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Although shape theory applies to general topological spaces, in this introduc-
tion we will only consider compact metric spaces. Moreover, we will concen-
trate on a few examples and techniques in an attempt to convey some of the
basic ideas and yet keep the paper reasonably self-contained with respect to
shape theory. To reduce the abstractness of the subject we deal with the
relationship of shape theory and some geometric notions. More specifically,
we consider its interaction with cell-like mappings and their variations.

Shape theory is like homotopy theory in that it studies the global
properties of topological spaces. However, the approach used in homotopy
theory is of such a nature that it yields interesting results only for spaces
which behave well locally (like ANR’s). On the other hand, the tools of shape
theory are so designed that they yield interesting results in the case of bad
local behavior (like that which occurs in metric compacta). Moreover, shape
theory does not modify homotopy theory on ANR’s, ie., it agrees with
homotopy theory on such spaces.

It should be mentioned that one can not ignore spaces with bad local
properties since they arise in nice settings, for example, they show up as
fibers of maps between spaces with good local properties. In an attempt to
overcome such difficulties K. Borsuk [2] undertook the development of
shape theory in 1968. One would expect shape theory to yield a classification
of metric compacta, weaker than homotopy type but coinciding with it when
applied to ANR’s.

ExampLE 1. Let X denote the Warsaw circle W < R?, and Y denote the
unit circle ' < R%

* This paper is in final form and no version of it will be submitted for publication
elsewhere.
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X Y

Then there are maps f: X — Y which are essential (i.e., not homotopic to a
constant map), but there 1s no essential map of Y into X since the image of
Y in X would have to be a locally connected continuum and the only locally
connected subcontinua of X are arcs or points. Since all maps g: Y — X are
homotopic to a constant map, fy ~ 0, and so they are not homotopic to the
identity map on Y. Therefore, ¥ £ X (i.e, they are of different homotopy
type). Basically, there are not enough maps of Y into X due to local
difficulties to get the two spaces to be of the same homotopy type.

Borsuk’s idea to overcome this difficulty was to introduce a notion more
general than mapping, called fundamental sequences. Borsuk was able to
generalize mappings and yet maintain a great deal of the geometry inherent
in the original notion. Roughly, these fundamental sequences are based on
having spaces X, Y embedded in the Hilbert cube Q and considering maps of
Q into itself which behave in a certain way on neighborhoods of X and Y.
This turned out to be the basic notion which allowed Borsuk to construct a
theory of shape to treat the global properties of metric compacta. In
particular, one expects the Warsaw circle W to be in the same shape class as
S! because of their global similarities (e.g., they both divide the plane into
two components).

After hearing Borsuk [3] speak at the 1968 topology conference in
Herceg-Novi, Yugoslavia, S. Mardedi¢ and J. Segal [25] (or [27]) decided
they could give a more categorical description of shape theory using ANR-
systems which would also generalize the theory to the compact Hausdorfl
case. Now we give a brief description of this ANR-sequence approach to
shape theory for compact metric spaces.

1. ANR-sequences

We consider ANR-sequences, i.e., X = |X,, Ppo+1 ), Where X, is 2 compact
ANR for compact metric spaces and p, ,.,: X, — X, iS a continuous map
for all ne N the positive integers. These ANR-sequences will be organized
into equivalence classes so that one can use any representative to denote the
class. In this paper we say that an ANR-sequence X is associated with a
space X if X =lim X, i.e, X is the inverse limit of X. This allows one Lo use
any such sequence associated with X. Either X is described this way to begin
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with as in the case of the solenoids or one obtains such an ANR-sequence
associated with X through some construction. Such an ANR-sequence
associated with X always exists. A map of ANR-sequences f: X — Y consists
of an increasing function f: N — N and a collection of maps |f.],f,: X m
— Y, such that the following diagram

fnl = lfnn (N

Y - Yno‘l

commutes up to homotopy (where we delete subscripts from bonding maps)
i.C., jn pf(n).f(n+ 0 = Gan+1 fn+ L

The identity map 1: X — X is given by 1(n) =n, 1, =id. The composi-
tion of maps of sequences f: XY, ¢g: Y>Z =1Z,. r,,+] i1s the map h
= gf: X > Z defined by h=fg: N- N and for h,: X,, —Z, we take
gn fom- SO the increasing function h = f(g): N — N and the collection |h,)
form a map of ANR-sequences h: X — Z.

