that this partial order depends on the
choice of the equipment v of I

An element a of a modular lattice L is called perfect if for every
indecomposable representation 7 in a space V either t(a) = 0, or 7(a) = V. The
set all indecomposable representations 1€ such that t(a) = V is called the
characteristic set of a.

A subset H of a partially ordered set P is called hereditary if the conditions
xeH, y<x imply ye H.

Let I be a Dynkin diagram. It is easy to prove that the characteristic set of
each perfect element h of L(I™") is hereditary with respect to the partial order on
ZPr. The proof of the following theorem is more involved.

THEOREM 1.6. Let I' be a Dynkin diagram (F'e{A, (n=1), D, (n = 4),
Eg, E,, Eg}). Each hereditary subser H of P} is characteristic, i.e. there exists
a perfect element he L(I'") such that H = {1e P}y |t(h) = V}.

In the next sections we will give explicit proofs of the theorems above in
the case of the Dynkin diagram A, with special equipment.

2. Lattices L(A2)

2.1. Let A2 be the Dynkin diagram A4, with the following equipment:

V1 v2 vs3 Un-1 Un

OQ«—0+—0 ... 0«0
Wi w2 Wn -1y

(ie. every edge w has the same equipment: o«—o0 = 02—20).
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The modular lattice I{AJ) corresponding to AY is by definition the
modular lattice with generators {v,, w;} (i=1,...,n; j=1,...,n—1) and
the following relations: 1° v,(};4;v)=0 for all i 2° w,cv;+v;;, and
w;v; = w;v;,y =0 for every j (j <n).

In this section we try to pursue as far as possible the investigation of L(A42)
using the methods of lattice theory and representation theory.

2.2. Before we begin to study the case n = 3, which will be our main goal,
let us say a few words about L(A4%) and L(A9). It is easy to see that L(A49)
contains precisely two elements v = v, and 0. L(A49) is the lattice with three
generators v,, v, and w, = w and relations w < v, +v,, v,0, = wo, = wo, =0.
The construction of the free modular lattice with three generators is well
known [2]. Using this description it is easy to prove that L(A9) is finite and
consists of the following 10 distinct elements: 0, v,, v,, w, v, +v,, v, +W, v, + W,
v, (Ww+v,), v(w+v,), (W+v,)(W+v,). The diagram of this lattice is shown in
Fig. 2, where

C1o=W+vw+v,) =wtov,(w+v,) =wHv,(w+v,)

= v, (w+v,)+v,(w+o)).

Put v, , = v,(w+v,) and v, , = v,(w+v,). Notice that the threec elements
(w, vy 5, U,,,) form the elementary modular triplet, i.e.
WDy 2 = W03 = 01,202 =0,

2.1)
W+vl'2 = W+UZ'1 = U1_2+U2,1 =C1,2-

Indeed, wv, , = wo,(W+0,) =0(w+0v,) =0, and w+v; , = w+ov,(Ww+v,)
=w+uv)Ww+v,) =wtuv,(Ww+v,) =w+v,; = ¢y ,. Stmilarly, wo, | = v, ;0,4
=0 and v, ,+vy, =cy3-

Let ¢ be a representation of the lattice L(A9) in a vector space V
over a field k such that o(v)=V, (i=1,2), ¢(w=W. Then po(v,+v,)
=9o,)+eo(v,) =V, +V, =V. Further, put g(vy,) = V.=V, (W+V,) and
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o(vy.1) = Vo, = V5 (W+ V). 1t [ollows from the definition of a representation
and equalities (2.1) that the triplet of the subspaces (W, V,,, V,,) is the
elementary modular triplet, i.e.

WV,,= WVZ.I = V.2V =0,
W+ VI,Z = W+ V2.l = V1'2+ .V;g’] = C1,2-

Let £, be an arbitrary vector in V| ,. Since V; , € W+ V, , = WV, ,, &,
can be uniquely written in the form ¢, =#+(—¢&,), where neW and
£,eV,y = Vo(W+ V). 1t follows from (2.2) that the obtained correspondence
w: £,— &, is an isomorphism between V, , and V, ;. Notice that W is the graph
of this isomorphism, i.e. W = {&, + (&) =&, + ¢, =n|{ e Vi and &€ V5 4}

In order to decompose the representation ¢ into a direct sum of
indecomposable representations we choose a basis (&, ;li=1,2:7=1,...,n;}
in V with the following properties:

(2.2)

(a) the subset {&,;|j=1,....m} is a basis in the subspace V,,
=V, (W+V,);

(b) & j=w(& ) (j=1,...,m); this implies that {&,;|j=1,...,m} is
a basis in V,, = V,(W+V));

(€ {&15li=1,...,n,} (m<n;)is a basis in V;;

(d) {&uli=1,...,n,) (m<n,) is a basis in V.

The existence of such a basis follows easily from the properties of the subspaces
Vi,eV,and Vo€ V,,1e V\V,=0, V\+V,=Vand w(V;;)=V,;.

