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We develop a covering technique for vector space categories and socle
projective modules. Following an idea of Nazarova and Roiter we introduce
the notion of a bounded stratified poset I,, = (I, ¢, w) and we study matrix
representations of I,,, in terms of a vector space category associated to 1,,, and
socle projective modules over a right peak ring R associated to I,,,. We do it by
representing R as a bound quiver algebra F(Q, Q) and by describing its
universal cover algebra F(Q, @) for a class of bounded stratified posets I,,,. We
show how indecomposable representations of bipartite completed posets [12]
can be computed in this way.

Introduction

Throughout this paper mod(A) denotes the category of finitely generated right
A-modules. Following [9, 13] by a vector space category K, we shall mean an
additive Krull-Schmidt category K together with an additive faithful functor
| —|: K-> mod(F), where F is a division ring. A factor space category ¥ (Kp)
consists of triples (U, X, ¢) where U is in mod(F), X eob K and ¢: |X|— Uy is
an F-linear map. Morphisms in ¥"(K) are defined in a natural way. If K has up

to isomorphism only finitely many indecomposable objects X, ..., X, and
A M
A=FEnd(X,®..®X,), Mp=|X,®..®X,|r then R=R, = [0 AA F] is

a right peak ring [(16] (i.e. soc(Ry) € Ry is essential and soc(Ry) = P®.. . ®P,
where P is a simple projective right ideal). By [16] there is a full and dense
additive functor H: 7"(Kp)—mod,(R) such that KerH = [(0, X,,0),...
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..., (0, X, 0)], where mod,,(R) is the category of socle projective modules in
mod(R).

Let us recall that if I = {1, ..., n} is a poset (i.e. partially ordered set) then
Nazarova and Roiter [8] associate to I a matrix problem (D,;, ®,), where M,
consists of block matrices (with coeflicients in a division ring F) of the form

A={A, (A, |.. |4

and ®, is a set of elementary transformations on matrices in M, associated to
I (see [15, 18]). Let I* = I U{*} be the enlargement of I by a unique maximal
element * and let FI* be the incidence ring of I* ((1.14)). If K(I)f is the vector
space category of the poset I (i.e. the category (2.14) with ¢ and o trivial) then
there is a commutative diagram

M, <L Mad s [sp

1~ =
7 (K(D)g) 2> mod,,(R),

where R = Ry, = FI*, I-sp is the category of I-spaces and 3¢ is the additive
category whose objects are triples (V, U, t), where V=V, @®...®V, is an
I-graded vector F-space and t: V' — U is an F-linear map [15, 18]. The functor
H’ is given by the formula H'(V, U, t) = (M, M,);c;, where M = U and

M; = Im(@® V5 ).
j<i
y is the natural embedding, H'y vanishes only on finitely many trivial
indecomposable representations A", ..., A®* ! and establishes a one-to-one
correspondence between the indecomposable 6,-equivalence classes of mat-
rices in M, different from A, ..., A”* 1) and the isoclasses of indecomposable
I-spaces [15], [16; 7.2].

In the present article we introduce the notion of a bounded stratified
poset I,, (Definition 1.9), we define a corresponding matrix problem
(D (1w}, ®(I4w)), a vector space category K(l,.)r associated with I,, and
a right peak F-algebra F(I,) ((3.2)), and we extend the results above from
posets to bounded stratified posets. We show that if F is algebraically closed
then every vector space F-category K, of finite type is of the form K(I,,) and
every fhmic-dimensional basic right peak F-algebra R such that mod,,(R) is of
finite type is of the form F(I},). In particular, we get a new interpretation of
representations of completed posets in the sense of Nazarova and Roiter [9,
11]. Moreover, our results allow us to study vector space categories K(I,,)r by
using the narrow overring adjustment functor [21] as well as the covering
technique [1-6, 17] applied to the associated right peak algebra R = F(I3,)
and to the category mod,,(R).
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Recall from [17] that if f: R — R is a Galois covering with Galois group G,
and R, R are locally bounded semiperfect basic algebras (in general without
identity) then R is a right multipeak algebra iff R is a right multipeak algebra
(i.e. soc(eR) is a projective essential submodule of eRy of finite length for any
primitive idempotent e in R). Moreover, the pull-up functor f. and the
push-down functor f, [1, 5] induce functors

©.1) Mod.,(R) &2 Mod.,(R).

If R, R are algebras over an algebraically closed field F then one can prove
socle projective analogues of the results of Dowbor and Skcwronski [2, 4]. In
particular, by the arguments used in [2] we get

THeoREM 0.2. Let f: R— R be a Galois covering with Galois group G,
where R, R are locally bounded locally finite-dimensional basic right multipeak
algebras over an algebraically closed field. Assume that G acts freely on R and
the induced action on ind,(R)/ = is also free. Then:

(@) If mod,,(R) is tame then modsp(ﬁ) is tame [3].

(b) If G is p-residually finite and R is locally support-finite with respect to
indecomposables indsp(R') in modsp(R') then modsp(ﬁ) is tame if and only if
mod,,(R) is tame. Morcover, f, induces a bijection between the G-orbits of the
isoclasses of indecomposables in modsp(ﬁ) and the isoclasses of indecomposables
in mod,,(R). The functor f, carries almost split sequences in modsp(ﬁ) to almost
split sequences in mods,(R) and induces an isomorphism I'f/G = ')}, where I'{f is
the AR-quiver of mod,,(R).

(c) A counterpart of [4; Theorem 3.6] for socle projective modules is valid.

This result together with a list of minimal sp-representation-infinite simply
sp-connected right multipeak algebras given by Weichert [25] is a useful tool
for studying sp-representation-finite (i.e. with mod,,(R) of finite type) algebras
R and vector space categories of finite type and of tame type.

In Sections 4 and 5 we apply this method to get criteria for R to be
sp-representation-tame or sp-representation-finite for a class of algebras R of
the form F(I3,).

We use the terminology and notation introduced in [16, 17]. For
a discussion of the representation type the reader is referred to [3].

1. Bounded stratified posets

Throughout I = (I, <) denotes a finite partially ordered set (shortly poset).
Without loss of generality we can suppose that I = {1, ..., n} and i <j implies
i <nJj. Consider

(1.1) Al ={G)elxI; i<j}
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and let : I - A I be the diagonal map. Throughout this paper we shall identify
I with the diagonal dI of AT via i«d(i) = (i, i). Given (i, j)e AT we put
[i,j1={sel; ix<s=<j}.

Following Nazarova and Roiter [9, 11] we introduce the following
definition.

DEerFINITION 1.2. A stratification of the poset I i1s an equivalence relation
¢ in A such that if (i, jle(r, t) in AT then:

(S1) the relations igr and jot hold in I =0l < Al
(S2) there exists a poset isomorphism o: [i,j]—[r,t] such that
(i, k)o(r, (k) and (k, j)e(a(k), t) for all ke[i,J].

A stratified poset is a pair I, =(I, g), where I is a poset and ¢ is
a stratification of I.

LeMMA 1.3. Let (I, @) be a stratified poset. If (i, jlo(r,t) and i =r then
j and t are incomparable with respect to the ordering < in I. Dually, if j = t then
i and r are incomparable.

Proof. Suppose that i = r. If we assume, on the contrary, that j and ¢ are
comparable, then obviously |[i, /]| # |[r, t]| and we get a contradiction with
(S2). The dual statement follows in a similar way.

Note that given a stratified poset (I, ¢) we have no relation (i, i)e(r, t) with
r <t because of (S2). Hence, if

(1.4) [=1,0...01, Al:= AI-8I=TIu...0l,

are the decompositions into equivalence classes with respect to ¢ restricted to
I and to AI respectively, then I;nI; = @ for all j and r. We call (1.4) the
o-decomposition of I and 4I.

We shall denote by (i, j) the cardinality of the g-equivalence class
represented by (i, j).

We shall call g trivial (and write ¢ = 1d) if ¢ i1s the identity relation. In this
case I; and I, are one-element sets. (I, ¢) is called simply stratified if the
restriction of ¢ to AI is trivial. In this case ¢ 1s uniquely determined by the
disjoint union set decomposition I = [,U...Ul, and we write

(1.5) e=(,,.... 1)

DEFINITION 1.6. A poset I together with an equivalence relation g in A is
a completed poset (in the sense of Nazarova and Roiter [9]) if ¢ satisfies the
condition (S1) and the following condition:

(co) If (i, j)e(#, j) and i < r <j then there exists r' such that i <r <J,
(i, e, r), (r, e(r, )} and (i, j) = (i, 1) = 2(r, j) = 2.