Now we define homotopy for maps of sequences. f, g: X — Y are
homotopic (written f ~ g), if for every ne N, there is an n'e N such that the
following diagram commutes up to homotopy

/ > . (2)

This homotopy relation for maps of ANR-sequences i1s an equivalence
relation and classifies all maps of ANR-sequences associated with X to those
associated with Y. These classes are called the shape maps from X to Y,
written f: X — Y. A continuous map f: X — Y always determines a shape
map f: X — Y. The converse is not true in general. For example, consider a
shape map f: X—- ¥ ie,

P P
Xijr) - Xypp) € Xy5= - X

N

KY"_YZ*—YE*—“'Y
q

and note the squares in the diagram only commute up to homotopy (not
exactly) so one does not expect to get a continuous map from X to Y but
only a shape map from X to Y. We do have a special case though when Y is
an ANR, then any shape map into Y is induced by a continuous map into Y.



316 J. SEGAL

In analogy with homotopy theory we define two spaces X and Y to be
of the same shape (Sh X = ShY) if and only if there exist shape maps f: X
— Y and g: Y — X such that (1) f¢g ~ 1, and (2) gf ~ 1,. In case (1) and (2)
hold f is called a shape equivalence. Further we say that X is shape
dominated by Y (ShX < ShY) provided (2) holds. In this case f is called a
shape domination. Note that in the special case that X and Y are ANR’s if
ShX =ShY then X >~ Y.

ExampLE 2. In general X and Y may have the same shape but be of
different homotopy type. Let X denote the Warsaw circle W, and Y denote
the circle S'. Then we consider the ANR-sequence X = {X,, p,.+] associa-
ted with X given by X, = S' for each n and p,,,;: X,,, = X, is a properly
chosen degree one map. We also use an ANR-sequence Y= 1{Y,, g, ,+1}
associated with Y given by Y, = §' for each n and g,,,, is the identity map
on S!. For the shape maps f: X — ¥, g: Y— X we take f, = g, = identity on
S'. Then fg~1, and gf ~1,. To obtain the necessary commutativity up to
homotopy in the diagrams below we recall certain well-known facts about
the degree of maps from S' to itself. These are (1) deg(f(g)) = degg-deg /,
(2) il deg f =degg, then [ ~ g, and (3) deg(id) = 1.

/ g(f(n]) / \
g(l(n)) I(g(n)) (4)
fn gm / 9n gm\‘ /

So we have ShX =ShY but by Example 1 we know X and Y are of
different homotopy type.

X gln))

ExampLE 3. Here we describe two circle-like continua of different shape. .
Let X denote the dyadic solenoid, i.c., X is the inverse limit of a inverse
sequence of circles X, = S' and all bonding maps p,,., are maps of degree
2. Let Y denote S' as described in Example 2. Then any shape map g: Y
— X must have the property that degg, # | (due the commutativity up to
homotopy in the diagram below). Then relation (2) of the definition of the
homotopy of two maps of ANR-sequences can not hold, since if it did we
would have f,(g,) ~ 1y so 'deg f,-degy, =1 which is impossible. Therefore
we have that X and Y are of different shape.

P

Xn < Xn»‘l

&)

g,. = gno‘l

Ygln) < q Ygtnnl
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2. Pro-groups

Various functors of algebraic topology such as Cech homology or cohomo-
logy are shape invariants. In addition to such classical invariants, it is possible
to describe new continuous functors called the shape groups by, taking
inverse himits of inverse sequences of homotopy groups. Furthermore, if one
does not pass to the limit in this situation, one obtains the homotopy pro-
groups which are an even more delicate shape invariant.

