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This is an exposition of some recent results of the author which join together such
subjects as vector bundles, convex polyhedra. geometry and combinatorics of
subspace configurations and some types of identities. The proofs, for the most
part, are based on standard techniques and so are not presented here.

1. Moduli space of toric vector bundles

1.0. Let X be a complete nonsingular toric variety. This means that there is
defined an action of an algebraic torus T on X and this action is free on a dense
open orbit O, c X. For example the projective space P" is a toric variety
relative to an action of any maximal torus T < PGL(n+1).

An equivariant or toric vector bundle on X is a vector bundle p: E—- X
equipped with some equivariant T-structure, that is, an action of the torus T on
E which makes each diagram below commutative.

E 5 E
pl #]
X > X, teT

The starting point of this paper 1s a very transparent description of toric
bundles in terms of linear algebra.

1.1. To make this description clear we need some_ basic facts on toric
varieties [1, 6]. Let X =| |, O, be the orbit decomposition (it is always finite).
Once for all we identify the unique open orbit O, < X with the torus T. This
allows us to look on characters y € T as rational functions on X. So for each
orbit O, there is defined a semigroup & < T of all characters which are regular
on O,. We also need the dual cone

(1.1) o={xeTd: (x,x) =0, Vyed)}.

This paper is in final form and no version of it will be submitted for publication elsewhere.
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The set all cones § = T is called the fan associated with the toric variety
X. We denote it by 2 = X (X). There is a one-to-one correspondence between
the cones deZ and the orbits O, < X, such that 6 c 1< 0, > 0, and
dime = codim O,

The toric variety X = X (2) 1s uniquely determined by its fan X~ = X (X). It
may be constructed from the affine pieces U, = Spec k[4] by identifying U,
with U, ~n U_. Any [inite set X of convex cones ¢ T may be a fan provided it
satisfies the following conditions:

(1) every cone g2 is generated by a finite number of elements of the
lattice T° (dual to the character lattice T);

(1) if ceX then all faces of o also belong to the fan ZX;

(111) the intersection of two cones of the fan is their common faces.

For simplicity we restrict ourselves to nonsingular varieties X. In terms of
the fan X = Z(X) this means that each cone o€ X is generated by a part of
some basis of the lattice 7° We denote this set of generators of & by |o|. The
notation {X| will be used for the set of generators of all one-dimensional cones
of the fan 2.

From the above it follows that the fan of a nonsingular toric variety
consists of simplicial cones. We also recall that the toric variety is complete if
and only if all cones oeX(X) cover all the space Ty.

1.2. ExampLE. Let X = P" be the projective space with homogeneous

Then the quotients x;/x; = y;; are characters of the torus T (which we identify
with the orbit of the point (1:1:...:1)). For every fixed j they form a basis of the
semigroup 6, < T consisting of all characters regular at the point p; with
coordinates x; = §;;. The fan 2 = X'(P") consists of all faces of the cones ¢, dual
to the d;. The cone g, is generated by the basis (8, f,, ..., ﬁj, ..., p,) of the
lattice T° where B, is defined by the relations (f,, xij) = 0y for k # j. From the

definition it follows that 8,+f,+ ... + B, = 0. The figure illustrates the case
of P2

ZO? 2’12
To state our first theorem we need the following definition.

1.3. DeFINITION. A family of subspaces Ef = E, e B, of a finite-dimen-
sional space E is called split if it generates a distributive lattice of subspaces.
A family of Z-filtrations E?(i), Be B, is split if se is the family of subspaces
Ef(i), BeB, for each ieZ.



EQUIVARIANT VECTOR BUNDLES ON TORIC VARIETIES 347

All filtrations in this paper will be decreasing and exhaustive: E (i) = E,
i<0; E°()=0, i»0.

A split system of subspaces or filtrations may be represented as a direct
sum of a systems of rank (= dim E) one.

1.4. THEOREM. The category of equivariant vector bundles on a toric variety
X = X (2) is naturally equivalent to the category of vector spaces E which are
equipped with a family of Z-filtrations E* (i), Be|Z|, i€ Z, satisfying the following
concordance condition:

(C) for any oeX the family of filtrations E*(i), Be|o|, is split.