LemMma 1.7. () If (I, p) is a completed poset then (I, g) is stratified.
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(i) A stratified poset is completed if and only if it satisfies the following
condition:

S3) If (i, j) =2 and i<r<j then (i, j)= (i, r)=1(r,j) = 2.

Proof. (i) If (1, @) is completed and (i, j) > 3 then obviously [i, /] = {i, j}
and (S2) is trivially satisfied. If ©(i, j) = 2, (i, ))o(/, j') and i < r <j then by (co)
there is ' satisfying the conditions in (co). If we show that r’ is uniquely
determined by (co) then we can define o: [i, j]— [, j] by a(r) = r and we are
done. So suppose that r' #r”’ satisfy (co). Since (i, r)e(i, r)e(i, ") and
t(i,r) =2 we have r = v and i = i". Hence j # j’ and by (r, j)e(r, j)o(r", j') we
get (r', j) = (r", j)) because (r, j) = 2. It follows that ¥ = r”; a contradiction.

Given two stratifications g, ¢’ of I we write ¢ < ¢’ if xgy implies xg@'y and
we say that g is weaker than o'

We shall use the following drawing convention. We write i —j if i <j and
there is no r such that i <r <j. If i—j and igj we write i >j. For describing
o we shall write out only the relations xgy with x # y.

ExampLE 18. Let I ={1,2,3,4} and 1 <2<4,1<3<4,(1, De(2, 2),
(3, 3)e4, 4), (1, 3)e(2, 4). Then (I, @) is stratified and we write

152

I,e: | |, (1,3)e2,4)
354

In this case we have I, = {1, 2}, I, = {3, 4}, I = {(1, 3), (2, 4)}. We do not
write out one-element equivalence classes.

By a bound matrix of (I, g) we shall mean an upper-triangular n x n matrix
A = [a;;] with coefficients in the centre F, of F satisfying the following
conditions:

(b1) a;; =0 if i, j are unrelated with respect to < in I.

(b2) a;; =1 if either i =j or (i, j) = L.

(b3) a;; # 0 if either (i, j) = 2 or (i, j) = 3 and there is r 1n I such that
i<r=<J.

(bd) If (p, q)a(s, t) and [p, q] # {p. g} then there exists a poset isomor-
phism o: [p, q] —=[s, t] such that a,,q(a,,,a,q)_1 = dg{Ayn o) Whenever
p<r<gq

DermiTION 1.9. Let F be a division ring and let (I, ¢) be a stratified poset
with g-coset decompositions

I=1u0..0l, A4 = IN0V...Ul,.
A bound set of (I, g) over the centre F, of F is a set

(1.10) 0=0,U..00,00U.. U,
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of Fy-linear forms in Fy[X;;; (i, j)e AT] satislying the [ollowing conditions:

W) o, = ;=@ if [[|]=|I=1

(w2) If [I))>2 then @; = {X—X,; s, tel}.

(w3) The forms in w; depend only on the variables X ,,, (p,q)€ [}, and if
(p, 9, (r,t)el; then X,, and X,, both appear in some form which is an
Fy-linear combination of the forms in ).

(w4) There is a bound matrix A, = [a,,] of (I, @) such that @ contains the
set

w;(Aw) = {aquuu_alths; (u’ U)’ (ts S)EI-I;}

forj=1,..., b. Moreover, ®; = w)(A4,) if either |I'] = 2 or |I}| = 3 and there is
a relation p<r <gq with (p, 9)el;.

The triple 1,, = (I. @, w), where g is a stratification of I and @ is a bound
set of (1. @). will be called a hounded stratified posel.

If A is a bound matrix of (I, g) then it induces a bound set g(A) (called
a principal bound) defined by the formula

(1.12) 0(A) = {apg X pg—au Xy (P, @)efs, 1)}

In this case we say that (I, g, ¢(A4)) is principally bounded with respect to 4 and
we often denote it by I,, = (I, ¢, A).

Every stratified poset (I, g) admits a bound matrix E(I. ¢) = [b;;] with
h;; = 1 for i <j. The corresponding principal bound set p(E(1. g)) will be called
primitive. We usually write (I, g, E) instead of (I. ¢. E(l. ).

A bounded stratified poset (I, g, @) is called NR-bounded if (I, g) satisfies
the condition (S3) in Lemma 1.7 and ¢ is delined by the formulas

0; = {Xs—Xu; s, tely}.

(1.13) 0;={Xp—Xu: (p. @), (r,)ely} if I} =2,
={ Z qu} if I3 = 3.
(p.9)el;

The bound set g is called an NR-bound because it was used by Nazarova
and Roiter [9, 11] in their definition of completed poset representations.

We recall that the incidence ring of the poset I = {1, ..., n} over F is the
upper-triangular matrix subring

(1.14) FI=[F]l=e,FI®...®e,FI
of M,(F), where ;F;=F for i<j and ,F; =0 otherwise. Here ¢; is the

idempotent matrix with 1 in the (i, i) place and zeros elsewhere.
Given a bounded stratified poset (I, g, @) we consider

(1.15) F(I, 0, )= {A=[A,)eFI; f(A) =0 for all few}.
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By Lemma 1.16 below F(I, g, w) is an F-subalgebra of FI. We call it the
incidence ring of (I, o, w) with coefficients in F.

LEMMA 1.16. Let F be a division ring and let (1, ¢, ®) be a bounded
stratified poset with g-decomposition (1.4). Then:

(1 F(I, ¢, w) is a finite-dimensional F-subalyebru of FI.
(i) If e, ..., e, is the standard set of primitive orthogonal idempotents in FI
then the elements

(1.17) é=Ye j=1,..qa,
el
form a complete set of primitive orthogonal idempotents in F(I, g, o).
Proof. Suppose that b = [b;,], ¢ = [¢;;]€e F(I, ¢, w) and let be = [d;;Je FI.
It is clear that d;; = d;; if igj. In order to prove that {(h¢) = 0 for any form [ in

wi(A,) (see (wd)) suppose that (p, ¢), (s, 1)el;. By (b4) there exists a poset
isomorphism o: [p, g]—[s, t] such that

- -1 _ -1
Uprg = Apg(Apya,) " = A (Asqir)\Ugiry ) whenever p<r <y.

Hence we have

Apadpy = Z ApgDprCrg = Z (@prDprtrgCro) Uprg
psrsgq p=ryq

= Z (asa(r) bsa’(r) ao’(r)r Ca(r)r)usa(r)r
p<r<gq

=aqy z bsucm = aslds!-

SKuxt

Now suppose that few), |I}l =3 and [p, q] = {p, q} for all (p, g)e!’.
Then given (p,q) in I} we have d,, = b,,cp,+bpy,cq. Since [ is linear and
depends only on X,,, (p, 9)€lj, we have

S (Ldpad) = bppf ([cpa]) +S ([Dpgl)caq = 0.

Consequently, g(bc) =0 for all gew and (i) follows. Since (i1) is an easy
observation, the proof is complete.

ExampLES 1.18. (a) Let (I,9): 1523334 and let ¢ restricted to
A1 be defined by taking Iy = {(1,2). (2, 3).(3.4)}, I ={(1,4)} and I}
= {(1, 3), (2, 4)}. Consider the primitive bound set g(A4) with

1 a, a 1

01

4 a; b ,
0 0 1 A34
00 0 1

where a,,, 4,3, a;4 are fixed nonzero elements in the centre of F and
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a = a,,0a,3, b = a,3a;,. Then the incidence algebra F(I, ¢, o(A)) consists of all
matrices in FI of the form

o O O =
SO > X
o = =
>N T o«

and satisfying a,,x = a3y = ds4z, au—bv = 0. It follows from Lemma 1.7 that
the bounded stratified poset (I, g,e(A)) is not a completed poset.

(b) Let I={1,2,3,4,5}, 1 <2<3<5, 2<4<5, and define ¢ by
taking I, = {1, 2}, I, ={3,4}, I, ={5}, I ={(2, 3), (2, 4)}. Then (/, ) is
a stratified poset. If pr is the primitive bound set of I then

'F F F F
\\F F=F
F(, o, pr) = F 0
Zeros \\F

M oM om T

2. Representations

DerINITION 2.1. Let F be a division ring and let (I, ¢, w) be a bounded
stratified poset with I = {1, ..., n}, g-decomposition (1.4) and a bound set
decomposition (1.10). A matrix F-representation of (I, g, w) over F is a block
matrix

2.2) A=A, [ 4,|..|4 }=
R g [N

with coefficients in F and such that s, = s; for igj. We call
(2.3) cdn(A) = (5;, S35 -5 Sps Sn+1)

the coordinate vector of A (see [15, 16]). In the set M(/, ¢, w) of all matrix
F-representations of (I, g, w) a direct sum is defined by the formula

A, |0 .. l4 |0

ADA =
© A 0. 10| a4

Let ®(I, o, ®) be the set of all (g, w)-transformations on matrices in
M(I, 9, w) of the following types:

(e,) All simultaneous clementary transformations on rows.
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(e,) For every I; all g-simultaneous elementary transformations inside
blocks A; for iel,, ie.