For every ANR-sequence X = {X,, p, ..+, one can define the homo-
logy pro-groups. These are inverse sequences of groups H_(X)
= \H(X,). Pnn+1+,. Objects the category of pro-groups. Here we are taking
the integers as the coefficient groups but one could use any abelian group. If
X and X’ are two ANR-sequences associated with X, then H, (X) and H,,(X’)
are naturally 1somorphic pro-groups, i.e., they are isomorphic objects of pro-
Group. Therefore, one can define the homology pro-groups of a compact
metric space X as the homology pro-groups of an associated ANR-sequence
X since they are determined up to isomorphism in pro-Group. Clearly,
isomorphic pro-groups have isomorphic inverse limits but the converse is not
always true. For example, consider the pro-group G = |G,, ¢, ,+,} where
each G, is a copy of the integers Z and each ¢, ,.; is the homomorphism
determined by multiplication by 2. Then G is not isomorphic to the zero pro-
group {0] although they both have as their inverse limit the zero group.

The inverse limit of the homology pro-group H,(X) is the usual Cech
homology group H,,(X). Homology pro-groups are finer invariants than the
Cech homology groups. For example, H, of the dyadic solenoid is zero but
the corresponding pro-group is nontrivial (as shown in the previous para-
graph). In a similar way one defines the mth homotopy pro-groups #, (X, x)

pro-n,,,(X, X) = nm(xa x) = {nm(Xm xn)’ pn.n+l #}
and the mth shape groups
ﬁm(X, X) = hmn !lnm(Xm X,,), pn,n+ 1 #}

(which depends on the choice of base point).

3. Whitehead theorem in shape theory

Recall the classical Whitehead theorem from homotopy theory: If a map
S (X, #} = (Y, ) of connected CW-complexes induces isomorphisms of all
homotopy groups f,»: n,(X, *) — n,(Y, *) ts an isomorphtsm for all n, then f
is a homotopy equivalence. The importance of this theorem arises from the
fact that it uses algebraic information to obtain homotopy information. The
next example shows that without the restriction that X and Y be CW-
complexes the theorem is no longer true.

ExampLE 4. Let X denote the Warsaw circle W = R*, Y = «, and f the
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only map from X to Y. Since X fails to be locally connected on the limit
segment, it is seen that every map (§8”, *) — (X, %) 1s inessential, i.e., m, (W, *)
= 0 = n,(*, *). Consequently, f,, is an isomorphism for all n =0,1,2, ...
Nevertheless, f fails to be a homotopy equivalence since X is not contractible.
This can be seen by noting that the Cech homology group H,(X)=Z # 0.

The following is a shape version of the Whitehead theorem (see [29],
[23], [28], and [12]). Notice that the spaces are now only required to be
continua and that the homotopy pro-groups have replaced the homotopy
groups.

WuITEHEAD THeorReM (Shape theory version). If a shape map f: (X, *)
— (Y, x) of continua induces isomorphisms of all the homotopy pro-groups

fn#: pro-n,,(X, *) - pro-nn(y» *)

for n < m and max(ddim X, ddim Y) < m, then f is a shape equivalence.

ExampLE 5. In Example 2 we showed that the Warsaw circle X and the
circle Y were of the same shape. Here we use the Whitehead theorem to
obtain a shape equivalence between them. Define f= |f,! by taking each f,
to be a map of degree 1 of S' into itself. Then by applying the n; functor to
the diagram in Example 2 we get the following diagram with pro-m; of the
spaces represented horizontially and the vertical arrows representing the
isomorphisms f, .. Then the shape version of the Whitehead theorem implies
that f is a shape equivalence.

Px
7 X, x,) -—E— :TZ(XZ,X2)<— cve

f1 # = fZ# (6)

J '
ﬂT(Y‘\‘YI’TnZ(YT}’Z,‘_' ..