Put T, ,,; = k&, @k, fori=1,....m T, ,;=k& ;(j=m+1,...,n);
and T, ,; = k&, ; j = m+1, ..., n,). Itis easy to prove that the representation
0 decomposes into the direct sum of indecomposable representations 1, ,.;,
T1,1:j» T2,2x on the subspaces T ,,, Ty 1., 122 respectively such that

T1,2;i = T1,2;j = T1,2y T ST = T T2 = 72,25 = T2

Here the representations t,, and 7,, are one-dimensional and t,, is
two-dimensional, namely:

11.4(0) =T,y =k, T11(vy) = 11,1(w) =0,
T2,2(0,) = T2 =k, T2,2(,) = 12,2(w) =0,
1,.2(v) = kf.- (i=1,2), T1.2(w) = k(é1 +62),

T1.2(0y +0,) = Ty, = k&, @KL,

Thus, the lattice L(49) has exactly three mutually nonisomorphic inde-
composable representations: 7y, 7.5, 7T1,2. All (nonzero) morphisms between
these indecomposable representations are shown in the following diagram:

Tia T2,2
N
T1,2
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This diagram can be interpreted as the diagram of the partially ordered set
P(A3) (where 7, , > 1, , and 1,, > 7, ,). If we take a hereditary subset H in
2(A9), then we can find a perfect element h such that H is characteristic for h.
The nontrivial perfect elements in L(A$) are: ¢, ; = v,+w, ¢, =v,+w and
¢y2 = (v, +w),+w). The partially ordered set of these elements is represented
by the diagram

C1.2
2.3. New generators in L(AY). Let w=)>"7"{w,.

PROPOSITION 2.1. The lattice L(A%) (n = 2) is isomorphic to the lattice
L with generators (v, ..., v,, w) and relations: 1° v,(};+;v;) =0 for all i,
2° wo, =0 for all i; 3° w=)71"!w;+0vis:).

Our proof of this proposition is based on the [ollowing lemma.

LemMa 2.2, The subset {x;} = {w , ..., Wi_1, Uy ooy Uy Wiy oy Wao ) Of

L(AD), where 1 <i<j<n, is independent, ie. x,(Y¢z,%) =0 for every t.

We omit the simple proof of this lemma. It follows from the lemma that

the subset {w,,...,w;_;, 0;, Vi11, Wity, ..., Wy} is independent. Hence
(Ui+vi+ 1)(21';&,' W) = 0 Therefore

w(v; +vi4 1) = ZW +W)(U +0ivy) = (Z Wj)(vi+vi+1)=wi-
J#i j#i

We know that w,p,=0. If we put here w,=w{v,+1;,{), we obtain
w;v; = w(v, +v;4,)v; = wo; = 0. Analogously we obtain wy;,, =0. So wy; =0
for all i

We have shown that if w=)7{w, then wy, =0 for all i and w, =
w(v; +0;44).

Now let L be the lattice with generators {v,, ..., v,, w} and relations 1°-3°
(see Proposition 2.1). Let w;= w(v;+v;4+); then 3° can be written as
w= ZI’_‘l‘ w;. Let us find wjv; and wjv;,,. If we substitute w} = w(v; +v;, ), we
obtain wjv, = w(v;+v;+,)v; = wr; = 0. Analogously, we get wiv,,, =0. We
have obtamcd the lattice w1th generators {v, ..., U,, Wy, ..., Ww,_;} and
relations 1°-2° (see 2.1). This ends the proof of Proposition 2.1.

2.4. The representations t;; (i <j) and their properties. Let us define
a representation 1;; of the lattice L(A%) in the vector SpdCC Vi; =k for
every pair (i, j) of verllces of the graph A} (such that | < i< j < n) as lollows.
Let {¢] = {¢,;} (where i <s <) be a basis of the space V.;- We set

i) = ka ifi<s<y, £ = k(s +ée+1) I i<s <],
Tioj otherwise, T = otherwise.

(in case i =j we set 7,,(w) =0 for all s).
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THEOREM 2.3. (a) All representations t;; (1 <i<j<n) are indecompo-
sable.

(b) An arbitrary indecomposable representation t of the lattice L(AD) is
isomorphic to one of ;.

(c) The representations t; ; are ordered in the following way: (t;, ;, < 15, ;)
(i, <i, <j, <j);so Hom(ty, t,) = k if 1, = 1,, und Hom(z,, 7,) = 0 other-
wise (ie. if either v, <1, (1, ¥ 14) or 1, and t, are incomparable).

We will prove part (a) of Theorem 2.3 in the case of the representation 7, ,.
By the definition, it is the representation in V; , = k" with the basis ¢, ..., g,
such that 7, ,(v) = V; = ke, and 1, ,(w) = W 1s the subspace spanned by the
vectors &, +&,, &, +€;, ..., £,—1 +¢,. Clearly dim W =n—1. If follows from
Proposition 2.1 that W(V;+ V) = k(e;+¢;+,) for every j <n.

Notice that the vector &;—¢;4; = (g;+&+1)—(€j+1 +&;+2) belongs to
W(V;+V+2). Hence W(V,+V,,,) = k(g;—¢;+2). We can prove similarly that
W(V,+V,) = k(e;+(—1)¢,), where 2 =m—j+1, for every j and m (j # m).

Assume that t, , decomposes on two subspaces G, and G, (G,G, =0,
G, +G, = V). We deduce by the definition of decomposition that

(2.3) T,a(x) = X = XG, + XG,

for every xeL(A?). In particular, (2.3) has to be true for all generators
of L(AD), ie.

(23a,b) Vj V,=V,G,+V,G,, W=WG+WG,.