(e3) Given a nonzero A€ F and given a number s < s;. i€ I;, one multiplies
the sth column by /4 simultaneously in all blocks 4,, i€ I_,..'

(e3) Given any two numbers s # r < 5., iel;, and i€ F one adds the sth
column multiplied by 4 to the rth column simultaneously in all blocks A4,. tel;.

(e3') Given any two numbers s # r < s; one interchanges the sth and rth
columns simultaneously in all blocks 4,, tel,.

(e;) For every I all g-simultaneous elementary w-transformations with
a source in I}, 1e. given numbers s <s,, r <5, where (p, g)e [}, and given
a vector (b,o)p.qer;> bpg € F, which is a common zero of all forms in o; one adds
the sth column in 4, multiplied by b,, to the rth column in A, simultaneously

for (p, g)el}, p<q.

We have defined a matrix problem (M(I, ¢, w), G(I, ¢, w)) of classifying
indecomposable (I, ¢, w)-equivalence classes A/~ of matrices 4 1in
M, ¢, w), where ~ = ~ . 18 the relation defined by the compositions of
transformations in &(I, g, w) (see [15, 18]). We say that (I, g, w) is of finite
type if M(I, ¢, w) has a finite number of indecomposable ®(!, ¢, w)-equiva-
lence classes.

Here we follow an idea of Nazarova and Roiter [9, 11]. In the case where
(I, @, @) i1s an NR-bounded poset the definition above and the definition of
representations of a completed poset coincide.

Given s = (s,, ..., S,4+1) We put

24) M, g, w) = {AeM(I, ¢, ®); cdn(A4) = s}

and we denote by ® (I, ¢, w) the set of all transformations in &(I, ¢, @) which
operate on matrices 4 with cdn(A4) = s.

Note that transformations in ®.(I, ¢, w) of type (e,) act on matrices in
M, (I, o, ®) as left multiplication by all elementary matrices in Gl(s,, F),
whereas transformations of types (e,) and (e,) act as right multiplication by all
(0, w)-elementary matrices in the group

(23 9= {[gij]EM|S|(F); gi;; =0 for i >j, g,;eGl(s;, F),
gijeMs;Xs,-(F)}a |S|=S[+...+Sn,

of the following forms:

(e%) er,(A) =diag(E(,.... E), 0<j<a 0<r<s, tel,

where A€ F, E;eGl(s;, F) and E;, = diag(1, ..., 1, 4, 1, ..., 1) with 4 in the rth
place for ie I,, whereas E; = E is the identity matrix for i¢[};

(e ef(A) =diag(H,,..., H), 0<j<a,r,s<s, r#s, uel,

u?

where Ae F, H, = Efori¢ I, and H, = E+ ie,, € Gl(s;, F) for i€, (here e, is the
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matrnx in M,(F) with | in the (r, s) place and zeros elsewhere);

(e}’ ey,=diag(H,,....H), 0<j<a r,s<s

u*

r#s, uel,
where H; = E for i¢l; and H; =) ;< srslutes+e, for icl;

(e)) e =[g.), 0<j<b 0<s5<s, 0<r<s, (b, 9cl],

p,
where b = (byg)ip.qer; is such that f(b) =0 for all f in ©; and

du = E for t = i
= bpiep €M, . (F) for (i, 1) = (p, )€},
=0 for (i, t)¢ ;.

Denote by (1, ¢, @) the subgroup of $, generated by all matrices of

i

types (e2){e>’) and (e,) above.

PROPOSITION 2.6. For a bounded stratified poset (I, ¢, w) and a fixed
coordinate vector § = (s, ..., $,+1) we have

U, 0. 0) = {g = [9:]]€9,: f(9) =0 for all few}.

Proof. Denote the right side set above by ;. It follows from the definition
of the bound set that ; is closed under multiplication and under taking
inverses (see the proof of Lemma 1.16). It is clear that G’is(l, 2, 0) < ®;. Now, if
g€ ®; then a standard analysis shows that multiplication of g on the left and
right by suitably chosen elements in ®_(I, ¢, ) reduces it to the identity
matrix. This proves the converse inclusion and finishes the proof. The details
are left to the reader.

Now given s = (s,, ..., Sp+1) We consider the group
2.7 &, = Gl(s,.,, F)x® (I, ¢, w)

and the group action *: G x M, —->IM_ given by (g, h)xA = g~ ' Ah, where
M, = M. (I, ¢, w). Then Proposition 2.6 and the discussion preceding it yield

COROLLARY 2.8. Matrices A, B in M (I, ¢, w) are (I, g, w)-cquivalent if
and only if B +4 =6 _*B.

Note also that if F is a commutative field then YR, is an algebraic
F-variety, ®, is an algebraic group and * is an algebraic group action.

Let A be a matrix representation of I,, =(/, ¢, w). We call A/~
indecomposable if there is an indecomposable matrix B such that B~ A. The
class A/~ is called faithful if A/~ is indecomposable and all s; in cdn(A4) ((2.3))
are nonzero. We call I, faithful if M(I,,)/~ has a faithful class A/~.

Now we are going to connect M({,,,) with the factor space category ¥ (K;)
[16] of some vector space category K and with socle projective modules over
a right peak ring [16].
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DeFINITION 2.9. The additive category of a bounded stratified poset I,
= (I, ¢, w) over F is the category K = K(I,,)r whose objects are [-graded
finite-dimensional vector F-spaces

(2.10) ¥V =V®..®V, with V=V, for igj.

A map g: ¥ —»# in K is an F-linear map given by an upper-triangular nxn
matrix

(2.11) g = [g;]

with g;;€ Hom(V;, W) such that g; =0 for i, j unrelated with respect to
< and h(g) =0 for all h in w. The composition in K is given by the matrix
multiplication.

Using the same type of arguments as in the proof of Lemma 1.16 one can
prove that ¢f is a map in K provided f and g are. It is easy to see that K is
a Krull-Schmidt category, the object

(2.12) F =F,®..®F,
with F; = F for jel; and F; = 0 otherwise is indecomposable for i = 1, ..., a,
(213)  End &, = {A = [4,]€ FI;; h(2) =0 for all hew depending
on X, with (p, q9)c Al;}
is a local finite-dimensional F-algebra and
vV =>F0..0F:

where t;= dim VJ

Denote by
(214) KF = K(Igm)F
the vector space category (K, |—|: K—mod(F)), where |—| is the forgetful

functor. If ¥"(K;) is the factor space category of K (see [16]) then we have
a map

(2.15) ¢t M o) =¥ (Ky)
given by £(A4) = (F**1, F'®...@F*, ¢), where A is a block matrix of the form
(2.2), edn(A4) = (54, ..., Sy,+1) and ¢: |[F*'@...@F*| - F*' is the linear map

defined by A in the standard bases.

THEOREM 2.16. Let A, B be matrices in M(l,,) and let ~ = ~g o)
Then:

(a) A~ B if and only if &(A) = E(B).

(b) The equivalence class A/~ is indecomposable if and only if £(A) is an
indecomposable object in ¥ (K(Iyw)r)-
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(c) & establishes a one-to-one correspondence between the indecomposable
classes A/~ in M(,,) and the isoclasses of indecomposable objects in

V(K p0)r)-

Proof. Let Kp = K(l,,);- In order to prove (a) recall that if edn(B)
=(ty,..., tns1) then a map &(A)—¢&(B) in ¥ (K,) is a pair (h, g), where h:
Fen+t — Fin+t is an F-linear map and g is a2 map in K of the form (2.11) such that
the diagram

< g, (Are o Al "
Fi'®.. @F*" > [t

(2.17) | L
F”@...@F!" (B"""& Ftn+1

is commutative. It follows that (h, g) 1s an isomorphism if and only if
bty =5(s.»ta+1 =Sp+1 and h, g are bijective. Now we conclude from
Proposition 2.6 that this is the case if and only if heGl(s,,,, F) and
ge@s(lm,,). Hence if (h, g) is an isomorphism then 4 = h~!Bg = (h, g)* B and
according to Corollary 2.8 we get A ~ B. The converse follows in a similar way
and (a) 1s proved.