Note that a dimension restriction has been imposed. This involves the
deformation dimension which can be defined as follows. The deformation
dimension of X is less than or equal to m (written ddim X < m) if and only if
every map f: X — P, a polyhedron, is homotopic to map g: X — P with
g(X) = P, the m-skeleton of P. The theorem fails without a dimension
restriction as i1s shown in the following example.

ExampLe 6 (The Kahn continuum). This example depends on the work
of Adams [1] or Toda and is based on a map A of the rth suspension of a
ceratin compact polyhedron Y (of the form S*u B**!') to Y, A: 2'Y > Y.
The crucial property of this map is that for any positive integer s, the
composition

AoZ Ao...oX"V 4. ¥y S Y
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is an essential map. Let K denote the inverse limit of the following inverse
sequence.

Y<2TY < Z2Y ...

with the nth bonding map given by X~ """ A. It follows that pro-m,(K, *)
=0, for all n, but K is not of trivial shape.

4. Movability

In [4] Borsuk introduced a far-reaching generalization of ANR's, called
movability. The name comes [rom a geometric interpretation of Borsuk’s
original definition. After its restatement in the ANR-system approach [26] it
became apparent that this is a categorical notion. So although the definition
which follows is for spaces and maps it applies more generally (see [27, p.
164]).

DEFINITION OF MOVABILITY. A compactum X is movable if there exists an
ANR-sequence X = |X,, p, .+, associated with X such that for every posi-
tive integer n, there exists n’ > n such that for all n” > n, there is a map r: X,
— X, sausfying pp.r = pp-

ExamrLe 7. Recall from Example 3 the description of the dyadic
solenoid X as the inverse limit of a sequence of circles with bonding maps of
degree 2. Applying the H, functor to this sequence, we get pro-H, (X) as the
following inverse sequence

Z—2Z2 —7 «—...

with each bonding homomorphism given by multipication by 2. Then pro-
H,(X) is not movable as a pro-group (and so X is not movable as a space).
To see this suppose otherwise and take n = 1 in the defimition. Then for n”
=n'+1 we would have a homomorphism r,: H,(S') - H,(S"). So we would
have Py ry = Paw-. Thus 27" 1r_ (1) = 2"~ ! which implies that r (1) is not
an integer, a contradiction.

In the case of movable spaces one can pass to the limits of the pro-
homotopy groups in the Whitehead theorem and obtain the following
movable version of the theorem.

MoOVABLE VERSION OF THE WHITEHEAD THEOREM. Let f: (X, *) — (Y, %) be
a shape map of movable continua. If f induces isomorphism of all shape groups

.f#: 7‘lfrl(Xy *)_’ ﬁn(ya *)

for n<m and max(ddim X, ddim Y) < m, then f is a shape equivalence.
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5. Some geometric manifestations of shape theory

T. A. Chapman [5] or [7] has given an geometric characterization of shape
in terms of infinite dimensional topology. The setting will be in the Hilbert
cube Q. We need the notion of Z-set due to R. D. Anderson but we take an
alternate definition due to H. Torunczyk [32]. A Z-set in Q is a closed subset
X < Q such that for any integer n, map f: I"— Q and & > 0O, there exists a
map g: I"— Q — X satisfying dist(f, g) < &. Every metric compactum embeds
in Q as a Z-set.

CuapmaNs CoMPLEMENT THEOREM. Let X, Y <= Q be two Z-sets. Then X
and Y have the same shape iff Q—X and Q—Y are homeomorphic.

There are a number of finite dimensional versions of this theorem (see
for example [6], [17] and [33]).

Borsuk also introduced an m-dimensional stratification of movability,
called m-mouvability.

DEeFINITION OF m-MOVABILITY. An ANR-sequence X = | X,. p,,4q) 1S m-
movable iff for each ne N, there is an n’ > n such that for all »” = n and any
map of an m-dimensional polyhedron into X, f: K — X, there is a map
g: K— X, with

pnn” g x> pnn’ fn

that is, the following diagram commutes up to homotopy.