Since by the definition dim V; = 1, equality (2.3a) implies that either
VG, =V,(ie. V= Gy)and VG, = 0,0t V;G, =0 and V,G, =V, (1e. V; = G,).
Hence there exists a decomposition of the set J = {1, ..., n} into two disjoint
subsets J, and J, such that G, =3 ., ke; and G, =) s, ke;.

LetJ, = {jis . > Jmyand J, = {t,, ..., ¢, }, where m; +m, = n. It is easy
to see that the vectors n, =¢;, +(—1)%;, ,, (where A=24,=j,41—Jj,+1)
belong to WG, and the vectors 9; =g, +(—1)'s,,, (Where u= p;=t5,,
—ty;+1) belong to WG,. Set { = ¢;, +(—1)"g,, where x = j, —t, + 1. It is easy
to check that all vectors #,,...,#m-1,C 345 ooy Om,-1 €W are linearly
independent and hence form a basis of W. Consequently, dim WG, > m,—1. If
W= WG, +WG,, then dimW=n-1=m,+m,—1=dim WG, +dim WG,.
Since dim WG, > m;— 1, the last equality means that either dim WG, = dim G,
(ie. WG, =G, or dimWG,=dimG, (ie. WG, =G,). The equality
WG, = G, means that W 2 G, = Y ;; ke; = ) iy, V;. But as we know WV, =0
for all j, a contradiction. Analogous arguments show that the equality
WG, = @, is also impossible. Hence the assumption that 1, , is decomposable
implies a contradiction. The indecomposability of all other representations
Tix (i < k) can be shown in a similar way. All representations 7;; are obviously
indecomposable.
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The dimension of an indecomposable representation z, = 1;; is by defini-
tion the integral-valued function d,: I'y— N such that

1 ifi<s <y,

da(s) = dim Ta(vs) = dim Ti,j(vs) = {0 otherwise

An arbitrary positive root « of the Dynkin diagram A, can be written in
the form a = ) ;<,<;n,, where =, (s = 1, ..., n) are the simple roots. Hence we
associate with such a positive root an indecomposable representation 7, = 1, ;.

The proof of part (c) of Theorem 2.3 is not complicated and we omit it.
The proof of (b) can be easily obtained from the main theorem 5.4.

It follows from Theorem 2.3 that we can partially order 2, (the set of
different indecomposable representations 1, = 1;;) in the following way: if
a=(iy,j,;) and B =(i,,j,), then

L2 e LS <), <, o azf

In the case n = 5 the partially ordered set 2, is shown in Fig. 3. Here the
points (i, j) (i <j) correspond to the indecomposable representations t; ; or to
the positive roots g =o;; = Y ics¢; 0

¥

3. Construction of the lattice of perfect elements

3.1. Before we start to construct perfect elements in the lattice L(A?) we
prove

ProPoSITION 3.1. Let h be a perfect element and let H be the characteristic
subset of indecomposable representations corresponding to h (t,e Her, is
indecomposable and t,(h) =V,, where V, is the space of 1,). Then H is
a hereditary subset of the partially ordered set #,, i.e.if t1,e H and 1, > 14, then
1€ H:

Proof. Let t,€ H and let 7, be an indecomposable representation such that
Hom(z,, t5) # 0. Let ¥ e Hom(z,, 74} and ¢ # 0. Since the element 4 is perfect
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and 7, belongs to the characteristic subset of i, we have t,(h) = V,. According
to the definition of a morphism y7,(h) S t4(h). Since ¥ # 0, the subspace ¥1,(h)
is not zero, and hence t,(h) # 0. By assumption h is perfect, so either 74(h) = 0
or ty(h) = V,. Consequently, 1,(h) =V}, ie. ty;eH. Thus the subset H is
hereditary. We have proved the proposition.

The rest of the paper will be devoted to the proof that each hereditary
subset T of 2, is characteristic, i.e. there exists a perfect element te 2, such
that T = {te 2 |t(t) = V.

32, The clements v, und the mappings ¢; and ;. For each x
< v;e L(AD) we let

i
(3.1a) @o; (xj)=v;— (wtx) ifj>1;
(3.1b) @; (x) = v (w+x) if j<n
ProposITION 3.2. If x; S v;€ L(A4}), then
viagwHx) =v;- ((Wj— 1 +x), v (WHx) =, (w;+Xx).

We prove the first formula. Since w(r;.,+v)=w;_, and (r;_,+r))
2 (vj-1 +x;), we have

VimaWHx) = v, 1(v;- 1 +0)(W+ X))
= v (wW(v;— +v)+x;) = v;_ (W +x)).
The second formula can be proved analogously.

Let ¢ be a representation of L(A]) in a space V. We write g(v) =V,
e(w)= W and ¢o(x) = X,. If we transfer the mappings ¢; and ¢; on V, we
obtain

o (X)=V.,(W_1 + X)), €9j+(Xj)=Vj+1(W/j+XJ‘)'

It is easy to check that V;_(W;_, + X)) and V;, (W;+ X ) are the images
of the subspace X, < V; under the action of the relations W;_; and W,
respectively.

Let us define elements t,; of L(AJ) by induction on the integer n = |i—j|.
Let v;;=v;, v; ;=@; (v;;)=rv; ((w+r), and

(3.2) vi-1;= @i () =vi- (w+v,y) for i<
We define analogously v, = (pf(vj) =vj+1(w+v) and
(3.3) Viv1,; = o (i) = viv (Wwtv,) for i> ).

