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0. Introduction

In three lectures I wish to explain the principal ideas of the local method.
A more detailed exposition of the method is to be found in my book [5].
Publishing house “Springer-Verlag” will soon publish an English translation
of 1.

I shall explain the principal ideas of the local method taking for a single
example the following problem: to study solutions of a system of ordinary
differential equations

(1) dXjdt = ®(X)

in a neighbourhood # of a fixed point X =(x, ..., x,) = 0. But the method
is useful in many other problems (see [5]—-[9]). Here X and & are complex
(in C" or real (in R"). Functions (¢, (X), ..., ¢,(X)) = ®(X) are supposed to
be analytic or sufficiently smooth in #%. I do not impose other restrictions. So
we can consider any degenerate and resonance cases.

We look for a solution of the problem by means of construction of a
special local change of coordinates such that the system (1) is integrable in
the new coordinates. Only for comparatively simple cases such a change is
possible in the whole neighbourhood #%. For complicated cases the
neighbourhood % must be partitioned into several pieces and we introduce
such local coordinates in each piece so that the system (1) becomes
integrable. Generally speaking, the construction of the partition and change
of variables are performed gradually, step by step. In each step we construct
finer pieces and in each piece we introduce coordinates, in which the system
(1) become simpler. In general, the system (1) become integrable in each piece
after a finite number of such steps. Usually, for systems stemming from
Mechanics or Physics or Astronomy, one or two such steps are sufficient.
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Two ideas are fundamental for the local method:

1. Normal form. If a linear part of the system (1) is nonzero, then the
system (1) can be transformed into a normal form. The normal form is casily
reduced to a system of smaller order with zero linear part.

2. Resolution of complicated singularity. Let the linear part of ¢(X) be
zero. Then considering Taylor series of &(X), we can construct several
“short-cut systems”

(2) dX/dt = &9 (X)

and we can partition the neighbourhood % into pieces %" () so that each
piece is a distorted cone, originating from the fixed point. The short-cut
system (2) is the first nontrivial approximation of (1) in % (e).

This is made by means of construction of a polyhedron in the space of
power exponents. Further, for a simple (in a sense) shortcut system (2) we
can transform the system (1) to a normal form in the piece 24" (¢), that is, we
make the system more simple in the piece. For a complicated short-cut
system (2) we apply a so-called power transformation, that blows up the
fixed point into a certain manifold .# and the piece %¥(¢) into a
neighbourhood %' of the manifold .#. Now, in .# we must find all fixed
points and investigate their neighbourhoods, which are pieces of #'. The
system is simpler there than the initial one, and we can continue our
construction which leads to new simplifications. The method of resolution of
singularity is similar to blowing up (multi sigma process) in algebraic
geometry and originates from the Newton polygon.

Naturally, the local method displays two sides. The first one (algebraic)
consists in finding the needed formal expansions. The second one is an
interpretation of those series in terms of analytic or smooth functions or
in terms of appropriate estimations of accuracy of approximate integration. In
the present course we shall deal only with the first side, assuming that all
series are convergent. However, this is not always so (see [1]-[S]).

1. Normal form

Let us consider a system (1), where ®(X) = (¢, (X), ..., ¢,(X)) and all ¢;(X)

are power series, @;(0) =0. Let 4,, ..., 4, be cigenvalues of the matrix A
The fixed point X = 0 is called elementary if there exists 4; # 0. If all 2,

= 0 then it is called nonelementary. We introduce new coordinates Y,

3) x =¢&(Y), &O)=0, i=1,...,n

so that the system (1) will have the simplest form

(4) yi=y(Y), i=1,...,n
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Here ¢; and y; are power series and the Jacobian det(d;/dy;) # 0 in Y =0,
That is the coordinate change (3) is invertible. Let us write the system (4) in
the form

4) Vi=y:gi(Y) =y Z giQYQa i=1,...,n
QeN;

where Q =(q,,...,q), Y%=yi'...y" Here yg,(Y) are series with
nonnegative powers of variables, and

Nl' = {Q =(Ql’ sy qn): QGZ", ‘1.? _15 Other q)20}
Write N=N,u...uN,and 4 =(4;, ..., 4) =(g10> ---» Gno)-

THEOREM 1. Let X =0 be an elementary fixed point of the system (1).
‘Then there exists a formal change of variables (3), such that in the system (4')

a” giQ=OJ lj-<Q7A>:qlA’]+ +qn)un?é0.
That is the system (4') has only resonant members y; g,y Y9, for which
() Q, 45=0.