(b) is an.immediate consequence of the definitions, whereas (c) follows
from (a) and (b) because any object (U,, ¥, o: |71, -U.) in 1 (K,) is
isomorphic to £(A4), where A is defined as follows. Fix linear isomorphisms
Up = FU V, = F¥™Vi take s; = dim V,, 5,,, = dim U and take for 4 the
matrix of ¢ in the bases corresponding to the standard ones under the
isomorphisms fixed above.

Remark 2.18. (a) It follows from Theorem 2.16 that the matrix problem
(M(I4e), ®(1,4)) is equivalent to the classification of indecomposable objects in
¥ (K(Iw)r) and therefore the results in [16, 17] apply to it. In particular, we
have a Kleisli category interpretation of ¥"(K(/,4)) presented in [17; Proposi-
tion 1.9].

(b) Let S=(I, o, #) be an NR-bounded poset. A simple analysis of the
commutative diagram (2.17) with a map g in K = K(S) shows that #"(K,) is
dual to the category (S, mod(F)) of representations of the completed poset
S in the sense of Nazarova and Roiter [11; p. 21].

3. A right peak ring of a bounded stratified poset and
socle projective modules

We are going to give an interpretation of representations of a bounded
stratified poset (I, ¢, ) over a division ring F in terms of socle projective
modules over a finite-dimensional right peak F-algebra [16] associated to
(I, e, w). In the case where g and o are both trivial our interpretation coincides
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with the well-known interpretation of matrix representations of a poset I in
terms of I-spaces (see [15, 18]). Our results answer a question of Nazarova and
Roiter in [10; p. 9].

Recall some notation from [16, 17, 20]. Suppose that

R=¢,R®D..Pe,RPe. R®...®e, R

is a semiperfect right multipeak ring with a fixed sete,, ..., e,,€4,,..., €4, of
primitive orthogonal idempotents. Suppose that ¢. R....,e. R are right
peaks of R, i.e. they “generate” soc(Rg) [17; p. 23]. Let X be an indecomposable

module in mod,,(R) and denote by P(X) the projective cover of X. If
soc(X) = (e, R} ®...®(e+ R)*, P(X)=(e,R'®...D(e,R)"
then we put

(3.0) cdn(X)=(t;,..os by By ooy £)

and call it the coordinate vector of X. The module X is called sp-sincere if t; > 0
and t;” > O for all i and j. The ring R is called sp-sincere if there is an sp-sincere
indecomposable module in mod,,(R).

It follows from [17; Proposition 1.15(d) and Corollary 1.16] that the study
of indecomposable socle projective R-modules can be reduced to the case
where R 1s sp-sincere.

Let I,, = (I, ¢, ) be a bounded stratified poset with I = {1, ..., n}, with
o-decomposition (1.4) and bound set decomposition (1.10). Let I* = [ u{} be
the enlargement of / by a unique maximal element * (which will be equivalently
denoted by n+1). If we extend ¢ and o trivially to I* we get the bounded
stratified poset I}, = (I*, ¢, w) The incidence ring

FI pKp
3.1 FI* =
6.1 o
of I* with coefficients in a division ring F is a finite-dimensional right peak
F
F-algebra (see [16]), where K =| : | (n rows) is a left FI-module via the
F ]
matrix multiplication. We have an F-algebra embedding
S (K
. R:=F(It)=| 5 F|cFI*
(32) Fiz =g p ]

where S = F(l,,). Since K viewed as a left S-module is obviously faithful, R is
a finite-dimensional right peak F-algebra. We call it the right peak algebra
of 1y

Denote by mod™ (R} the full subcategory of mod(R) consisting of modules



512 D. SIMSON

of the form X, = (X5, X7, ¢: X'®4Kp— X7) with X’ in pr(S). Let
(3.3) ©: mod™(R)—>mod,,(R)

be the functor defined by O(Xp) = (Y, X¥, ¥), where Y, is the image
of the map ¢ adjoint to ¢ and y is the map adjoint to the inclusion
Ys— Hom(sK;, X7) [16]. Note that mod®™(R) is an additive subcategory of
mod(R) containing pr(R). It is closed under extension and under taking kernels
of epimorphisms. Although in general mod™(R) is not abelian it is a nice
hereditary subcategory of mod(R) because of the following observation (see
[20], [14; 2.5])).

S (K
LEmma 34 If R = [ 0 SFF :' is an arbitrary right peak semiperfect ring

with a unique simple projective right ideal P, then for any module
Xg = (X5, XF, ¢ X'® sKp— XF) in mod®'(R) there exists an exact sequence in
mod(R)

0P, > P(X )5 X, —0.

If X and Y are in mod™(R) then Ext3(X, Y)=0.

Proof. Without loss of generality we can suppose that X, has no
summand isomorphic to P_. Since X is projective. P(X g) = (X5, X5 @ (K. id)
and h has the form (id, "), where h": X'® (K — X% is an F-linear epimor-
phism. Hence Kerh = (0, Ker 4", 0) = P, where t = dim Kerh”, and the first
statement follows. The second part follows from the first one.

A basic role in our considerations is played by the following result.

THEOREM 3.5. Let K = K(l,o)r be the vector space F-category of a boun-
ded stratified poset I,, = (I, 9, w). Then:

@) If F=F,®.. ®F, (see (2.12)) then there is an F-algebra isomorphism
K(#, #) = F(l,,) = S and the Yoneda functor w: K - pr(S), w(—) = K(—, .F),
is an equivalence of categories such that the diagram

K-, mod(F)
1.., /'(—)@:K.-
pr(S)

is commutative up to the natural equivalence of functors |—|p— w(—)® K.
(b) The functor w*: ¥ (K;)— mod(R) given by

(3.6) w (U, ¥, @) = (w(¥), U, w(¥® (K, = 7], 5 U,)
is full, faithful and establishes an equivalence of categories

wt: ¥ (K;)—> modP(R).
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Moreover, mod® (R) is a hereditary subcategory of mod(R).
(c) The composed functor

(3.7) H=0w": ¥ (K- mod,(R)

is full dense and KerH = [(0, #,,0), ..., (0, #,, 0)]. In particular, H estab-
lishes a representation equivalence Hy: ¥ (K g) —» mod,,(R), where 174(K ) is the
Sull subcategory of ¥"(Kj) consisting of objects having no summands of the form
0, #, 0.

Proof. The isomorphism K(#, #)= S follows immediately from the
definitions of K and S. Since we know from our discussion following Definition
29 that & is an additive generator of K, by standard arguments w is an
equivalence of categories. Next we note that there is a bimodule isomorphism
k# .57 | = 4K and therefore the ring R = F(I},) is isomorphic to the right
peak ring Ry of the category K, in the sense of [16; Section 3]. Therefore the
theorem 1s a consequence of [16; Lemma 3.2, Theorem 3.3] and Lemma 3.4,

CoroLLARY 3.8. Let I,, = (I, ¢, w) be a bounded stratified poset over
a division ring F and let K, = K(I,,,), R = FI}, = é R®.. ®é,R®e R (see
(1.17)). The composed map M(I Q,,,)—é» v (K F)'—'*modsp(R) establishes a one-to-one
correspondence between the indecomposable classes A/~ in IM(I,,) with
Al ~g{EUF )/ ~,.... E (F,)/~} and the isoclasses of indecomposable mod-
ules in mod,(R). If ednA = (s, ..., 5,, 5,), Hl(A) # 0 and cdnHE(A) = (¢, ...
cor g ) then t, =5, and t;=s; for jel,.

Remark 3.9. (a) One of the main advantages of our socle projective
module interpretation of representations of bounded stratified posets is the fact
that one can study mod,,(R} by applying almost split sequences [13, 16],
triangular reductions [16, 17], differentiation procedures [7, 19] as well as the
covering technique ([17; Theorem 1.10] and Theorem 0.2). On the other hand,
the description of indecomposables in mod,(R) can sometimes be done easier
by calculating the canonical forms of the corresponding matrices in W(],,).

(b) The map w* &: M(I,,) = modP’(R) reduces the study of M(/,,,) to the
study of a hereditary subcategory ol mod(R) (see (3.4)).

{(c) The construction of F(I,,) < FI is analogous to Gabriel’s construction
[5] of the Galois quotient A/G of an algebra A with a free action of a group
G on A. Here (¢, o) plays the role of the G-action on A.