We shall prove in Proposition 4.1 that the elements v; ; may be expressed
through the generators v;, v; and wfor all i, je {1, ..., n} in the following way:

(3.4) v =v;(w+ vj).
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It is easy to check that the mappings ¢; and ¢; are monotone, ie. if
x; S y;<Sv; then ¢; (x) € @; (v) € ¢; (v)) and analogously ¢; (x) < @} (y)
< @, (v;). Hence we have the chains

Uy =011 20122...2015-1 2V
(3.5)

Vg1 E0n2 S ... S Opp—y S Upp = U,

For any other element v; (j# 1 and j # n) we get two chains:
vV,=1v0 'DU"J'+1 =2...20;

(3 6) J Ji =Y jano

Cv,,C...CSv;

V1 SV & ji-1 S V=1V

i
We denote by E; the lattice generated by that pair of chains {v;,} (k = j)
and {v;,} (i <j). We shall return to the investigation of these lattices later on.

3.3. The elementsa;, b;(j = 1, ..., n) and the lattice generated by them. Let
us define elements a; and b; of L(A4)) in the following way:

n n—1
a, = Ul+ z Vi1, bn = Z Ui,n+vm
n n—2
a, =v,+v,+ Z Ui, b,-, = Vin—1+ V-1 1+,
i=3 i=1
s n s—1 n
a, = Z v;+ z Vi s» bs = Z U s+ Z U;s
i=1 i=s+1 i=1 i=s

..................

Using the monotonicity properties (3.5) and (3.6) of the v; ; we can see that
the elements a; form an increasing chain:

(3.8) a,€a,S...€q;S...Sa,- S a,=0.
Similarly the b; form a decreasing chain:
(3.9) v=>b2b,2...2b;2...2b,-, 2b,.

We denote by D, = D(AQ) the lattice generated by the two chains {a ;} and
{b;}. It is known [2] that if a modular lattice D is generated by two chains of
elements, then D is distributive. We shall show in Sec. 5 that all elements of D,
are perfect. First, we investigate D, as an abstract lattice with generators and
relations. Let

(3.10) c.=ab.
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It is not difficult to prove that ¢; = ) 7_, v; ;. By (3.4), ¢; can be expressed
through the generators of L(A2) as

(3.11) c;= Y vw+v).
i=1
ProposiTION 3.3. Let D, be the distributive lattice with maximum element
v and with generators a, Sa,<...Sa,.,<Sa,=v and v=b, 2b,>...
..2b,_y20b, and relations a;_+b;=v for all j (1 <j<n). Then D, is
isomorphic to the distributive lattice D, with generators c; and relations
€, =Ci¢y for i<j<k

Proof. Define lattice morphisms ¢: D — D’ and y: D’ - D by the formulas
pla)=c+...+¢; @b)=c;+...+¢, and Y(c)) = a;b;. It is easy to see that
¢ is order-preserving, i.e. ¢(4)) = @(a;+,) and @(b) 2 ¢(b;. ) forall j < n. Itis
also obvious that ¢(a;—;+b) = ¢(a;- )+ ¢b) =c +...+¢, = ¢la,) = ¢(b,)
= ¢(v) for all j (1 < j). Let us show that if i <j <k, then ¥ (c,c;c) = ¥icic,).
Indeed,

'I/(C.-Cjck) = ‘//(C.-)Kl’(cj)lll(ck) = aibiajbjakbk = aiajahbibjbk
= a;b, = a;,a,b;b, = a;b,a.b, = Ylch(c) = Yic;cy).
It remains to check that the compositions @oy and Yo are the identical
morphisms. Indeed,
poy(c) = ¢la;b) = @la)eb) = (c,+...+c)n(c;+...+c,) = ¢

We now verify that Yo ¢ is identical on a;, by induction on j. According to
the definitions Y oe(a,) = ¥(c,) = a,b, = a,v = a,. Supppose that we have
proved yop(a;) = a;. Then

l,bO(p(a_,+1) = '//(Cl +...+Cj+Cj+1) = w(cl +...+Cj)+l,ll(cj+1)
= ll{logo(aj)+aj+lbj+1 = aj+aj+lbj+1 = aj+1(a_j+bj+1)
=04j+1V = 04j+ 1.
We can check similarly that yoe(b) = b;, by descending induction starting
from j=n.
ProrosiTION 3.4. The distributive lattice D, with generators c¢; (i=1, ...
.., n) and relations c;c;c, = c¢;c, (i <j<Kk) is isomorphic to the distributive
lattice D(P,) of hereditary subsets of the partially ordered set P, = {(i, k)|
i, keN, 1 <i<k<n} with (i,, k) < (iy, k,) if and only if i, <i, <k, <k,.

Proof. 1t i1s known [7] that an arbitrary finite distributive lattice D 1s
isomorphic to the lattice D(P), where P is the set of indecomposable (into
a union) elements of D, and D(P) is the set of hereditary subsets of the partially
ordered set P.



EQUIPPED GRAPHS AND MODULAR LATTICES 397

In particular, the indecomposable (into a union) elements of D, (Proposi-
tion 3.4) are c;c, (1 <i< k< n). The set P, of those elements is partially
ordered: ¢; ¢, < ¢;,¢,, <0 < i, <k, < k. If we associate with ¢;c, its index
a = (i, k) (where i < k) and if we transfer the partial order from P, to the set of
those indices we obtain the conclusion of Proposition 3.4.