(7

Then a metric compactum X is said to be n-movable if it has an n-movable
ANR-sequence associated with it.

We need some notions from pro-groups which are useful here (see [27]).
One is the Mittag-Leffler condition (ML). It essentially says that the images
under the bonding homomorphisms stabilize in G,. Every movable pro-
group is ML, but not conversely. The pro-group described in Example 7 is
not ML.

DEFINITION OF THE MITTAG-LEFFLER CONDITION. A pro-group G
= 1Gp, Pan+1| satisfies the Mittag—Leffler condition (or is ML) if for any
ne N, there is an n' > n such that for any n” > n’ we have

@Pnn (Gn") = Quy (Gn) .

The other notion is stability.
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DervITION OF STABILITY. A pro-group G is stable if it 1s isomorphic in
pro-Group to a group. (The stabtlity of a pro-group imples its movability
but not conversely.)

In shape theory the question of the pointed versus unpointed version of
results 1s a serious problem (see [16] or [27]).

Lemma. A pointed continuum X is pointed 1-movable iff (X, x) is 1-
motable for some xe€ X.

THEOREM 1. Let (X, %) and (Y, =) he pointed continua. If Sh(X) = Sh(Y)
and (X, =) is l-movable, then Sh(X, %) = Sh(Y, %).

CoroLLarY. A conitinuum X is pointed 1-movable iff (X, *) is 1-movable
Jor some xe X.

An interesting problem in shape theory is when does a shape class have
a nice representative, for example, when does it have a locally connected
member? J. Krasinkiewicz [20] obtained the following characterization for
this case.

THEOREM 2. A continuum X has the shape of a locally connected conti-
nuum iff X is pointed 1-movable.

ExampLE 8. The dyadic solenoid X does not have the shape of any
locally connected continuum since pro-m, (X, *) is not ML.

S. Ferry [15] generalized Theorem 2 obtaining the following algebraic
characterization of metric continua having the shape of a LC™ continuum
(homotopy locally connected up to dimension m).

THEOREM 3. A continuum X has the shape of a LC™ continuum iff pro-
n.(X) is stable for 0 < n<m and is ML for n =m+ L.

6. Cell-like mappings and shape theory

A map f: X — Y between metric spaces 1s called a cell-like map if, for all y
in Y, Sh(f~'(y) = Sh(point), ie., is of trivial shape. The class of cell-like
maps 1s of central importance in geometric topology. Between ANR’s and, in
particular, manifolds the importance of cell-like maps is seen from their role
in the work of L. C. Siebenmann [30}, R. D. Edwards. and J. E. West {35].
However, J. L. Taylor’s example [31} of a cell-like map from the Kahn space
(Example 6) onto the Hilbert cube which is not a shape equivalence showed
the need to limit cell-like maps in this more general setting. G. Kozlowski
[19] did this by introducing the notion of hereditary shape equivalence. A
mapping f: X —>Y of X onto Y is a hereditary shape equivalence iff
f1f " YC): f~Y(C)— C is a shape equivalence for all closed subsets C of X.
By restricting C to the points of X one sees that hereditary shape equivalen-
ces are cell-like maps. Hereditary shape equivalences behave well with respect

21 = Banach Center Pubbcations
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to quotients and agree with cell-like maps on spaces which have a strong
local structure (e.g., cell-like maps are hereditary shape equivalences when
they map between ANR’s or when the range has finite dimension). Kozlow-
ski used this shape theoretic notion to give the following elegant character-
ization ol the cell-like 1mages of ANR’s.

TueoreM 4. If f: X — Y is a cell-like map and X is an ANR, then Yis an
ANR iff f is a hereditary shape equivalence.

J. E. West [36] has proven that every compact ANR Y is the image of a
compact Q-manifold X under a cell-like map. A cell-hke map of metric
compacta induces an isomorphism of all homotopy pro-groups of the spaces.