(d) The correspondence (I, ¢, w)— F(I*, ¢, w) yields a wide class of
finite-dimensional right peak algebras. Although this class does not exhaust all
right peak algebras our observation below shows that every sp-represen-
tation-finite algebra over an algebraically closed field F i1s of the form
F(I*, ¢, w).

THEOREM 3.10. If R is a finite-dimensional basic right peak algebra over an
algebraically closed field F and R is sp-representation finite then there exists

33 — Banach Center 1. 26, ¢v. |
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a bounded stratified poset I,,, such that R =~ F(I},). Moreover, |I,| < 3 fori < a,
\I'} <3 for j < b, I is linearly ordered and the condition (S3) in Lemma 1.7 is
satisfied. If |I| = |I | = 3 for some i # j then the poset I;U1; is linearly orderd.

A ANF
0 F
=n is finite and N is faithful. Fix a complete set é,, ..., é, of primitive
orthogonal idempotents in A. Without loss of generality we can suppose that
A = Endp(Ng) and A;:= é;Aé; < End (N{), where Nf = é;N,.

Since R is sp-representation-finite, applying the arguments in [9; Sec. 2]
(see also [17; p. 54]) one can show that the radical J; = J(A)) of 4, is a principal
one-sided ideal, dim JANL/JiTINL <1 and dimNL <3 for all t >0 and
i=1, ..., a It follows that for every i one can choose a basis I, = {v;, ..., Vp,}
of N% in such a way that:

Outline of proof. By [16], R has the form R =[ ], where dim N

(i) vy ¢J,Nk and v, 4, = fi'(v;y), where f;: Ny — N§ is a linear map such
that J, = A4,f;, and
(i) in the basis I; A; has a matrix form of one of the types

. F F F F F_F
F, [\\] NF F|, | NFYF
0 F \F \r

(see [9; Lemma 4.2] and [13; p. 131]).
Define a partial order relation < on the basis

I=1v...ul,

of Nz by v <v'<av’ = v for some ae A. From A < End.(N[) we easily derive
an algebra embedding A < FI such that é, =) e, e;,eFl,fort=1,...,a
and the space é,4¢, has a basis of one of the types (a), (b) or (c) in [9; Lemma
4.6] depending on matrices e; in FI with j<s, j, sel,ul,, and on some
constants in the field F. We put jgj’ if j and j' belong to some I,, and (j, r)eo(s, v)
if e;, and e, appear in a basic element of some é A¢é, with a basis chosen as
above. It is easy to check that the constants yield a bound @ of the stratified
poset (I, @) such that the image of the natural embedding

A N FI N
R= A'YF _FI* — FI‘''F

is the algebra F(I},). The remaining part of the theorem can be easily derived
from [9; Section 4].

Remark 3.11. Applying the same type of arguments as in [9; Section 2]
one can show that if mod,,(FI3,) is not wild then |I| <4 and either I; is
linearly ordered or it consists of two incomparable elements for j =1, ..., a.
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4. Bound quivers of bounded stratified posets

Suppose that I, = (I, g, A) 1s a principally bounded stratified poset with
a bound matrix 4 = [a,,]. We are going to construct a bound quiver (Q, Q) (see
[1, 5, 6]) such that

FIZ, = F(Q, Q):= FQ/Q)

and () is admissible. For this we first construct a quiver Q' having as vertices
the elements of I* and such that given i, je I* there is an edge f;;: i —j (unique)
in Q' if and only if i <j and [i, j] = {i, j}. Let

QU*) = Qe

be the quiver obtained from Q' by identifying g-equivalent vertices.
Let ' be the set consisting of the following relations in Q'(I*):

(41) ﬁiilﬁili2"'Bl.rj—ﬁl-jlﬁjljz"'ﬂj:j;
42)  ayj,...a05.B05 - Bijy = ory -ty Brar Brasy - Bu e,

if r>1and B ep,_ ., for p=1,... 7

(4.3)  Bi,j\Birjr--- Bi,j, I there is no sequence By, ..., Bi_,0,
such that B, ; @B, ., for p=1,...,r

ProposiTION 4.4. Let 1,4 be a principally bounded poset and let (0, Q')
=(Q'U*). Q), If ¢ is multiplicative (i.e. (1,])e(s,t) and (j, k)g(t, r) imply
(i, k)a(s, r)) then there is an F-algebra isomorphism F(Q', Q') = F(I%,).

Proof. Let h: FQ'>R:= F(I*,) be an F-algebra map defined by
h(l) = zet’ h(ﬁl}) = eij lf T(l’]) = 1$

toi
= aalv,’j if T(l,_}') = 2,

where v;; =) .m0 Gpa€paWith dpg = ape' Y (s netpa) @t~ It is clear that v;;eR
and v;; = v, provided (i, j)e(s, t). Moreover, one can show that v;;v;b;; = v, for
some b;;eF if i <j<t, and v;;v,, = O if there are no elements s < u <t such
that (i, j)a(s, u) and (r, p)o(u, ¢). It follows that h is surjective and a straightfor-
ward calculation shows that ' = Ker h. Hence h induces an algebra surjection
h: F(Q', €)— R. Since a simple analysis shows that dim;F(Q’, ') < dim/R,
h is an isomorphism.

Note that in general () is not an admissible ideal in FQ' because some of
its generators contains paths of length one. However, if I,, is primitively
bounded (i.e. 4 = E = E(I*, g)) and g is multiplicative we define a new bound
quiver

(4.5) (Q1,, Q1) =(Q/~, 2/~)



516 D. SIMSON

of I,; by taking for Q'/~ the residue quiver of Q' modulo the relation

)Bij"" ﬂst had (i,j)Q(S, t)'

We take for 2; the set of relations induced by €. It is clear that the vertices
of Q,? are g-cosets i of elements i€ I* and the edges are ~-cosets f;; of §;;. We
identify B;; with the g-coset of the element (i, j)e 4I such that [i, j] = {i, j}.
2, is obtained from (4.1), (4.3) by interchanging #;; and f;;. Now it is easy to
conclude the following.

COROLLARY 4.6. If I,c is primitively bounded, E = E(I*, ¢) and o is
multiplicative then (Q) is an admissible ideal in FQ, and there is an F-algebra
isomorphism F(Q,,, @)= F(I%e).

ExampLES 4.7. (a} Let

1 %2 53
I*: |« s |y

455 L6 5y

and let agb, cod, 10203, 40506, agfey and (1, 5)e(2, 6). Then

‘F F FF F F F]
NENE ONFNF F

NE o0 oNF F

Fl%, = FF FF|
NENE

Nr F

i F

Q,, is shown in Fig. 1 and @, = {a°, ¢° a¢—ag). Note that if we omit the

. a
a

e c
3

*

Fig. 1

relation (1, 5)¢(2, 6) then g is not multiplicative and Corollary 4.6 is not true in
this case. Note also that (0, ;) with Q depicted in Fig. 2 is the universal cover
of (Qr, Q,a) with the group G = Z [6].

(b) Let I* be the poset in (a) and let 1gd, 205, 396, agc. Then
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Y
FI* = NFf

oy
~
MmO e MM

V4
- M T T W T

e R e

[

Q;_ is shown in Fig. 3 and

(oui = ap, pd = by,

910: a2=ﬁ2 =’),‘2=0’
pb =dy = h¢ = 0.
a a

Rl
-—
o

R_i
-—
o

Ri

Fig. 3

The bound quiver (§, &) with § shown in Fig. 4 and @ = Q; v {dy, pb} is
a cover of (Q;, Q;).

(c) Let (I*, ¢) be the poset of Fig. 5 with 1g1", 22", 3¢3', xgu’, feff’ and
(xf)e(a’ ). Then the bound quiver (Q, Q) of I3 has @ as in Fig. 6,
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Fig. 4

1 9 _ e & —1'

a '
x

/

2 c2
8 @

b
3

Fig. 5
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3]
)

@ a

.a\i»*A ™
,3 ® \. ‘—g \. cue
¢ ‘e L b e P b o/ .