Notice that the elements c,c, (i <k) of D, are indecomposable (into
a union) as long as we consider D, as an abstract distributive lattice. But if we
have a representation of D, in the modular lattice L(A?), then the image of
¢; = ) i-1b;; is decomposable (into a union) in L(A4;). The same holds for c;c,.

4. The lattices D,

4.1. Before we start to prove that all elements of the lattice D, = D(A?) are
perfect, we study a certain distributive sublattice D, in the modular lattice
L(AQ) such that D, = D, = L(Af). We call D, the covering of D,.

Denote by E; (j=1,..., n) the sublattice of L(47) generated by the
following chains of elements:

v, =0y = UVii+1 2...2 Uin—1 =2 V;

(4.1) ! pemn T

Vi=Vj="VYjj-1=-=2Vj2 =Vjy.

By definition the sublattices E, and E, are the chains v, =v,, 20,
S...20 120 ,and v, S22 S ... S Vpp-1 & U, = U, Tespectively.

It is known [2] that an arbitrary modular lattice generated by two chains
of elements is distributive. Hence, one can describe each lattice E; (j # 1, n)
through the partially ordered subset M; of indecomposable (into a union)
elements. For E;, these ar€ the intersections v;;v;, (i < j < k), which will be
denoted by v; . It follows from the definition that the eiements v;, with j fixed
form a partially ordered set M; in the following way:

{43) lf il < iZ $_] < k2 s kl’ then Uiljkl c Uiz_,-kz'

This implies that E; is isomorphic to the lattice of hereditary subsets
of the partially ordered set M;. The diagram of M; for two cases j =2, j =3
and n=35 is shown in Fig. 4 Note that according to the definition
Vj,j = U Vi = Vjx and v; ;= vj;.

We denote by D, the sublattice of L(A4Y) equal to the direct product of the
lattices E;: D,=E,xE,x...xE,_{xE,. It is easy to prove that D, is
distributive and that the set M, of its elements which are indecomposable into
a union is M, = {_Jj- M. This implies that any xe D, can be written as a sum
x =Y v;x. The diagram of the partially ordered set M5 c L(A8%) is illustrated in
Fig. 5.
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Fig. 4

Fig. 5
4.2. Main properties of the elements v, .

PROPOSITION 4.1. v, = (v;+w)v;(v, +w) for all i<j<k (1 <i

A
x—
VA
=

Proof. 1t suffices to show that

(4.4) vi ;= v;(v;+w)

foranyiandj (1 < i, j< n). Our proof of (4.4) is based on the following lemma.
LEMMA 4.2.

(45) If i<j, then v,;=v(w;+wi 1 +...+w;_1+v)).

(4.6) If j<i, then v, ;= v(v;+w;+w;s +...+wi_y).

Let us prove e.g. formula (4.5). If i=j—1, then by definition v;_, ;
=@jv;=v; 1(Ww+v)=v;_(w;—y+v). Suppose that we have proved
Vir1,;="Vir1(Wit1+...+w;_+v) for i+1 <j. Then using the definition of
v;; we have

Vij= @iv1(0ir 1)) = vi(w; 40, ;) = Ui(Wi+Ui+ Wi+ +wy +U,-))-

Set temporarily ¢ = w;,; +...+w;_; +v;. Notice that the triplet v, v;,,, ¢ is
distributive, since

0;(0i11+06) = 0,(Viv s+ Wie . Wm0y
o Ui(UH.l+Ui+2+...+vj_1+l7j) = 0.
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Hence (v;+v;+1)0 = 0,0+ v;4,06 = 0+v;4+,0 = v;4,0. Using this equality, we
obtain

vij = 0w, + 04 ,0) = v (W, +(v; + 04 )0)
= 0,;(v;+v;4,)(w;+0) (since w;, S v, +v;4)

=v(w;+0) = v (W +wip +...Fwo +0).
Formula (4.5) is proved. (4.6) can be proved analogously.
Proof of Proposition 4.1. Let i <j. It is easy to see that
WHv) = 46,0+ vis 1+ F VYW V) = v (WO v+ F0) D))

According to Lemma 2.2 the subset {w,, w,, ..., w;_y, 0}, ..., Vjs Wiy Wiy, -
.., W,_1} is independent for any i and j such that 1 < i <j < n. Hence, if we
write

i—1

ji—1 n—1
ZW3=C, ZWS+ZWS=C/,
s=i s=1 s=j

then: (@) w = {+{’' and this sum is direct; (b) { < v;+v;4,+...+v}; (c) the set
{{’, v, ..., v;} is independent. Therefore

wv,+...+0) =+ +...+v) =+ (v;+...+v)

i-1

={+0=(= ) w,
If we substitute this formula in the equality v(w+v) = v)(w(v;+...+v)+v)),
which we have just proved, we obtain v,(w+v)) = v{(w;+...+w;_ +v;). Using
(4.5), we obtain

v, = 0w +wi i+ +wio o) = vwto)
in case i <j. If j <i, the proof is similar.
PROPOSITION 4.3. (a) If i <k <j, then v;,v;, = v;;, i.e. (0;+w)v;(v,+w)

= (v; +w)v;.
(b) If j<i<k, then v;;v;, = v, ie. (V;+w)v;(v,+w) = v;(v, +wW).