Such a system (4) is said to be in normal form. If the initial system (1) is real,
then the real values of the coordinates X correspond to complex values of
the coordinates Y which satisfy the specific real conditions. The normal
form preserves many properties of the initial system, such as symmetry,
a Hamiltonman character, invertibility. Some of the coordinates x; may be
parameters. A small parameter x; satisfies the equation x; = 0 and does not
change in normalizing transformation. The corresponding 4; = 0.

2. Power transformation

The notation (4'), as well as the definition of the normal form, can be given a
simple geometric interpretation. With each coefficient g;; # 0 let us associate
the lattice point Q =(q,, ..., q,) in the n-dimensional affine space R]. The set
of all such points will be denoted by D(g,, -.., g,) or D(G). The normal form
differs from an arbitrary system (1) by the fact that the set D(G),
corresponding to the normal form, lies entirely in the subspace orthogonal to
the vectors Re A and Im A. This enables us to lower the order of the system
in normal form by means of power transformations

(6) =yt Ly i=1,...,n,

with a;; real and det(x;) # 0. Suppose that the power transformation (6)
transform the system (4') into the system

(7) z.i=2igll'(Z)=ziZgl{Q'ZQta i=l,...,n.
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We shall prove that
(8) D(G)=a*"'D(G),

where a is the matrix (a;;) and a* is the transpose of a.
Let us set

InY=(ny,,...,Iny,), InZ=(nz,...,Inz,).

In the vector form, the system (4) can be written as follows:

9) (In"Y) =) Gyexp<Q, InY),
where Gy =(g1g. --., Gng)- For the system (7), we get in the same way
(10) (In"Z) =} Go exp<Q,InZ>,

and for transformation (6), InZ = aln Y. The transformation (6) transforms
the term Y2 as follows
Y2=exp(Q,InY>=exp<Q,a 'InZ>=exp{a~2"Q, InZ> =7z "¢,
and similarly,
(In'Z) =a(In'¥) =Y aGy Y2 = YaGyze ',

Hence

YaGyZ' =Y Gy Z9.
Therefore

Q' =a*"'Q, Gy =aG,.

Thus the set D(G’) of the points Q' for which Gy # 0 is obtained from D(G)
by the linear transformation (8).

THeEOREM 2. Let the system (4') be in normal form and let m be the
number of linearly independent vectors Q € N satisfying the condition (5). Then
there exists a power transformation (6) (with wo;; integers and deta = 1 1)
reducing the normal form (4') to the system

(11) Zi =292y, ....2m), i=1,...,n.

The first m equations of this system form a system of order m,

(12) Z.I-ZZ.-g.{(Zl,...,Zm), i=1:"-1m,

and the remaining equations can be integrated by quadratures.

The system (12) does not have a linear part, so it is impossible to
transform the system (12) into a normal form. If A # 0 in the system (4'),
then m < n and as a result of our transformations the system (1) of order »n is
reduced to the system (12) of order m. If m =0 or m = 1, the system (12) is
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integrable. But if m > 2, it is nonintegrable in general, and for this case we
must study a neighbourhood of a nonelementary fixed point.

As examples let us consider normal forms corresponding to two-
dimensional systems (1). If n = 2, then the set N consists of the lattice points
of either of the following three kinds: all lattice points of the first quadrant;
the lattice points of the second quadrant lying on the half-line g, = —1, ¢,
= 1; and the lattice points of the fourth quadrant lying on the half-line ¢, =
—1, g, =21 (see Figure 1). Furthermore, A =(4,, 4;). For 4, # 0 and 4
= A,/A, the equation (5) is equivalent to

(13) 2q91+4q2 = 0.
Q24
tio //
/
Lig) >
0 g1
Lz} \
Fig. 1

When A is real, equation (13) defines in the plane (g,, q,) a straight line L
which is orthogonal to the vector (4, 1) and thus also to (4, 4,). The normal
form is defined by those points of N which lie on the line L.