¢ c c
E f o 5 ! o { f
* * *
Fig. 7

c;d=ae=0, c;apb =c,afc =0,
c;hc; = 0 for every path h and i,j > 1,
afbc, = dc,, ccy = bc,,

of =B,

and (J, Q) is the universal cover of (Q, £2), where § is shown in Fig. 7.
(d) Let (I*, g): e eeeL 0B e« apa, bob'. Note that g is not

multiplicative and therefore we cannot apply Corollary 4.6. However, one can
show that the algebra
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‘F FF FF F F]
oNF 0NF 0 F F
O FF FF F F
Fit =0 0 ONF ONF F |,
0O FO FF FF
0 00 0 ONF F
0 00 00 0 FJ

is isomorphic to F(Q, 22), where Q is shown in Fig. 8 and Q=
{u, cabc, abc —uc, cu}. The universal cover of (Q, Q) has the form (0. Q),
where Q is illustrated in Fig. 9.

Fig. 9

Remark 4.8. Suppose that (Q, Q) is a bound quiver and let G be an
automorphism group acting freely on (Q, €2). Suppose that Q contains a finite
full subquiver I which 1s a poset (re. Q restricted to I consists of full
commutativity relations) with a unique maximal element and such that
Q = | Jsec g1. Then the action of G restricted to [ defines a stratification ¢ = g,
on I such that:

(i) ¢ is multiplicative.

(i) There is no relation (i, j)a(i, k), (i, jle(t, j), k #j, i #1t, in AL

(iii) The algebra F(Q, Q) with (@, Q) = (Q, Q)/G is a right peak algebra
isomorphic to F(I*, gg, E(I*, g¢)).

It would be interesting to know if any primitively stratified poset I with
the properties (i) and (i1) can be obtained in this way.
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By Lemima 1.3 the condition (ii) is satisfied if (I,g) is of finite type.
The [ollowing definition is useful in studying stratified posets.

DEerFINITION 4.9. A pair (i, j) with i <j is called a rib of (I, ¢) If 7(i, j) = 2
[9]. A rib skeleton of (I, g) is a full stratified subposet rsk(l, g) of (I, g) such
that if (i, j) 1s a rib and (i, j)e(s, t) then i, j, s, tersk(i, g).

It is clear that rsk(l, ¢) is empty if and only if (I, g) is simply stratified.
Throughout this paper we fix the disjoint union decomposition

(4.10) rsk(/, g) = R, u...0R,,

where R, ..., R, are the connected components of rsk(/, g) with respect to the
equivalence relation generated by

i+j <= either (i,j) or (j, i) is a rib.

The number h = h(I, g) is called the rib complexity of (I, g).

By a rib path from i to j in (I, ¢) we mean a formal composition j, ... fi; of
ribs such that 8, starts from i, B, ends at j and the start point of ;. is the end
point of §8; for j=1,...,5—1.

LEMMA 4.11. Suppose that (I, @) is a stratified poset with the following
properties:

(1) t(i,j) <2 and t(i) <2 for all iel ana (i, j)eAl.
(1) There is no relation (i, j)o(i, t) and (s, rye(u, r) with j£t, s #u.

Then:

(@) If B,...B, is a rib path starting from i (resp. ending at i) and igi' then
there is a unique rib path B ...p; starting from i’ (resp. ending at i') such that
B;eB; for all j.

(b) For every ‘R, in the decomposition (4.10) there is a unique ‘R, u # t, such
that there is a poset isomorphism ¢. R,— ‘R, with the property

(4.12) If (2, j) = 2, then (t, a(o(t), a(j)).

(We shall write R, instead of R, and i' instead of a(i) for ieR,.)
(c) If a primitively bounded poset I,g is of finite type (resp. of tame type)
then the posets N, ..., W, are linearly ordered (resp. are of width < 2).

Proof. (a) is left to the reader.

(b) We proceed by induction on the cardinality of J = rsk(/, g). Choose
a minimal element i in R, and i’ # i such that ipi’. We claim that if i’ e R, then
u # ¢ and there is a poset isomorphism o: 9t, » R, satisfying (4.12) and such
that o(i) = i'. By our assumption there is a rib (i, j) in R,. It follows [rom (a)
that i’ is minimal in R, and there is a unique nb (7, ) in R, such that
(i, j)e(#, j'). Consider the poset J' = J—{i}. If j is minimal in the component
R; = N,—{i} of J' then by the inductive assumption there is a unique poset
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isomorphism ¢’: R, - R, = R, — {i'} satisfying (4.12) and such that ¢'(j) = . If
j is not minimal in R; we can choose k € ‘R; minimal and such that there is a rib
path 8, ..., from k to j. By (a) there is a unique rib path f; ... f; from some k'
to j' (in R,) such that .98, for all r. Now again, by the inductive assumption,
there is a unique poset isomorphism ¢': R; — ‘R, satisfying (4.12) and such
* that o'(k) = k. It follows that ¢’(j) = j' like in the first case. Now we extend o’
to the required poset isomorphism og: R,— R, by putting o(i) =, and (b)
follows.

(c) Let i,, ..., i, be pairwise incomparable elements in R, with respect to
the partial order <. It follows from (a) that R, = R, contains pairwise
incomparable elements iy, ..., i; such that i gi,. Moreover, R,nR; is empty.
Consider the subposet K = {i,,..., i, i}, ..., is} of I with the stratification
induced by ¢. Then K, is simply stratified and we consider the narrow ring
extension R, = FK¥ € R| = FK* (in the sense of [21]) as well as the
corresponding pairs of adjoint functors

mod,, (RY[P,] = adj(R) 2 adj(R,) = adj(R}) = K-sp/[P,],

where P is the unique simple right ideal in R, and in R, r is the restriction,
L, i1s a fully faithful embedding [17; 1.14], [20; 2.22], 3 is the forgetful
functor and J is the blowing-up functor [21:; 3.2]. Let ¥ = {P, P}, where
P=P,+...+P, P =P,+...4+P, = E(P,) are indecomposable R}-modules
with P, = e R. Let adj(R, ~¥) be the full subcategory of adj(R,) consisting of
modules X such that J(X) is a direct sum of copies of P and P'. Then the
adjustment functor ad?: adj(R, #%)— adj(T) with respect to a = J(FK) is
a representation equivalence, where T is a hereditary F-algebra of the type
shown in Fig. 10 (see [21; 3.27 and 5.17]). Since obviously T is of finite type iff
s=1,and T is of tame type if s = 2, (c} follows and the proof is complete.

o
™
o
) .
. ®
o/

Fig. 10

In [12] Nazarova and Roiter study the case when h(l) =2, rsk{l,)
=R, VUR| and R, 1s linearly ordered. In the next section we shall show how
the covering technique works in this case. Before we do it let us consider
a special situtation in a more general case when k(I ) = 2 and the width w(R)
of R, is two.

ProPOSITION 4.13. Let 1, be a stratified poset such that rsk(l)) =1,, o is
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multiplicative, h(I,) = 2, rsk(I,) = R, Ry, w(H ) = 2 and p < q for all pe R,
and geRy. Then the following conditions are equivalent:

(@) I,e =, @, E) is of tame type, where E = E(1, 9).
(b) I does not contain as a full subposet the poset (1,2) = {e, e—e)}.
(c) R, is a full subposet of a garland & (see Fig. 11).

<X XX>

Fig. 11

Proof. (b)<=>(c) is obvious.

(a)=-(b). Assume to the contrary that (1, 2) is contained in I. Without loss
of generality we can suppose that R, = R} = {e, e—e}. It follows from
Corollary 4.6 that F(I3g) is the path algebra of the quiver (@4, 21 ), where
Q,, is shown in Fig 12 and

cac; = c;c; =0,
Q Cyn = cyal,

cyn =c,ac.

3]

c2

Cy

(=]

Fig. 12

It is easy to see that the quiver Q0 of Fig. 13 with the relations Q,, above is
a universal cover of (Q;, €,) with infinite cyclic group. One can check
that every indecomposable finite-dimensional socle projective representation
of (0, ©;) has a support of the form (D, Q,) because rad P, ~ P, ®E,
rad P, = E, where E is the injective envelope of a simple projective represen-
tation. Furthermore, mod,,(D, £; ) has a cofinite subcategory equivalent to the
socle projective representations of the quiver of Fig. 14 (see Lemma 4.14 below)
and therefore it is of wild type. Consequently, mod,,(Q, £2; ) is of wild type and
according to Theorem 0.2, mod,,(FI}g) is of wild type, which is a contradiction.
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(c)=>(a). Without loss of generality we can suppose that R, = R, =6
and o: R, >R} in (4.11.b) is the identity map. Then I* has the form as
in Fig. 15 and according to Corollary 4.6 there is an algebra isomorphism
FIp = F(Q, ), where @ is shown in Fig. 16 and Q = §;, consists of the
commutativity relations (4.1) induced by those in I* and the zero relations (4.3).
It is easy to check that the quiver O of Fig. 17 with relations Q above is
a universal cover of (Q. Q). By Lemma 4.14 below indecomposables in
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mod,, F(Q, Q) have supports of the form (D, Q) and mod,,F(D, ) has
a cofinal subcategory equivalent to mod.,(FU), where U is the poset of Fig. 18

\a) %

Fig. 19

with two maximal elements. If U is the poset of Fig. 19 then according to [20;
Prop. 2.24] and [22; Theorem 4.12] we have the diagram

mod,,(FU) <, modic(FU)B
18a
adj5¢(FU) 2> mod,,(FN*) = N-sp,
where B= F(U—-6), N = (G —{e})U{e, 8} and @ is a full dense functor
vanishing only on a finite set of indecomposables [20]. Since according to [7],

N 1is tame, it follows that mod,(FU) is tame and according to Theorem 0.2,
mod,,(FIZg) is tame as required.