TheoreM 5. If X, Y are both finite dimensional metric compacta, then u
cell-like map f: X — Y is a shape equivalence.

Exampie 9 (Taylor's map). Here we describe Taylor’s cell-like map f: K
— Q of the Kahn space K (Example 6) onto the Hilbert cube which fails to
be a shape equivalence. We use the notation of Example 6 and observe that
the mth suspension 2™ Y ol a compactum Y can be regarded as the space
obtained from I™ x Y by identifying {s! x Y to a point [or each se ¢I™. Hence
there is a surjection f,,: 2™ Y — I™ with f,7(s) a point if se{I™ and with
£.~'(s) homeomorphic to Y if selI™—-I™

Let pyn4q: 17797 = 1" x 1" — I denote the first projection and let ¢,
=2"A. Then

jnrqn,n+1 = pn,n+ 1 f(n+ Lr:

Hence, the maps f,,, r=1. 2, ..., induce a map
S K—=Q=tm{"™, p,.+1).

If s =(s)eQ.ie.s,el, and p,,. (5,.,) = s, h a positive integer. then
f_ ! (\) = Ilm(fn; ! (Sn)~ hn.n+ l)’

where h,,,, is the map given by restricting ¢, ,+; 10 fiu+'1)(Sas 1)

In order to show that fis a cell-like map, it sulfices to show that each
h,n+, is null-homotopic. If s,,,e 1"V, then f,)')),(s,+,) is a point. If
Sn+1€lnt(1("+l)’)’ then qn,n+l|./i;+ll)rpn_,nl+l(sn) 18 jUSt the map A 2"Y- Y,
and h, . 1s also A restricted to f,” ' (t) restricted to some te I". The restriction
of A tof,” '(y), where y is an arc joining t to <1,, yields a homotopy connecting
Alf,”'(t) to a constant map, hence, a homotopy connecting h,,,, to a
constant map. Since K is not of trivial shape and Q is, we have that f is not
a shape equivalence.

A problem of current interest is whether or not there exists a cell-like
map which raises dimension. This is related to the classical dimension theory
problem (due to P. S. Aleksandrov) of whether there exists an infinite
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dimensional compactum with finite cohomological dimension. R, D. Edwards
and J. J. Walsh [34]} have shown that these problems arc equivalent. G.
Kozlowski [19] has shown that the dimension raising cell-like map problem
can be formulated in shape theory as follows: Suppose that X i1s a finite
dimensional compactum and f: X — Y is a cell-like map, then is f a shape
equivalence?

7. Fibrations and shape theory

Recall the homotopy lifting property and the notion of Hurewicz fibration
from homotopy theory. A map p: E — B has the homotopy lifting property
(HLP) fo a space X provided given maps A, H in the commutative diagram

Xx0—P £

o e (8)

Xxl———>8

there is a map H: X xI — E which extends h such that pd = H. Then a
mapping p: E — B is a (Hurewicz) fibration if it has the HLP for all spaces.

Motivated by the work of Lacher [21, 22] and Kozlowski [18] on cell-
like mappings, D. Coram and P. F. Duvall [9] have considered the following
approximate homotopy lifting property (AHLP):

A map p: E — B between metric spaces has the AHLP with respect to a
class .4 of topological spaces provided every ¢ > 0 admits a é > 0 such that
each map h: X - E, XeZ and for each homotopy H: X x] — B with
distance

d{ph, Hy) < 0 (9)
there exists a homotopy H: X xI— B satisfying

d(Hg, h) <¢ (10)
and

d(pH., H) <e. (11)