Case 4 =0,1.e. 4, =0 and A, # 0. The straight line L intersects N at the
points Q = (k, 0), where k is a nonnegative integer (see Figure 1, L = L(8)).
Hence the normal form is

Y1 =M Z gl(k,O)y,i:
k=1
(14)

y2=ya(A;+ Z gm,m)"i)-
K=1

System (14) can be written in the [orm

(In'y,) = Z gl(k,O)y‘is
k=1

(In'y;) =4, + z 92(k,0 i
k=1
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The right-hand sides of this system do not depend on y,. Therefore, finding
y1(t) from the first equation, we obtain y, by quadratures. Here m = 1.

Case A <0. The stright line L passes through the first and the third
qguadrants (see Figure 1, L = L(1)). In the third quadrant there are no points
of N, but in the first quadrant every lattice point belongs to N. If 1 is
irrational, equation (13) has only the trivial solution g, =g, =0 and the
normal form is

Vi = A1 Y1, Vi =4y,

Here m=0. If A= —1, ie. 4, = —A4,, the stright line L intersects N at the
points of the form Q = (k, k), where k is a nonnegative integer. The normal
form is then

yi= ,V1(A1+ Z g1(k.h))"iy'§),
k=1

ao

Y2 =y (Az+ Z 92k,k) W Y'i)
1

k=

(15)

The transformation z, =y, y;, 2z, = y, reduces (15) to the system

an

. k

5y =2 z G100 F 92000 21>
k=1

2y = z23(A2+ Y G2 Z'i)3
k=1

which is analogous to (14). Here m = 1.
The case A = —r/s, where r and s are relatively prime, can be discussed
analogously to the previous case (see [1, § 0, Section III]); here m = 1.

3. Generalization of the normal form

Let Ry, R,, ..., R, be vectors in R" such that, for a certain vector T,
(R, Ty<0, i=1,..,1L
Then the set
V=1{0: Q=R+ ... +BR, =0
is a polyhedral convex cone. The series
(16) f= ZfQ X0

is called a series of class ¥, if all Qe V2"
Let us consider the system

(17) (In'x)=f(X)=Y fig X2, i=1,...,n,
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where f; are series of class v". Denote A = (fyq, ..., fuo) = Fo. If the series f;
are convergent, then they converge in a set

(18) Uy = {X: |1X|N<e, i=1,...,1)
where ¢ > 0 1s small enough.

THeOREM 3. In the system (17), let f; be series of class ¥". Then there
exists a formal change of variables (3), where y; ' £;(Y) are series of class V",
which transforms the system (17) into the normal form

(18) i=ng(Y)=32g0Y% i=1,...,n
where g; are series of class ¥ and gig =0 if (@, A)#0.

Remark. If equation (5) has no solution Qe Z" inside the cone V, then
in the normal form (18') g, =fio for (Q, A) =0.

Let us consider in detail the structure of a set (18), which is the set of
convergence of a series of class ¥~. At first, let R, = E,, ..., R, = E, be the
unit coordinate vectors and | = n. Then the cone V is equal to R, i.e. it
coincides with the first quadrant, octant and so on. The set %, (¢) = {X: all
|x;| <é&}. Write

Uy(e) = {P: P=1In|X|, X €Uy (e)}.

Then in our case Uy (g) = {P: all p, < Ine}. In the case of arbitrary vectors
R, ..., R,

Up(e) = {P: R, P><Ine, i=1, ..., 1.

For n=2 and ¢ <1 the sets ¥, U, (¢) and @ZV (¢) are shown in Figures 2, 3
and 4 respectively (there R, =(2, —~1) and R, =(—1, 2)).

THEOREM 4. Let the system (18') be in generalized normal form and let m
be the number of linearly independent vectors QeV NZ" satisfying the
condition (5). Then the statement of Theorem 2 is valid.
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P2 A

Fig. 3 Fig. 4

4. Partition into pieces

At first 1 shall explain some intuitive ideas and after that I shall present a

an
rigorous theory. If we have a power series ) f;, x* of one variable x, then
k=0
the first approximation of it as x — 0 is the monomial f; x', where f; is the
first nonzero coefficient of the series. A power series (16) of several variables
X =(x4, ..., x,) can admit several distinct first approximations as X — 0

depending of the way in which X tends to 0. Let us consider a curve
(199 x;=c¢t™, p <0, ¢=const#0,i=1,...,n,