PROPOSITION 4.4. (a) @) vju = Vj_1,_ -

(b) If I <j < k, thErl (pj_ Ul'jk = vij-]k'

(¢ QDjJr Vij = Vi pj+1-

(d) If i<j<k, then @} vip = v;,, .

PROPOSITION 4.5. The lattice D, is closed with respect to the mappings
@; and @; , namely if x,€ E,, then its images ¢; x; and ¢; x; belong to E; | and
E; ., respectively.

The proofs are left to the reader.
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5. The elements of the lattice D, are perfect

5.1. Representations of distributive lattices. Let ¢ be a representation of
a finite distributive lattice D in a finite-dimensional vector space V (over
a commutative field k), such that ¢(v) = V for the maximum element veD.
Hence the image ¢(D) 1s a distributive sublattice of the modular lattice L(V).

ProrosITION 5.1. (a) All indecomposable representations of a distributive
lattice D over a field k are one-dimensional (i.e. they are representations in the
space V = k').

(b) The partially ordered set 2, of all isomorphism classes of indecom-
posable representations 1, of D is isomorphic to the set P of indecomposable (into
a union) elements acD.

The main idea of the proof is the following. Set «' = > ;, 8, where the sum
is taken over all indecomposable (into a union) elements § (i.e. f € P), such that
B < a (8 # a). We can easily prove that such an element «' is unique, and for
any xe D such that ' < x < a, either x = «' or x = «. In each subspace g(x),
where a € P, choose a subspace R, such that R g(x) =0 and R, + (') = o(a).
It is not difficult to prove that any subspace ¢(a) (where a e D) can be written in
the form g(a) =)’ R, = @ R,, where the sum is taken over all indecomposable
fe P such that 8 = a. In particular, this is true for ¢(v) = V. Hence ¢ = @ g,,
where g, = ¢|g,. We can check easily that ¢, = 1,®...®1, where all 7, are the
same indecomposable representation, and their number is equal to dim R,. We
omit the easy proof of part (b) of the proposition.

5.2. A concordant choice of the subspaces R;,. We have shown that the set
of indecomposable (into a union) elements of the distributive sublattice
D, = ]—[,.E,- consists of the elements v;, = (0, +whr (v, +w) (1 <i<j<k <n).
This set is partially ordered: vy S vy o> <i <k <kand j=)) (ifj# ],
then v;, and v;,, are incomparable). Let ¢ be a representation of the lattice
L(A%) in a vector space V over a field k. Set ¢(v) =V, e¢(w,)= W, and
o(vig) = Vix. Using Proposition 5.1 it is possible to choose a family of
subspaces R;; (i <j < k) of V; such that each V. ;. (in particular V; ; = ;) can
be written in the form V. .. = ZM) R, = @ s Rix» Where the sum is taken
over (i, k) such that i</ <j<k' <k

In order to find such a family it is sufficient to choose R, ,, Ry , and R, , in
the following way:

(5.1) Rip=Vip

(5.2) Vigs1Rie=0 if k< n,
(5.3) Vigs1+ R =Viy ifk<n,
(5.4) Vi \wRin="0 if i>1,

(5.5) Vioip+Rin=Ryn ifi>1.
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If i#1 and k # n, the subspaces R;, can be chosen so that
(5.6) Riu(Vi-1ut I./;jk-f-l) =0,
(5.7) Riw+ Vi1t Vigs 1) = Vipe.

ProPOSITION 5.2. The subspaces Ry (1 <i<j<k<n) can be chosen
concordant wirh the mappings ¢ and ¢, ie. such that

i<j = @j Rip=Ri;_ 1>
j<k = of Rip = Ry e
Our proof of this proposition is based on the following lemma.

LEMMA 5.3, Let (a. h.w) be a modular triplet such that w < a+b and
wa = whb =ab =0, and let {a;} be a family of elements such that a, < a(w+b)
Joralli. Set by = b(w+a). Then: (1) bb; = b{w+a;a) and b, +b; = biw +a;+a;)
Jor all i and j: (2) a(w+b) = qa,.

We omit the easy prool.

Denote by L, and L, the sublattices generated by the elements a; and b;
(Lemma 5.3). It follows from this lemma that L, and L, are isomorphic.

We can begin a concordani choice of subspaces R, from the subspace
V,. As we know the sublattice E, is the chain Vj, S V,,-1 ... € V»
S Vi,=V,, where V], =V, =V, (W+V). Ry, can be chosen so that
Ri,,=Vin and R Vi4+1 =0 and Vi, +Ri=V for all k<n
Set ¢ Ry, =R, if 1 <k Using Lemma 53 we can easily prove that
the Rj,, have the following properties: R}, = Vi,n, RiuVis+1 =0 and

Yo+ Viges1 = Vi for ail k such that 2 <k <n, and besides ¢; R},

= Ry,x. Choose R,, <V, so that R,,V;,,=0, Ry,+V,,=1V,,, and
Royi(Vip+ Vasis1) =0, Ros 4+ Vi + Vo = Vo for 2 < k < n. If we choose
now Ry, = R, then it is not difficult to check that each subspace V., (in
particular V,,, = V) can be written as