The equivalence of the categories may be established by assigning to any
equivariant bundle E its fiber E = E(x,) at some point x, of the open orbit
O, < X. The filtrations on E arise as follows. The fiber E = E(x,) is endowed
with the family of subspaces

(1.2) EF(y)={eeE: lim x '(f)(te) exists},

txg—xp.teT
where ye T, f€|Z| and x, €0, is any point of the orbit of codimension one. It is
easy to see that the space E? () depends only on the order of the character y at
the divisor X, = O0,. This order is equal to (y, #). So (1.2) reduces to the
Zfiltration

(1.3) EP(): = EP (), (¢ B

We may interpret the splitting condition for a family of filtrations E* (i) in
terms of the parabolic subgroups

PP = {ge GL(E): gEf = E”}
as follows:

(1.4) E’, Be B, is split < () P? contains a maximal torus.
peB

Let 2(E) be an abstract simplicial complex with parabolic subgroups
P <« GL(E) as vertices and families of subgroups containing a common
maximal torus as simplices. Theorem 1.4 implies that the classification of all
toric vector bundles with fiber E over a variety X = X (X) is essentially
equivalent to a parametrization of all simplicial maps f: £ — 2 (E). So Z(E)
plays the role of a classifying space for toric vector bundles.

The following theorem exhausts most of the information on 2 (E)
available to the author.

1.5. THEOREM. Let E be a vector space of dimension m. Then the following
conditions on a family of parabolic subgroups PP = GL(E), € B, are equivalent:

(i) () P* contains a maximal torus,
BeB
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(1) The intersection of any set of m+1 subgroups of the family contains
a maximal torus.

If each P? is a Borel subgroup then (i), (ii) are equivalent to:

(i) The intersection of any triple of subgroups of the family contains
a maximal torus.

(iv) The relative positions n,, €S, of the subgroups P*, P* form a cocycle:
Taig Tply Tyla = L, va.ﬁ.veB'

A pair of Borel subgroups (P*. P) is in relative position neS, (the
symmetric group) if it is conjugate to a pair (B, B’) of upper triangular groups
in a basis e and ¢ = ne respectively.

1.6. CoroOLLARY. The following conditions on a toric variety X = X (X) are
equivalent:

(1) All equivariant vector bundles of rank m over X are split.

(i) Any set of m+1 vectors of |Z| yenerates a cone of the fan X.

In particular. all toric vector bundles over P" of rank less than n are split.
It would be interesting to extend the previous theorem to families of
parabolic subgroups of an arbitrary algebraic group G.

1.7. ExampLEs. (0) The tangent and cotangent bundles are Qetermined by
the following filtrations of the spaces 7 = T°® k and Q = T® k:

7, <0, P, i <0,
TP = | Pk, =1, Qi)=<kerp, i=0,
0. i>1, 0, i>0.

(1) Line bundles. A filtration E?(i) of a one-dimensional space E is
determined by a number n;e Z such that E” (n;) = E and E* (n,+ 1) = 0. So line
toric bundles are parameterized by functions f: || - Z, f — n,. The vector
bundle corresponding to f will be denoted by & (f). This description of line
bundles 1s due to Demazure [1].

(2) Toric bundles of rank two. Let E be a rank two equivariant vector
bundle over a toric variety X = X () given by filtrations E?(i), fe|Z|, of
a two-dimensional space E. We denote by 2, < X the subcomplex generated by
those Be|Z| for which the filtration E* (i) contains a nontrivial subspace. We
will identify this 1-space with a point x,e P(E) = P'. Then the concordance
condition of Theorem 1.4 means that the correspondence f: f§ — x, defines
a simplicial map of 2 on a one-dimensional complex in P! (i.e. the image f (o)),
g€ Lg, contains nor more than two points). So irreducible components of the
moduli space of rank two toric bundles are parametrized by configurations of
points on P! up to projective equivalence.

(3) Vector bundles on the projective line P!. According to Theorem 1.4,
a vector bundle over P! is determined by a pair of filtrations E° (i) and E! (j) of
a space E. It is well known that any pair of filtrations is adjoint to some
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bigrading E = @, E(i, j). This implies that any toric vector bundle over P! is
split (a toric variant of the Grothendieck theorem).

(4) Equivariant bundles over toric surfaces. Just as in the previous example,
any pair of filtrations satisfies the concordance condition of Theorem 1.4. So
equivariant vector bundles over a toric surface X = X (2) are parametrized by
arbitrary families of filtrations Ef(i), fe|X|. These filtrations give rise to
representations of a quiver which consists of N = #|%]| chains joined together at
a common point (the figure represents the case of P?).