T— +(13, P=(pls reey pn)’ C =(cl7 K] cn)'
We have, at the points of this

f(X) =Y foCOr @D,

The first approximation of this series is the sum of those members f, X2 for
which the value of {Q, P) is greatest, since 7 — 0. Let r = max {Q, P) over
all Q with f, # 0. Then the first approximation of the series (16) along a
curve (19) is

X =Y foXx°
@.Pr=r

It is called the short-cut of the series f along vector order P. For distinct
vectors P, the short-cuts of f can be distinct. For instance, if

(20) f=x1+x3—x; x5+ x; X3,

then Q, =(3,0), 0, =(0,3), O3 =(1,1), Q, =(1, 2). Let P=—(1, 1), then
@1, Py = =3 =403, P> =04, P}, <Q3, P)=—2. So, shortcut f =
—x; x3. If P=—(1, 2), then {(Q,, P> = -3 ={Q,, P> and (Q,, P> = —6,
{Q4, P> = —5. So short<cut f = x] —x, x,.
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Now 1 shall give the rigorous theory. Let D be a set of points Q
=(qy, ---, 9, In the n-dimensional real space R} and let R} be the dual
space. We consider the following problem: For each Pe Rj, find a subset D,
of D such that

Q', P>=r for all Q" €Dy,
{Q, P><r for all Qe D\Dy,,
where r = r(P) = max (Q, P).
To solve the %T%b]em, note that, for a fixed vector P, the equation

(21) {Q, P) = ¢y = const

Gah

N

poy

6 \ 9
c<0
D
\ c=0

c>0

Fig. 5

defines a hyperplane H in the space R]. The hyperplane H divides the space
© into two halfspaces: the positive one H'") = {Q: (Q, P> > ¢,} and the
negative one H'™> = {Q: (Q, P) < ¢y} (see Figure S). A hyperplane (21) is
called supporting for the set D, if its posiiive halfspace H'*) contains no
points of D, and for each hyperplane {(Q, P) = ¢ < ¢, its positive halfspace
contains points of D. Denote by H, the supporting hyperplane corresponding
to the vector P. Evidently, Dp = Hp N D.
To describe the sets Dp for distinct vectors P, let us consider the convex
span 4 of the set D

A={0:Q0=6,0,+ ... +6,0,, QieD, 6,20, Y 5 =1}.

Denote by I the intersection of all negative halfspaces Hpy ' of the set D. The
set I' is the closure of the set 4. The intersection of I' with a supporting
hyperplane H, is called a face of I'. The boundary ¢I' of the closed set I’
consists of faces of various dimensions. Thus, a zero-dimensional face is a
vertex, a one-dimensional face is an edge, etc. We shall denote the faces by
'™ where d indicates dimension and j is the successive number. Write D{”
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=DnI® If I'™ = Hpn T, then evidently Dp = D'. This means that all
boundary subsets Dp are subsets DY lying in I'\".

For example, if D = {Q,, @1, 03, Q4} as in (20), then I is a triangle, the
points Q,, Q,, Q, are its vertices. Let '? =0Q,, 'Y =Q,, I'Y =0,.
Denote by 'Y, 'V, and I'V the edges of the triangle I' as shown in Figure
6. Then the sets D are

D(IO) =0, D(zo) =¥ D(ao) =,
D =19,, 02}, DY = {Q,, 0.}, DY’ ={Q,, Q,, Q,}.

Let us fix a face ' and discribe the set U of such vectors P for which
HpnI'=T%. The set

pio _ [p. QP> =@ P Q. QT
! KO, Py>(Q, P), Qel\ Iy

Pp o

%
O
{0)
U,“’ up U,

U1“ )

Fig. 7

is a convex cone and is called the normal cone of the face I'®. In our example
U(Y are sectors and U are rays (see Figure 7). So
UL = {P: py=2p, <0}, U ={P: 2p, =p, <0},

UP = {P: 2p, <p,, 2p, <p}.
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Let us further introduce the cone V/¥ normal to UY", that is
V@ =1{Q: (Q, P)<0, PeU},

we call it the tangent cone of the face T'". In our example V/® are sectors

and V! are halfplanes (see Figure 8). So

ViV =1{0Q: q,+29, 20}, V" ={Q: 29, +q, > 0},
Vi® =1{0: ¢, +29, 20, 29, +4q, 2 0}.