Let us finish this section by the following multipeak splitting lemma (cf.
[18; Section 8]) which we use in the next section.

LeEMMA 4.14. Let

A My 0
R=|0 B ,N,
0 0 C

be a right multipeak artinian ring. Suppose that My = Eg(P,), where t > 0 and
Eg(P,) is the B-injective envelope of a simple right ideal P, = e, B. Then every
indecomposable module in mod,,(R) belongs to the image of one of the following
Jully faithful functors:

A M
modsp[ o F ] % mod,,(R) < mod,,(S),

where S=[8&. M' = Me,, F=¢,Be,, T(Ys)=(0,Y) and L(X,, F. f)
= (X, E4(P). f) [16: p. 539].

Proof. Let X = (X4, X§, g) be an indecomposable module in mod,,(R)
with X', # 0. Note that according to our assumption the right S-module
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(Mg, 0) is isomorphic to Eg(P,). Hence if the A-homomorphism
g: Xy—~Homg((M, 0)s, X§) = Homg(E4(P,), X5)

adjoint to g is nonzero then X§ being socle projective is isomorphic to a direct
sum of copies of E¢(P,) and therefore X ; belongs to the image of L. If § is zero
then X'§ is zero and again X, belongs to the image of L. Thus the lemma 1s
proved.

5. On bipartite completed posets and coverings

We are going to show how the covering technique can be applied in the study
of representations of bipartite completed posets in the sense of [12].

In our terminology a bipartite completed poset in the sense of {12] is
a primitively bounded stratified poset

f:(I,QaE)q E=E(I,Q),

such that I is the disjoint union of two subposets P, P’ and the following
conditions are satisfied:

(B1) h(I, ) = 2 and rsk(l) = PUP, where P= {5, <...<s5,} =R, = P
and P’ = {sh<...<s,} =R, < P are linearly ordered full subposets of
I such that [s;, s;] = {s;, Si+ 15 ... sj} and [si, sj] = {si, Si+,, ..., 8j} whenever
(55> s)e(si, 57,

(B2) (s, s;)o(s}, 5%), -+.s (Sm=1> ;) @(Sm—1, Sm) (usually there are more re-
lations in AI). The relations s, gs, ..., s,,@5, are the only nontrivial g-relations
in I.

(B3) p<gq for all peP and geP’.

Given j<m we put u(j)=t if (s;, s)e(s;, s;) and there is no relation
(Sja 5 +1)0(5}, St+1)-

It is easy to see that the category rep(l) defined in [12] is equivalent to
¥ (K (f)F), where K (f)F is the vector space category (2.14) of I. It follows from
Corollary 3.8 that the representation types of I and of mod,,(F ™) coincide. In
order to determine that type we are going to find a suitable bound quiver
(0, Q) of the algebra FI* and calculate its universal covering (J, @)—(Q, Q).
We shall show that the fundamental group of (Q, ) [6] is infinite cyclic, the
support of any indecomposable module in mod,,(F(Q, Q)) is a finite 2-peak
bound quiver /** and the categories mod,,(FI* *) and mod,,(FI*) have the
same representation type.

Let us introduce some notation. A pair (i, j) in AI will be called short (and
denoted by f;) if [i, j1 = {i, j}. We call (i, j)e AI g-extremal (and denote it by
a;;) if t(i,j)=1, whereas t(i,r)> 2 and (r,j) =2 for all rel such that
i<r<j.
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DEerINITION 5.1. The bound quiver (Q, Q) of a bipartite completed poset
I is defined as follows. The set of vertices of Q is the set

QO = {T, DY ﬁ, ;‘} = '{11, ) Iﬂ’ ’?‘}

of g-cosets i of elements ie [*, We write i = i if (i) = 1. If i <j and (i, j) is short
then the g-coset J,;: i—j of f;; = (i, j) is a unique edge from i to j. We write
Bi;= Byl (i, j) = 1. Ifi<j,i,jeP and (i, j) is g-extremal then a;; = (i, j): i—=]
is a unique edge from i to j. There are no more edges in Q,. We put
as, = Py, .2 5,7 5111, for s,eP.

The set Q consists of the following relations:

@) i Busia- - Birj= Biju Bjojo- - Pi i i < iy <o <, < i <y <o < <
and neither {i, i, ..., i, j} nor {i,j,,...,J,,j} is contained in one of the
sets 13, P.

(b) Bi,j,---B., if there is no sequence fB,,,..., B, ,, such that
Bi,j,0B:, ., for p=1,...,r. ) i

(©) aga,a,oy...dap Brj—aay...ap - By, S, 1, reP, j¢P,;

A0 Ay v g Or— 1 Qpg— A Q54 1. - . Qy— 1 0pg;
astﬂtj_asas+1~'-a1—lﬁ1js L SEIS’ ]¢15,
Aoy — Algy 1o -1 Oygs
QG4 1...0—1 Prj, reP, s, t,reP, j¢fs’;
aq B teP, s, teb, j¢15’.
(d) :Bjra:al+1---ar-larq_ﬁjta;al+1--;aq—1au L, r, qEﬁa J¢ﬁ,
Biay,—PBuaa...a, y, t,qeP, j¢P;
Bird sy .. 0,14, reP, 1, r,qeP, j¢ P,
Biv g t’eﬁ’, t, qelﬁ, j¢15’.
(e) aqa,a,,y...a,_y—a.a,,,...a,_,a, for all a,, a, with ¢, qe[s, r].

Here we write indices k+i, k—i instead of s;4;, s,-; for k=1t,r,s,q.
Consider the F-algebra homomorphism

(5.2) g: FQ-FI=FI¥ \
given by \
g(j) =e;+e; for je P, gify) =e; @j)=1,
=¢; otherwise; g(a,) = ¢, tegy,, if sjeﬁ,

g(a;)) = e,

where e, ..., ¢,, e, are the standard matrix idempotents in FI* and ¢;;e FI* is
the matrix with 1 in the (i, j)) place and zeros elsewhere.

It is easy to check that g is surjective and g(Q2) = 0. Since a straightforward
calculation shows that dim F(Q, Q) < dim FI*, we get
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LEmMa 53. If T= I,k is a bipartite completed poset with I = PUP’ as

above and if (Q, Q) is a bound quiver of I then g induces an algebra isomorphism
F(Q, Q) = FI*.

Now to any bipartite completed poset I' we associate a two-peak bound
quiver

(54) f++ — (Q+ +, Q+ +)

as follows. Denote by p;, ..., p, and ¢,, ..., 4, the maximal elements in P and
minimal in P’ respectively, and put ¢;; = f,. ;- Let (Q, Q) be the bound quiver
of I. First we construct a new bound quiver (Q*, Q%) by removing in (Q, Q) the
edges ¢;;, i=1,...,r, j=1,...,s. Next we form Q5 * = Qg w{+} by at-
taching to Q4 = Q, a new vertex +. Further we form @ * by enlarging Q; by
new edges B,.: p,— +, j=1,..., r. Finally, we take for Q"% the set Q*
enlarged by the following two groups of relations:

1° All commutativity relations ending with +.
2° The relations (c}{(e} in Definition 5.1 involving also the edges §, .,
j=1,...,r

It is clear that @ * * has no oriented cycles, has two maximal vertices * and
+, and F(I**) is a right two-peak algebra [17].

Note that in Example 4.7 (c) the bound quiver [* * has the form shown in
Fig. 20 with dc, = dfccy, be, = coy, ef = BE, ae =0, and in Example 4.7 (d) it
has the form of Fig. 21 with ué = 0. uc = abe.

Fig. 20 Fig. 21
Now we are able to prove the main resuit of this section.