Vi = Z Rix = @ R,

(i.k) (i.k)

where the sum is taken over all (i, k) for which 1 i< <2<k <k<n
Suppose that all subspaces R, have been chosen in this way for
2 € <j—1. Transfer the subspaces R;, , from V¥, < V,_; to ¥, <V, by
means of the mapping ¢;",, setting R;x = ¢;~; R;,_,x. Choose R;, in such
a way that R;,V,_,,=0 and R;,+V,_(,n=V,, and if j <k <n, then
Rix(Viciut Vig+1) =0 and R+ Vi 4y + Vs = Viu It is not difficult to
prove that each V., (in particular V;;=1V) can be represented as
Vi = Z(,-.,‘)R,-j,,. = @« R, where the sum is taken over all (i, k) for which
1 <ig<i?<j<k <k<n ltisalso easy to check that ¢; R, = R;,_ ;. If we
continue this process, we get a family of subspaces R;, in V = @D{-, ¥,
concordant with the mappings ¢; and ¢; . The proposition is proved.

26 ~ Banach Center L 26, ¢z |
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5.3. Main theorems. Set R;; = @;R;x. We will denote by g, the
restriction of the representation g to the subspace R;,.

THEOREM 5.4. The representation @ decomposes into the direct sum
0= @ik where 9, =1,,®.. @1, (p;x summands), 1, is an indecom-
posable representation and p;, =dimR,, > 1.

It is sufficient to prove that if x is a generator in L(AJ) then the subspace
o(x) can be represented in the form g(x) = ) . e(x)R;,. We have proved in
Proposition 5.2 that

Q(Uj) =V, = z Ri; = @D Riu

(i,k) (£,k)

for each fixed j. Since all sums ), R;, are direct,

R,, fr<j<iu,

(5-8) V_')'Rr,t = (Z Ri,-k)( Z Rrsr) = {0
ik s=r

Hence o(v) =V, =) iu Rix = Xiw V;Rix, where only (i, k) with i <j<k
enter in the sum. We can extend the last sum to all pairs (i, k) (i < k), since
according to (5.8) we have ¢(v)R;; =0 for j<i or k <.

The proof of the formula g(w)) = W, = Y ik W,R; can easily be obtained
from the following lemma (we omit the easy prool).

otherwise.

LEMMA 5.5. Let o be a representation of the lattice L(A9) in a vector space
Viv=V+V,= o, +v2). Let Ry ; (—q<i<k)and R, ; (1 <j<m), k<m,
be direct families of subspaces in V|, and V, respectively such that:

(@) if 1 <i<k then Ry; =V,(W+R,));

(b) -1 Ry = Vi(W+ V),

© W= _Z"(= ~q¢ Ry

(d) V,=Y7 Ry,
Then o =) _,0;, where 0,=olg,, for —1<i<0, 0,=0lg, ,+r,, for
1 <i<k, and ¢; = glg,, for k<i<m

Hence we obtain ¢ = @ ¢, where ¢;, = glg,, and R;, = @ R, . Notice
that the subspaces R;, have been chosen concordant, ie. ¢; R;x = R;,, ,x and
@j+1Ri,, x = Ry for i < j < k. This means that all R;, with fixed i and k are
isomorphic. In addition, W, = Wi(R,,+R;,, ,) is the graph of the isomor-
phism between R;, and R; , .

Now we prove that g;, = 1,;,®...®1;; (p;, summands), where 7;; is an
indecomposable representation and p;, = dim R;, > 1. Let p;, > 1 (in the case
pix =1 it is easy to show that g;; = glg,, = 7ix). Choose a basis {;,}
(t=1....,pi) in R;y. Each &;, can be uniquely written as &;, = n,,+(—&1 1.0,
where ;€ Wy, €11, €V, . We obtain the correspondence &; —¢&;, ., and
this is the isomorphism ¢;” between R, and R;,, ,, with graph W,,. Hence the
vectors {&;.,,) (t=1,...,p;x} are a basis in R, ,. If we continue this

j+ 1k
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process (with ¢;_,(&;_,,) = ¢;, and so on) we obtain a basis {{;,} in each
R;x (i <j< k). We denote by T;,, the span of &, &+ ..., i, and by
T; 1.« the restriction g|r, , ,. It is not difficult to prove that 7, , = 17;,, where 7, is
an indecomposable representation, i.e. ¢;x = Tix1®... PTis,p = TisD...B1is,
with p = p;, summands.

Recall that D, is the distributive lattice with generators ¢; (i=1, ..., n)
and relations c;c;c, = ¢;c, for i < j < k. We denote by D(A4;) the image ofD in
the modular lattlce L(AD) such that ¢; =Y "- v (w+v).

THEOREM 5.6. Each element of the sublattice D(AY) is perfect.

Proof. Let us show that the element c;c, (i < k) of D(A?) is perfect. We
have shown that

= (él D5 ) 2 Vek)-

=1

All elements v;; = v,(w+v;) belong to the distributive sublattice D,. By the
properties of v;; (see Propositions 4.1 and 4.3) we have:

1) If s # ¢, then v,;v,, = 0.

2) If i<j <Kk, then v;,v5% = vig = (0;+w)v;(v,+w).

3) If j<i<k, then v;;v;; = v,k = v = 0;(v, +w).