E%a)=0

E¥c)=0
A complete classification of all representations of such quivers is a wild
problem. Nevertheless much interesting information on representations of
quivers 1s contained in theorems of Gabriel [2], Nazarova [10] and Kac [7].
For example they allow us to describe all indecomposable toric bundles over
P? defined by a triple of filtrations E°, E', E? where the numbers of nonzero
factors a, b, ¢ satisfy the condition 1/a+ 1/b+ 1/c > 1. If the inequality is strict
then the set of dimensions of all members of the filtrations E°, E*, E? coincides
with the coordinates of a positive root of some system of type A,, D,, E,. If
equality holds then the dimensions are equal to the coordinates of an affine
root of a system of type E,.

2. The canonical resolution and characteristic classes

Let X = X(2) be a complete toric variety of dimension n and let E be an
equivariant vector bundle over X defined by a family of filtrations E? (i), f ||,

of the fiber E = E(x,). We have an exact sequence induced by the chain
complex of the fan X:

1) C:0-> @ o®ES @ s®ES..

codima=0 codimo=1
d d
Lo @ cRQE-OR®E-O
codime=n—1
Here the differential d(a) is the sum of all codimension one faces of ¢ with
induced orientation (we suppose all cones g€ X to be oriented).
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Let f: |X| — Z be any function bounding the filtrations E?, fe|X]|, that is,
Ef(iy = 0if i > f(B). Then we may define a family of Z-filtrations C% (i), f&|Z],
of the complex C by the formulae

c®E(i) if Belol,
CREj()=<0QE if Bélal, i <S(B),
0 if félal, 1> f(h).
The filtrations are concordant in the sense of Theorem 1.4 and they are

compatible with the differentials of the complex C. So by Theorem 1.4 they give
rise to a complex of equivariant vector bundles

2.2) €:0-E—F,»F, >F, ... >F, _ —F, 0

2.1. THEOREM. The complex ¥, is a resolution of a toric bundle E and
consists of split vector bundles F,.

Here is an explicit decomposition of the bundles F,. Let T, be the
stabilizer of any point x, in the orbit O,, c€X. For any character ye T we
define a function f;: 2| - Z by

o B i Bl

PN B if Belal.
Let ¢(f;) be the corresponding line bundle (see ex. 1.7.1). Then
(2.3) Fo= @  O(f)ym(y Ex,),

xeT,codima =k

where m(x, E(x,)) is the multiplicity of the character y in the fiber E(x,).
The canonical resolution (2.2) together with the formula (2.3) allows us to
find characteristic classes of the equivariant vector bundle E.

2.2. THEOREM. Let X = Oy, Be|Z|, be the class in the Chow or cohomology
ring of the closure of codimension one orbit O,. Then the full Chern class of
a toric vector bundle E is equal to

(2.4) c(E)=T]det(1+ ¥ BX,E(x))~ 1"

cel fe|a|
where we identify a vector Belo| = T2 ® R with an element of the Lie algebra
Lie T, = T ® C naturally acting in the fiber E(x,).

[t is worth while to note that if 1 = g then T, = T, and E(x ) = E(x,)|y,.
So all representations E(x,}, 6 € X, and hence the characteristic class c(E), are
uniquely determined by the action of the torus T in the fibers of fixed points
E(x), xe X7 (in the preceding notation they correspond to points x, where
AeX is a cone of maximal dimension).

2.3. CoroLLARY. Characteristic classes of an equivariant vector bundle E on
a toric variety X depend on the action of the torus in fibers of fixed points E (x),
xe X', only.
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3. Cohomology and the trace formula

In this section we will find the cohomology groups H? (X, E) of an equivariant
vector bundle E on a toric variety X = X(X), or rather their isotypic
components H?(X, E),, yeT.
We begin with some notation. Let E be defined by a family of filtrations
Ef (i), Be|Z], of the space E = E(x,). For a character ye T and a cone ce X we
put
(3.1) E'(0= () E°(x); E,()=E/ ) E'(»),
Bels| pelal
where EP(y) is defined in (1.2) or (1.3).
We use the spaces E (x) to form a complex
(3.2) C*E,y: 0-E-> @ E,(x)-..» @ E, (-0
dime=1 dimo=n
with the differential
d(ecr) = Z ealt’ enEEd(X)5

T2d

where the sum is taken over all cones teX which contain ¢ as a face of
codimension one; |.: E, (x) = E.(x) is the natural projection taking into account
the orientations of ¢ and 7.