£
[N ]
-
-

Fig. 8

For many sets D the set I' is a polyhedron and its boundary 0I" consists
of a finite number of faces I'{". This is true, e.g., if the set D has only finite by
many points.

Let I'” be a face, then its normal cone U can be given as follows,

(R, P>=0, i=1,...k,
@ _ ] p.
(22) U; {P‘ (R, P><0, i=k+1,...,1

where R; are some vectors, which are simply computed from the set D. Then
the tangent cone is

VP =10y R+ ... +nR+% iRy + ... +6,R,, 6, >0},

Thus, to find all boundary subsets D and their normal cones UY", we must
consider the polyhedron I' and find all its faces I'” and for each face I''™"
find its normal cone U'. We can do this performing linear operations on
vectors Qe D. Such computations are carried out in linear programming.

Together with the cone (22) let us consider the set

Ine £ (R;, P> < —lns,i=1,...,k,}
l

(23) Ug_d)(s)={ (R;, PS> < Ine, i=k+1,...

for small positive ¢ < 1. If e = 1, then U (1) is the closure of U'. Finally let
us put P =InX and consider the set U“" in coordinates X:

8 — Banach Center 1. 20
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e<IXN<eT i=1, .k, }
l k]

d) (¢) =
(24) % (e) {X‘ |X|Ri$5, i=k+1,...,

Figures 9 and 10 show the sets UiV (e), UYL (), U () and %V (e), %) (e),
¥ (c) respectively for our example.

p,wl
2
oty |
— "2 e)
2\ I
| “ - '”1(”&
.. N A
N |
.‘\‘ ] -
"r 0 ‘h‘. X,

For a sum (16), the set
D=D(f)=1{0Q: fo # 0}

is called its support. The closure of the convex span of D is called the Newton
polyhedron I = I'(f) of the series f. To each face I'® of the polyhedron I
there corresponds a short-cut

[ =Y f, X9  where QeD}.
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This sum is a short-cut for each vector order Pe UY". Denote by ¥ ¥ the
class of those power series (16) whose supports lie in the tangent cone V. If
d =0, then the set U'¥(¢) is a set of those values of P = In|X|, for which a
series of class ¥® can converge.

5. A nonelementary fixed point

Let us consider the system
(25) X.,=x,f;(X)=X,ZﬂQXQ, i=1,..., n,

where x, f;(X) are analytic functions and the point X = 0 is a nonelementary
fixed point, i.e., all eigenvalues 4, = 0. For each vector Qe N we introduce its
vectorial coefficient Fy = (fyg, ..., fag)- Let D(F) be the support of the series
F=)FyX% ie,

D =D(F) = {Q: Fy #0}.

Let I" = I'(F) be the closure of the convex span of D. In general, I' is a
convex polyhedron (the Newton polyhedron of the system (25)). Its boundary
ar consists of faces I'{". Since the system (25) and the series F(X) are studied
only in a neighbourhood of the point X = 0, it is sufficient to find only all
those faces I'*” whose normal cone UY" contains a vector P < 0.

So far, we have associated with a set D several geometrical objects.
Namely, given the system (25), we have defined:

1) In the space R} = [Q}: the support D(F), the Newton polyhedron I'
= I'(F), its faces I'™ and their tangent cones V¥ and sets D =D~ T

2) In the dual space R3 = {P}: the normal cones U to the faces 1"
and the sets U (e). _

3) In the space of points X: the sets %" (e), corresponding to the sets
U (e) for In X = P. And for each I'® we have in %" (¢) a short-cut system

(In'X)=F(X) =) FoX? QeD{.

On the other hand we have two kinds of transformations:
1) The first one is the power transformation In X’ = aln X. They lead
to linear transformations in the spaces R} = {Q} and R} = {P}:

Q =a*"1Q,
P =aP.
The scalar product is preserved:
Q,P)=<@*"Q,aP)=(Q, P).