4) If i <k <j, then vj;v;, = v;; = v;;; = v;(v; +w).
Hence

i—-1

n
Ce= ), Viilju = D, Vjut ZU‘J"+ Z Vijj-
i=1

ji=1 j=k+1

Let ¢ be a representation of the lattice L(AJ) in a vector space V. Set
e(vix) = Viu. The R;; have been chosen in such a way that every ¥, can be
written in the form V., = Y ¢ xy Riw = @ u) Re e, where the sum is taken
over all (i, k') such that (i, k') < (i, k), ie. i <i<j<k<gk.

Using this, we obtain

i—1

olcicy) = Z Z Ry g+ Z Z Ry p+ Z Z Ry je

i=1 (i"k) j=i (k) j=k+1 (k)
(i’ kyS(.K) (k) S (iLk) @K £ (0J)

Eod

If we collect the terms R;-,- with the same (¢, k) (for j such that i’ < j < k), we
get

olc;cp) = Z ZRi'jk’a

(EKYys@k) j

where the first sum is taken over (¥, k) < (i, k), i.e. ¥ i<k <Kk, and the
second over j with i’ < j < k’. We have chosen the subspaces R, in a concor-
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dant way. Hence if we set Ry, = YA, Ry and 0, = 0lgecicy» then

o(cic) = Z Rix, oix= Z Qi = @ Qige

(k") S (ik) (" k") (ik) (k") < (d,k)
It also follows from Theorem 5.4 that g;, =¢|g., is a representation
isomorphic to a direct sum of indecomposables ;. It is easy to prove that the
representation o;, is a direct summand of g, i.e. ¢ = ¢,,@®¢, where ¢ is such
that if we decompose it in a direct sum of indecomposables 7, then no 7,, with
(s, 1) < (i, k) appears. This shows that ¢;c, is perfect. Notice that the charac-
teristic subset H,, corresponding to c¢;¢, is H;, = {1, ,-|(i', k) < (i, k) =
i <i<k<Kk}. Since the ¢;¢, are indecomposable in the abstract distributive
lattice D,, any he D(AJ) can be written as h =) e CiCr» Where Hp is
a hereditary subset of the partially ordered set R of positive roots (i.e. if
o= (i, kle Hy € R and (I, k') = o’ < a, then o’ € Hg). The characteristic subset
of this perfect element h is H =~ Hy (ie. 1, = 1y He o = (i, k)e Hg). This
ends the proof.

These arguments show that the following theorem is true.

THEOREM 5.7. Each hereditary subset H of the partially ordered set 2, is
characteristic, i.e. there exists a perfect element he D(AY) € L(AY) such that
H={te?,|th)=V].

Hence we have three isomorphic partially ordered sets: 1) the partially
ordered set 2, of indecomposable representations 1, = 7;;; 2) the set R of
positive roots « = (i, k), ordered in the following way: o = (i, k) < (i, k)
= g<>i’ <i< k <Kk 3) the partially ordered set P, of perfect elements cc,,
ordered in a similar way: ¢; ¢, € ¢;c, <>’ €1 < k < k’. Hence the lattice D(AP)
of perfect elements with generators ¢, = ijluj(w+v,.) is isomorphic to the
lattice D(#,) of hereditary subsets of the partially ordered set #,.

We can sum up all these facts in

COROLLARY 5.8. The distributive sublattice D(A?) < L(A2) of perfect ele-
ments is isomorphic to the lattice D(P,) of all hereditary subsets H of the
partially ordered set P, (the set of isomorphism classes of indecomposable
representations). [f H S 2, is a hereditary subset, then the corresponding perfect
element he D(AS) is h = ) ;i cicy, where the sum is taken over all (i, k) such that
..€H.

5.4. We will discuss here some remaining problems. The whole structure
of the lattices L(AY) (n = 3) is not known yet. We say that the elements
x, ye L(AQ) are linearly equivalent and write x~y if for any representation
o (over an arbitrary field k) o(x) = g(y). We will denote by L(A?) the lattice
L(AQ) factored by the linear equivalence.

Consider the representation t, = @ 1;,, where (i, k) runs through the
whole set 2,. Let V,, be the space of this representation over the field Q. If we
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use the definition of the representations t;,, we can provide V, with a basis
{Zia)» where 1 <i<j<k<n We have 1,() =V, = @ Qi for every j,
where the sum is taken over all (i, k) such that i<j<k Also, t,(w)
=W=@nQi+<,, «), whepe i <j <k It is easy to show that dim V;
= jin+1—j) for every j, dimV = in{n+1)(n+2) and dimW=t(n—n(n+1).
If we set T;, = Z,—Qfs,-k: where the sum is taken over all j such that i <j <k,
then t,lr,, = 1;4. Define linear maps ¢ : T4,—T-1x (i>1) and ¢
Ty~ Ter (k<n) by Yy (&) =iy and ¢+(fijk) = Cig+1- It is easy to
prove that y ~ and i * are morphisms of representations:  : 7;, =+ 17;-, and
W T~ Tiks 1. We can also prove that the representations 7;, are irreducible
(ie. 1 (L(A) =~ £(Q* %) when k—i> 3.

We call a family of subspaces U, , = T;, admissible if 1) U, ; is equal to 0 or
T = Q¢ 2) U+, 1s one of the five subspaces: 0, Q&+, Q& i1,
Qi +&i, . i+ T i <i,theny U,, €U, ,, foralli, k, and if
k<mn, then ¢y U, S U;xy, for all i, k.

CoNJECTURE. The lattice L(AP) is isomorphic to the lattice of all admis-
sible subspaces in V, = @ Tix-
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