3.1. THEOREM. There is a natural isomorphism of the cohomology spaces
H*(X, E), = H(C*(E, ).

3.2. CoroLLary. (i) H*(X, E), = [\ E* (0.

(1) For a complete variety X ofﬁillfrlnension n
H"(X. E), = E/ Zm E* ()

(in) We have the Euler characteristicﬁ relation:

i (—Didim H (X, E), = ¥ (= )*™7dim E, (x)

o€l
— Z (_ l)codima dim Ea(x)
oeX
(for X complete)
For projective spaces all the cohomology may be found explicitly.

3.2". THEOREM. Let E be a toric vector bundle over the projective space P”
and let EP, B =0, 1, ..., n be the corresponding system of filtrations. Then for
O<i<n

H'(P" E), = (V(E°(0+ ... +ET 0+ EEQONE° (O + ... +ET 0+ () E (1))

jzi Jizi
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From this formula it follows that the cohomology H*(P", E), is an

obstruction to the distributivity of the lattice generated by the spaces EF(y),
f=0,1,...,n

3.3. ExampLE. Cohomology of general vector bundles over P2,
Let E be a toric vector bundle of rank r over P? corresponding to a triple
of filtrations E° E!, E? which are in general position. Put.

d(E, y) = dim E°® (y) + dim E! () + dim E2 (x).
Then by Theorem 3.2
dim H° (P?, E), = dm E° () nE' () " E*(x) =d(E, x)—2r
if d(E, ) = 2r;

| o BP@a(EW+E )
dim H' (P2, B), = dim o E )+ P () E2 ()

=d(E, y)—r

if 2r>d(E, ) =r;
dim H? (P?, E), = dim E/E° () + E' () + E*(x) = r—d(E, )

if r>d(E, x).

In all the other cases the cohomology is zero.

We see that every character with d(E, y) # r, 2r appears in the cohomolo-
gy H*(P?, E) exactly once.

Let us return to the Euler characteristic relation of Corollary 3.2 (iii). It
has a useful interpretation as a trace formula.

3.4. THEOREM. Let E be an equivariant vector bundle over a complete toric
variety X = X (X). Then for teT
33 T(-DTr(H X, B) = LTe(flEce )/ T] (-2~ ()
i 4 xed®
where the sum on the right-hand side is over all cones 4 € Z of maximal dimension
n=dimX; x,e X" is a fixed point corresponding to A; A* is the basis of the
character lattice T dual to the basis |4| of T°.

3.5. CoroLLARY. The Poincaré polynomial of X may be written as follows:

. 1—
(3.4) Py(s) =Y sdimH (X, ) =¥ [] —=.
R 4 xed* 1—x
To prove the corollary it is sufficient to apply the theorem to the bundle of
differential forms QP(X). It may be interesting to compare (3.4) with another
formula (see [8, 9]):

Pr)= 3 # EW(s—1y*

k=0
where # X® is the number of cones of dimension k in the fan ZX.
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3.6. Remark. The right-hand sides of formulae (3.3) and (3.4) are rational
functions on the torus T which are in fact constants. So these formulae are
a source of various exotic identities including many classical ones.

For example, (3.4) for X = P" implies
X S%;

Ppa(s) =1+4s+... +5"= ZH
i=011 Xy xl

The specialization x, = ¢~ and letting n — oo gives rise to the Cauchy identity
= 1-¢ & (s—q)s—q)...(—1
M t=%

i—-1

i=11=-5¢"1 S(1-9(1—¢?)...(1—¢)
which-is widely known for s =0 as the Euler identity.

Another example: the Euler characteristic of the structure sheaf 0, is
equal to one; so by Theorem 3.4 we get an identity
YIla-p—7=1
4 yed*

As a consequence of the trace formula we also get the following
intersection index theorem.

3.7. THEOREM. Let X = 0,, Be|Z| be the closure of an orbit of codimension
one in a complete toric variety X = X (X) of dimension n. Then the intersection
index of the cycles X,z,i=1,...,n, is equal to

BiBs...8:
3.5 X, X, ...X,)= —_—
( ) ( f1 82 ﬁn) Aaﬂx.ﬂzz.---,ﬂn ﬂg!l ﬁd

where the sum is taken over all cones AeX of maximal dimension and
B2eT, Beld|, is the element of the basis of the character lattice T dual to the
basis |4| of T°

This theorem may be used to calculate Chern numbers.