THEOREM 5.5. Let I be a bipartite completed poset and let F be an
algebraically closed field. Then FI** is a right two-peak algebra and there is an
additive functor

f.: mod,,(FI* *)— mod,, (FI*)
A P P

which establishes a ore-to-one correspondence between the nonsimple indecom-
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posable modules in mod,,(FI* ") and the nonsimple indecomposable modules in
mod,,(FT*). The category mod,,(FI* ") is of tame (resp. wild) type if and only if
mod,,(FI*) is of tame (resp. wild) type.

In order to prove the theorem we construct the universal cover (0, &) [6]
of the bound quiver (Q, Q) of I. It has the form

On
che — gio-n I L g e Glo+)
(5.6) . }
CFS crs
* +

Fig. 22

where 0" = Q7 for all neZ, ¢ = B, B —G"* " and p{", 4" denote the
vertices p; and §; in the quiver 0V = Q. We take for @ the set Q. Since
I=PuUP is a splitting decomposition, the radical of any indecomposable
projective P, in F(Q.€Q), j=p{", ..., 5™, is isomorphic to the injective
envelope E(P_) of the simple projective P_ corresponding to the peak + in
O"* V. Moreover, it is easy to see that the full bound subquiver of (¢, Q) with
the set of vertices 0 U {+} is isomorphic to I'**. Now by applying Lemma
4.14 we conclude that every indecomposable module in modspF(Q, Q) is
isomorphic up to shift to a module in the image of the natural fully faithful
embedding [17: (1.14)]

T: mod,,(FI* *)-mod,,F(Q, Q).

Thus we are in the situation of Theorem 0.2 and therefore Theorem 5.5 follows
if we take for f, the composed functor f, T, because we know from Lemma 5.3
that F(Q, Q) = FI*.

The discussion above also yields

ProrosiTION 5.7. Let T be a primitively bounded stratified poset with
1= PUP. Suppose that [ satisfies the conditions (B1), (B2) and the following
one:

(B3)" There is no relation g <p with qe P’ and peP.

If (O, ) is the bound quiver of I then FI* = F(Q, Q) and the bound quiver
(Q, Q) presented in (5.6) is a cover of (Q, Q) with infinite cyclic group acting by
shifts.

If in addition the condition (B3) is satisfied then every indeg_omposable
module in mod,,F(Q, Q) has a support of the form (O™ u{+}, Q) which is

34 — Banach Center t 26, cz. ]
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isomorphic to I'**. The bound quiver algebra FI** is a simply connected right
two-peak algebra.

One of the main consequences of Theorem 5.5 is the following alternative
solution of a problem solved in [12].

CoroLLARY 5.8. A bipartite completed poset Tis of finite type if and only if
T** does not contain the critical quivers of Weichert [25). Moreover, T is faithful
if and only if FI** is sp-sincere.
I‘+ +

Proof. Since is simply connected and FI** has the separation

property for the radicals of indecomposable projective right ideals,
modsp(Ff **) has a preprojective component as well as a preinjective com-
ponent (cf. [18; Section 11]). Then in view of Theorem 5.5, Lemma 5.3 and the
results in [25] the first part of the corollary follows. The remaining part follows
from the fact that the restrictions of edn f,(Y) and edn(Y) to the nonpeak parts
coincide (see (3.0)).

Remarks. 59. If FI** is sp-representation-finite then similarly to [18;
Section 11] we can construct all indecomposable modules in modsp(Ff 1)
starting from hereditary projective modules and the radicals of indecomposable
projective modules. Since the functor f, in Theorem 5.5 is induced by the
push-down functor (0.1), we get a constructive procedure for determining
indecomposable modules in mod,,(FI*) as well as the Auslander-Reiten quiver
of mod,,(FI™*).

Note also that in the case where the relation ¢ in I'is multiplicative I'* * is
a poset with zero relations and I** has exactly two maximal elements.
Therefore indecomposable modules in mod,,(FI* *) can be determined like in
the proof of Proposition 4.13 by the method presented in [22; 3.10 and 5.2].

5.10. It is not difficult to check that if (Q, @) is the bound quiver of
a bipartite completed poset [ then FI* =~ F(Q, Q) is isomorphic to the trivial
extension Bx,N,. where B=F(Q*, Q%) and N, is the B-B-bimodule

“generated” by the edges B,,., i=1,....r, j=1,...,5 in Q (sec (54)).
Furthermore, the repetitive infinite-dimensional algebra (cl. [24. p. 321])
- . . 0 7]
B_, N
r(B, N) = B, N
B,
L 0 i

with B, = B for n =0, +1, +2, ..., is isomorphic to the algebra F(Q, ),
where (0, @) is the universal cover (5.6) of (Q. Q).

5.11. Suppose that I,z is a primitively bounded poset and suppose that
R = FI% is an sp-representation-finite bound quiver algebra F(Q, §2) of some
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(Q. Q). If I'f denotes the Auslander—Reiten translation quiver of mod,,(R) then
similarly to [5] one can define a group epimorphism

x: I(Q, Q- TI(T'E)

from the fundamental group of (@, 22) to the fundamental group of I'¥. It
would be interesting to determine the group Kerx of sp-constraints.

Note that one can prove socle projective analogues of the results in [6;
Sections 3 and 4].

5.12. It would be interesting to give necessary and sufficient conditions for
a bound quiver (Q. Q) to be the bound quiver of a primitively bounded
stratified poset I, as well as a simple construction of I, in terms of (Q. ©2)).
Moreover, it would be interesting to give a characterization of vector space
categories K, equivalent to vector space categories of the form K(I,,), where
I, is a bounded stratified poset (see (2.14)).

Recall that K is equivalent to the vector space category K(I); of a finite
poset I (nonstratified) if and only if K has a finite number of isoclasses of
indecomposable objects X, ..., X,, F;=K(X;, X}) is a division ring and
dim rlXl= dim|X |- =1 for j=1,..., n [23; Corollary 2.4].

5.13. It would be interesting to characterize all bound matrices A of
a stratified poset J, such that the algebras FI}, and FI3p are isomorphic.

5.14. If 1, is a simply stratified poset such that I-sp is of finite type then
the overring adjustment method [21; Remark 5.17] allows us to determine
indecomposable modules in mod,,(FI3g) and the Auslander-Reiten quiver of
mod,,(FI3g). The case w(l) = 2 is studied in detail in [21; Theorem 5.14] by
reducing the problem to a special biserial case. This shows that sometimes the
application of the overring adjustment is easier than the covering technique.

5.15. Let [ be a bipartite completed poset and let (9, &) be the cover (5.6)
of the bound quiver (Q, Q) of I. Let R=FI = F(Q, Q), R=F((J, &) and
B = FI**, where I** is the bound quiver (5.4). If follows from the proof of
Lemma 4.14 that 'y has the form of Fig. 23 (cf. [24; Remark 1] where I*° is

f
e FSP /;'
~| - —~

r

/lil
'\

n+2

fy
e, < s
fr

Fig. 23

obtained from I'§ by removing the vertex ¢, B, and ¢; is a unique edge from the
injective envelope E(e, B) of e, B to e, B for j=1, ..., r (see (5.4)). Hence in
view of Theorem 5.5, Proposition 5.7 and Theorem 0.2 we conclude that

(5.16) IR =TR¥/Z=TY/Z

is obtained from ' by identifying the modules ¢, B and E(e, B).
Recall from the proof of Corollary 5.8 that I'§ has a preprojective
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* 3

+
~
*
—_
+

component which can be simply constructed as for posets [18; Section 11] and
coincides with I'f in the case where B is sp-representation-finite. This gives
a simple procedure for constructing I'{.

Let us describe it for I'in Example 4.7 (d). If we denote by 1, 2. 3 the thick
points in Fig. 21 then I'y is shown in Fig. 24 where instead of a module X we
write the nonzero coordinates of cdn(X) in the form 17223'3 %" +‘+ (see (3.0)).
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Added in proof (February 1990). 1. During the preparation of this paper we used the
preliminary Russian version of [12], where completed posets were defined as in [9-11] and as in
our Definition 1.6. The published version of [12] contains a new definition of a completed poset,
which is different from the previous one and close to our Definition 1.2 of stratified posets.

2. The results of Sections 4 and 5 are developed by the author in the paper On the
representation type of stratified posets, 1o appear in C. R. Acad. Sci. Paris, 1990. The concept of
a bipartite poset is there generalized and a characterization of bipartite posets of finite type is given
in terms of an associated integral quadratic form; also, a list of 48 minimal bipartite posets of
infinite type is presented.