So, R} and R} are dual spaces. Hence, our objects D, I', I'", V@, D@ in R
and U, U (¢) in R} are transformed into other objects D', I and so on, in
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such a way that linear relations between them are preserved. And thus, the
polyhedron I' is transformed into the polyhedron I, its face I'!" — into a

face I'® of I and the normal cone U'® of I'™ is transformed into the
normal cone U of I''™. This means lhat all our constructions are commute
with power transformations.

2) The second kind of transformation is a change of time,
(26) dr' = Xx%dr.

In R} this transformation induces parallel translation

0=0-0
for sets D, I, I'®, D}, because

din X/dt =Y Fo X2 2.

But the tangent cones V¥ are not changed.

We thus have a nontrivial geometry: linear objects in the dual spaces Rj
and Rj and a group of linear transformations between the objects.

As a result of our constructions, we have obtained a partition of a
neighbourhood of X =0 in the X-space into several pieces %" (¢). For each
positive ¢ < 1, the union of the sets %" (¢) fills a neighbourhood of X = 0.
Now, in each set #{"(g) we shall introduce new coordinates in which the
system will be simpler. Simplification will be achieved differently, according
to the value of d =0, 1, 2, ... Let us consider several cases.

1) d=0. To study the system (25) in the set % (e), corresponding to
the vertex I"® = Q, we apply a change of time (26). Then the vertex goes to
point Q' =0, F3 = A and we can apply Theorem 3 on the generalization of
the normal form. A coordinate change X — Y of class 1‘0’ transforms the
system (25) to normal form and a power transformatlon considered in
Theorem 4 reduces the normal form to a system of order m < n. For that
system we must again study a neighbourhood of a nonelementary fixed
point, but now the order is m < n. So, we must again construct the Newton
polyhedron and partition a neighbourhood of zero into several pieces
A" (¢), corresponding to a partition of the set 4% (¢) into pieces %R (¢). In
each piece we apply its own simplification and so on, until we arrive at an
integrable system.

2) d=1.To study the system (25) in the set %" (g), corresponding to
an edge I'\"’, we must use a power transformation, which transforms the edge
r'vofr mto an edge IV of I'" parallel to the coordinate axis ¢". Then the
set f//“’(s) 1S trdnsformed into a set #'(¢), which 1s a neighbourhood of the
portion of y,-axis: <|yl<e ' To study the system in that
neighbourhood, we must reduce the system relative to the greatest powers of
V1, --+» ¥a_1, 1.6. change the time. Then we must find all fixed points y, =
y2 £ 0, ¢ in the axis y,. For each of these fixed points we take a neighbourhood
of it. The remaining part of the set %' (¢) does not contain fixed points, and
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the system is integrable in it. Thus, the set %' (¢) is split into several pieces.
In the piece corresponding to a fixed point y, = ... = y,_; =0, y, = y?, we
must study solutions of the transformed system (in coordinates Y). It is the
same problem from which we have started, but now singularity is more
simple than in the initial system (25), and we can continue the process of
resolution of singularity.

3) d =2 Let vectors R', ..., R%e Z" constitute a basis of the face I'("
and let vectors S,, ..., S,_,€ Z" complement it to a basis of R]. Then the
power transformation

y; = Xs", i=1,...,n—d,

y"_d+|'=XRi, i=1,..-,d

transforms the face I'® into a face I'™ parallel to the coordinate plane of
Gn—d+1s --+» gn- Then we must reduce the system in Y with respect to the
greatest powers of y;, ..., y,_q4, i€ change the time. The set %®(e) is
transformed into a set %' (¢), which is a neighbourhood of the part of the

coordinate plane of y,_z+1, ..-5 Va:

EX | Ypogrd <71, i=1,...,d.

This portion of the plane is split into pieces so that each piece has at most
one fixed point. Now, we must inspect a neighbourhood of each fixed point
Y=o =Vpod =0 Vpogsi =V 4s: #£0, 00, i =1, ..., d. Here singularity is
more simple than in the initial system (25).

Thus we can resolve singularity, reducing the study of solutions in the
set 4" (¢) with d > 0 to the study of solutions in neighbourhoods of several
fixed points. In a neighbourhood of an elementary fixed point and in a set
U\? (¢) we can apply Theorems 1 or 3 about the normal form. Together with
Theorems 2 and 4, this gives a system of smaller order. And thus, every step
simplifies complicated singularity and lowers the order of the system. After
several such steps a neighbourhood of the fixed point X =0, for the system

(25), will be divided into a finite number of sets “Zlﬁl_.)fj,;(d”
indicate additional divisions. And in each set we shall have variables, in
which the system will be integrable.