3.8. CoroLLARY. Let P(c,, c,, ..., c,) be a weighted homogeneous polyno-
mial of degree n in the characteristic classes c; = c,(E), degc,=i, of an
equivariant vector bundle E over a complete toric variety X = X (X). Then in the
notation of the theorem

(3.6) P(c,, c;, e =TPOS, 2, YT B
' Bel4|

where A{ is the character of the representation A'E(x,) and x, is a f ixed point
corresponding to a maximal cone d€ZX.

The corollary may be obtained by combining the theorem with the
characteristic class formula (2.4). It may also be deduced from the Bott residue
formula [5]

"33 — Banach Center t.'26, = 2
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3.9. ExamprLe. Let P(c,, ¢;,...,¢,) be the Todd polynomial in the
characteristic classes of a variety X. Then the left-hand side of (3.6) is the Euler
characteristic of the structure sheaf, y(@,) = 1. If dim X = 2 it follows that
ci+c, =12 and by (3.6) we get an identity

N 2 N
) i+ y) + X0 =12« Y (ﬁ_f_b) = 12—-3N
i=1 X; Vi i=1 \Vi X

where (x;, y,) are the coordinates of any point pe T} in the ith basis of the fan
Z = X (X); N is the cardinality of |Z].
For a three-dimensional variety X we have ¢, ¢, = 24 and

Z( ipdig Ve B Ay )=24—3N.
i Yi xl Z; yl xl zi

4. A structure theorem for some families of subspaces
and toric vector. bundles over P”

Let E?, fe B, be a family subspaces of a finite-dimensional vector space E. The
family is called indecomposable if it cannot be represented in the form
E=E +E,, Ef = E§ +Ef; dimE, > 0. Any system of subspaces is a direct
sum of indecomposable systems which are uniquely determined up to isomor-
phism.

Indecomposable systems of four subspaces were described by Gel’fand and
Ponomarev [3]. But in general such a description leads to wild problems of
linear algebra. In this section we will describe the indecomposable families for
which all proper subfamilies are split (in the sense of 1.3). The simplest example
of such a family is a configuration of n+1 subspaces of codimension one in
general position in a space F of dimension n. We denote this configuration by

=(F; F’,$=0,1,...,n) and put & =(A*F; A*FF, =0, 1, ..., n). The
configuration Q% is closely related to the bundle of k-forms on P” (see ex. 1.7.0).

4.1. THEOREM. An indecomposable family of subspaces EP c E,
B=0,1, ..., n, whose all proper subfamilies are split is either of rank (= dim E)
one or is isomorphic to one of the systems QX k=0,1,...,n.

The proof makes use of some ideas of Gelfand and Ponomarev [4].
Here is a typical situation in which configurations of the theorem appear.
Let E be a toric vector bundle over P" and let E?(i), =0, 1, ..., n, be the
corresponding family of filtrations. Then by the concordance condition of
Theorem 14 for any yeT all proper subsystems of the family E(y) =
(E’(x), B=0, 1, ..., n) are split. So by Theorem 4.1 we get a decomposition

(4.1) E=(@mo)es
k

where § is a split system.
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The multiplicities m, are of cohomological nature. Indeed, by Theorem 3.2
the cohomology H*(P", E), is completely determined by the configuration
E (). The split part S does not affect the cohomology. Then from the classical
equality dim H?(P", @9 =6, it follows that

Pq
4.2) m, = dim H(P", E),.

The relations (4.1) and (4.2) imply

4.2. CoroLLARY. For a toric vector bundle E over P" and any character ye T

the following inequality holds:

5 (D dim H*(P", E), < rk E.

k
In particular, H*(P", E) =0 if 7k E < (:)
There is another way of describing the components of the decompo-
sition (4.1):
(43) m Q%= QX® H*(P", E),
N YE@w Y NEw, 1L,Jc{o,1,...,n}.

M=k+1 iel Wl=n—k+1 jeJ

It is sufficient to verify this equality for split bundles and for Qf. It may
be used to calculate the cohomology of toric vector bundles over P” (cf.
Theorem 3.2).
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