An approximate fibration p: E — B is a map between compact ANR’s
which has the AHLP with respect to the class of all topological spaces. In
case E and B are ANR’s one can restate the definition of AHLP by replacing
(9) and (10} by the equalities ph = H, and H, = h. Coram and Duvall have
also shown that in the definition of approximate fibration one can replace
the class # of all topological spaces by the class of compact polyhedra. This
and earlier results of Lacher prove that a cell-like map between compact
ANR’s is an approximate fbration.
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Coram and Duvall also show that approximate fibrations have several
shupe theoretic properties analogous to the corresponding homotopic theo-
retic properties of fibrations. In particular, for an arbitrary base point = in E,
an approximate fibration p: E — B induces an isomorphism of shape groups
7. (p): F(E, F, ) — (B, %) for all kK where F = p~!(%) is the fiber of p over
x. As a consequence one obtains an exact sequence ol groups

A (F, ) S mUE, ) B s o A (FLx) = (12)

where i: (F, *) — (E, %) is the inclusion map.

Another important fact established by Coram and Duvall is that the
libers of an approximate fibration are FANR’s, i.e., compacta shape domi-
nated by compact polyhedra. If, in addition, B is connected, then the fibers
are all of the same shape.

Coram and Duvall [10] have also obtained a criterion to decide
whether a map between compact ANR's is an approximate fibration. They
call a map p: E— B k-movable provided lor each he B and each neighbor-
hood U, of the fiber F, = p~'(b) there are neighborhoods U and V of F,,
V < U < U,. such that for any ¢e B with fiber F, = p~'(¢) = V and for any
xe F, the natural homomorphism 7, (F,, x) = #;(U, x), i <k, is an isomor-
phism onto the image of the homomorphism =;(V, x) - =, (U, x), which is
induced by the inclusion V < U. Then approximate fibrations p: E— B are
characterized as maps which are k-movable for all A.

In [13] J. Dydak and J. Segal introduce n-stable and homology n-stable
maps as generalizations of approximate fibrations. The n-stable maps are
closc to approximate fibrations (they are both based on homotopy groups)
while the homology n-stable maps are obtained by considering homology
groups with integer coefficients rather than homotopy groups. Intuitively, a
map is homology n-stable if the Cech homology groups of its point inverses
are locally constant up to dimension n. The homology n-stable maps are
more general than the approximate fibrations. For example, let X be a
Poincaré homology sphere (which is not a sphere) with a 3-simplex deleted.
Then the quotient map p: E* — E*/X is homology n-stable for all n, but is
not an approximate fibration since point inverses are not of the same shape.

DEFINITION OF HOMOLOGY #-STABLE MAPs. A map f: X - Y 1s called
homology n-stable if for any Oe N(f, v) there exists Ve N(f|U, y) such that
for all eV

a) the natural homomorphism H, N(f, z) — Hk(l7) is @ monomorphism
for all k <n,

b) the image of H,(V)— H,(U) is equal to the image of H, N(f, 2)
— H,(U) for all k <n.

Here A denotes f '(A) for A< Y and N(f, y) denotes the inverse
system |U: yelntU! bounded with inclusions. The notion of an n-stable
map is defined analogously using the appropriate homotopy groups in place
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ol the homology groups and the two conditions are required to be valid for
any base point in f~1(y).

Then as a generalization of theorems of Smale, Dugundji, Coram
Duvall and Daverman-Walsh on when a decomposition space 1s LC", Dydak
and Segal obtain the following result.

THEOREM 6. Suppose that [ X — Y is a homology n-stable map(n = 0)
such that HyN(f, ) = Z, N(f, y) is nearly 1-movable and homology (n+ 1)-
stable for each yeY. If Y is metrizable and complete, then Y is homotopy
locally connected up to dimension n+1.

Let X = [X,, i,5. A be an inverse system of topological spaces bonded
with inclusions. X is called nearly 1-movable if for each xe A there exists a
f > 2 such that for each loop f: S' — X, and for each ye A there exists an
extension

f: B>~ ) IntB? - X,

i=1

of f with (IntB)~(IntB}) =@ for i#j and f(7B}) < X, for i<r. An
inverse system of pointed topological spaces |U,, p,z, A| is called n-stable il
T (U,), my (pag), A} is stable for k < N and satisfies the Mittag-Leffler condi-
tion for k = n. By replacing homotopy groups by homology groups one gets
the notion of homology n-stability of an inverse system.