The local method reduces the study of an essentially nonlinear problem
to the study of some linear objects in the space of power exponents and in its

dual space, and computations in this method are in most cases also linear.

(€), where j;, ..., j\

6. An example

Let us consider the system
. 2 -1
Xy = Xa+X]— X X3 = Xy (X" Xp+ X —X3),

Xy = 3x243x, x;—5x3 = x,(3x3 x; '+ 3x, —5x,).
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Here
0,=(-11), Q. =(1, 0),
0, =(0, 1), Q. =(2, 1),
F01 = (1, 0), FQ2=(1,3),

Fo,=(—1, -5,  Fq, =(0,3).

I' is a triangle (see Figure 11). Its boundary oI consists of three vertices and
three edges. But only two vertices I''” = 0, and I'? = @, and one edge I'"
have a negative vector P <0 in their normal cones U{". To the vertices F‘O‘
and Y there correspond the sets %\ () and ¥ (¢) (see Figure 12). By
Theorem 3 and the Remark following it, in the set 24”(z) the system has
normal form

3

dy,/dt' =0, dy,/dt = 3y3.

Its integral curves are y, = const. Since the normalizing transformation is x;
= y,+ ..., the integral curves in the set % (¢) are x, = const (see Figure
12). Analogously, in the set 22 (¢) the integral curves are x, < const. The set
4" (e) is bounded by the inequalities £ < |X|R <¢™!, where R=0,-0, =
(=3, 2). Let us find a such vector S = (s,, s,) that s, r,—s,r, = 1. We can
take § =(2, —1) and apply the power transformation

w21 _ v-3.2
Yy =X1X2°, Y2=X;7 X3.

%2k

?/1“'(5)‘ ?Z;N(E) ,
- 7,
. B 1\ LY s
St —
==
1__5_ IIII’?,‘;—- _“
s '«||||| ~1 .q;
S——= 5 o
3
o 1

Fig. 12 Fig. 13
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The inverse transformation is
Xy =Yyiys, X2=Ji)i.
The original system is carried into the system
(In’y)) = 2y, y2—yiy, +3yi v -3y,
(In"y;) = =3y, ¥, +3yi y2 =Ty ¥z + 6y,
Figure 13 shows its support. After substitution dt’ = y, dt we get the system
dyjdt’ = 2y, y,—yiya+3y1 yi =3y,
dy,fdt’ = —3y3+3y, yi—Tyiy3+6y,.

Here the axis y, is an integral curve; the fixed points y, =0 and y, =y # 0
in it are found from the equation

Thus we have only one fixed point y9 = 2. Through any other point y, = 0,
y, # 9, 0 there passes only one integral curve, namely, the axis y,. To
inspect a neighbourhood of the fixpoint y, =0, y, = 2 we apply the parallel
translation
Vi =y3+z3 =242,

Then we obtain the system

dy/dt’ = y1 +2y, 2= 2y1 —yiz; +3y1 (2+27),

dz,/dt’ = 12y, — 62, — 322+ 12y, 23+ y; 23 = Tyi (2 +2,)°.

The matrix of the linear part 1s

A_(1 0
\12 -6

Its eigenvalues are A, =1 and 4, = —6. The fixed point is a saddle-point,
and only two integral curves pass through it: one is the axis z, and the other
1s tangent to the eigenvector B, of the matrix A. We find B, =(7, 12) or 2,
=12y . So the unique integral curve crossing the y, axis is

z, =y + .., de yy=2+%y + ...

It consists of two halfbranches F; (y, > 0) and F5 (y; <0) (see Figure 14).
In variables X they are

x, =2yi+3 i+ ..,

x; =4y1+2yi+ ...
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It is the unique integral curve coming to the fixed point X = 0, it consists of
two halfbranches F, and F, (see Figures 12 and 15). In the set %4 (¢) other
integral curves are situated as shown in Figure 12. By piecing together

portions of integral curves, found in different sets %”(g), we get a phase
portrait shown in Figure 15.
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