For a more detailed discussion of approximate fibrations the reader is
referred to Coram [8]. We now wish to consider the generalization of the
notion of approximate fibration to that of shape fibration due to Mardesic
and Rushing [24]. Here E and B are allowed to be arbitrary metric
compacta instead of being required to be ANR’s. For every map p: X - Y
there exist ANR-expansions p: E — B, i.c, inverse sequences of compact
ANR’s E = {E,, 4], B= {B;, r;;;} with limE = E, limB = B, and sequences

ol maps p;: E; — B; such that for each i the diagram

q..
E-—"F,
prl = jp:ﬂ (]3)
B-——58,,
i+l

commutes and the maps p; induce p, i.e, p=limp.

We say that p has the AHLP with respect to a class of spaces .
provided for each i and each ¢ > 0 there is a j =i and a § > 0 such that
whenever X belongs to .7 and h: X — E;, H: X xI — B; satisfy

d(Hg, pjh) < 9. (14)
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then there is an H: X xI — E; such that
d(Ho, qi;h) < ¢ (15)
and

dipH,r,H) <¢. (16)

k] j}

If p E— B and p: E'— B’ are two ANR-expansions of the same map
p: E— B and p has the AHLP with respect to X, then so does p'. This
justifies the following definition: a shape fibration p: E— B is a map
between metric compacta such that p admits an ANR-expansion p having
the AHLP with respect to all topological spaces. Then one can show that a
map p: E— B between compact ANR’s 1s an approximate fibration if and
only 1l 1t 1s a shape fibration.

Mardes§ic and Rushing have also shown that a cell-like map between
linite-dimensional metric compacta is a shape fibration. On the other hand
the Taylor map (of the Kahn space) is a cell-like map which fails to be a
shape fibration.

A shape fibration p: E — B induces an isomorphism of homotopy pro-
Eroups

p.: pro-m(E, F, e) - pro-m, (B, b), (17)

where beB, F=p '(h) and eeF. One also has an exact sequence of
homotopy pro-groups

... — pro-m(F, e) = pro-n, (E, ¢) — pro-n; (B, b) = pro-n,_ (F, e) — ... (18)

If E and B are ANR's, then p is an approximate fibration and the sequence
specializes to the sequence of Coram and Duvall.

An important property of shape fibrations is the fact that the pullback
p': E'— B’ of a shape fibration p: E — B determined by an arbitrary map
f: B'— B between metric compacta 1s again a shape fibration.

In [11] Coram, Mardes$i¢ and Torunczyk establish the following result
analogous to Kozlowski’'s Theorem 4 for maps which are not cell-like.

THeoreM 7. If X is a compact ANR and if f: X — Y is a shape fibration
and a shape domination onto a metric compactum, then Y is an ANR,

Recall from E. Fadell [14] the corresponding situation in homotopy
theory. Namely, il X is a compact ANR and if f: X — Y is a (Hurewicz)
fibration which is a homotopy domination onto a4 metric compactum Y, then
Y is an ANR.

Finally, we mention the notion of a movable map f: X — Y between
separable metric spaces recently introduced by T. Yagasaki [37]. Let f be a
proper map, M an ANR which contains X, and p: Y x M — Y the projection
map. The map f is said to be movable if each neighborhood U of f !
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= xSy rve Y!in YxM contains a neighborhood V of /™! such
that for each neighborhood W of /™! in V, there exists a homotopy
H: Vx[0,1]—-U with Hy=1id, H, (V)< W, pH,=p (0 <t < 1). Futher-
more, he shows that il fis a movable map and X is an ANR, then so is Y.
Yagasaki in [38] shows that movable maps are shape fibrations. However,
there are shape fibrations which are not movable.

There are several relevant areas of shape theory which we did not touch

upon, especially strong shape. This topic as well as some others are treated
elsewhere in this volume. As a general reference the reader is referred to [27].
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