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Let G be 2 semisimple, simply connected Chevalley group over a field k. Let T
be a maximal (k-split) torus and B a Borel subgroup, B = T. Let () be a parabolic
subgroup, Q 2 B. Let W (resp. W,) be the Weyl group of G (resp. Q). For
we W/W,, let e, be the point and X (w)(= BwQ (mod Q)) the Schubert variety in
G/Q associated to w. In the series G/P 1-V (cf. [23], [15], [12], [13], [17)),
a standard monomial theory has been developed for Schubert vaneties in G/,
G classical (and for certain Q’s if Q is exceptional). This theory is a generalization
of the classical Hodge-Young theory (cf. [3], [4]) which gives bases for the
homogeneous coordinate rings of Schubert varieties in the grassmannians. To be
more precise, standard monomial theory consists in the construction of explicit
bases for H°(X (x), L), L being an ample line bundle on G/Q. The results of [17]
give the theory for classical groups. Subsequently the theory was completed for
G, and E (cf. [7]. [14]). In the meantime, the question arose whether this theory
could be generalized to Schubert varieties in the infinite-dimensional flag
manifolds associated to Kac—Moody groups (cf. [6], [24], [25]). Towards an
affirmative answer to this question, the author in collaboration with Seshadri has
developed the theory for SL, (cf. [18], [19]). Towards completing the theory
(both in the fimte-dimensional and infinite-dimensional cases), the author has
arrived at a conjecture (cf. § 2). This conjecture has been verified to hold in all
cases where the theory has been developed. Using this conjecture, the author has
been able to complete the theory for F, and E, (cf. [11]). Thus in the
finite-dimensional case, the theory is now complete except for E;. Among several
important geometric and representation-theoretic consequences of standard
monomial theory ts the determination of singular loci of Schubert varieties (cf.
[16], [20]). In this survey, we describe in an explicit way the singular loci of
Schubert varieties for groups of rank 2 (using [141, [16], [7]) and also for
Schubert varieties in G/P, G classical and P being given as follows:
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A, P is any maximal parabolic subgroup,
B,,C,. P=P;, a =a, or a,,
D, P=P; a=0a,, a,., OF a,
(here the indexing of the simple roots is as in [1]).
The sections are arranged as follows. In § 1, we recall results from [7],
[14], [17]; in § 2, we state the conjecture mentioned above and § 3 deals with
singular locus.

§ 1. Preliminaries

A basis fer H°(X (w), L). Let G, B, T, 0, W, etc. be as in the introduction.
Let (,) be a W-invariant inner product on X(7T)® Q, where X (T)=
Hom,,, ., (T, G,). Let R (resp. R") be the set of roots (resp. positive roots) of
G relative to T (resp. B).

NoraTtioN 1.1. For a fundamental weight o, let

m(w) = max {(w, ay = 2% aeR*}.
(o, @)

In [14], it is shown that if P is a maximal parabolic subgroup such that the

"associated fundamental weight w satisfies (w, «”) < 3, e R™, then H°(G/P, L)
(where L is the ample generator of Pic (G/P)) has a basis indexed by “admissible
quadruples” of elements of W/W,. Using this and the notion of standard Young
diagrams on a Schubert variety X (w) in G/Q (cf. [17], [14]), one obtains a basis
for H°(X (w), L,) consisting of standard monomials of type a on X (w), where
a is given as follows: if @ = ﬂ£=1 P, (P;’s being maximal parabolic subgroups)
and L; is the ample generator of Pic(G/P,), then L, = @i- L}. (For details,
see [14]; if one considers w such that m_, = 2, say for example, G is classical,
then for the details of the above result, one may refer to [17]). Since for § 3, we
need results for G where G is classical or of type G,, we recall below the
necessary results for these cases.

DeFInITION 1.2 (cf. [17]). A maximal parabolic subgroup P is said to be of
classical type if the associated fundamental weight « satisfies the condition
(w, ") <2, aeR™.

DEerFINITION 1.3 (cf. [17]). Let P be a maximal parabolic subgroup of
classical type. A pair (1, ¢) of Weyl group elements in W” (= the set of minimal
representatives of W/W,) is called an admissible pair if either

(1) T = ¢ (in which case, we call it a trivial admissible pair) or

(2) there exists a sequence

X()=X(@tg)>X()>...5X(x) = X(p)

such that X (r;) is a Schubert divisor in X (t,_,), say 1, = 7;,_5,, [or some
p:.eR™, with (w, f7) = 2.
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We recall (cf. [17]) the following:

THEOREM 1.4. Let P be a maximal parabolic subgroup of classical type and
L the ample generator of Pic(G/P). Then there exists a basis {p(z, @)} of
H°(G/P, L) indexed by admissible pairs such that

(1) p(z, @) is a weight vector of weight —3}(t(w)+ ¢ (w))
(2) For X(w) in G/P, p(t, ®lxm £0 if and only if w >t (in W/W,)
(3) {p(r, @)lw = 1} is a basis for H°(X (w), L).

Remark 1.5. The basis {p(r, @)} is in fact constructed in [17] even over Z.
We shall denote the corresponding basis for H°(G,|P,, L,) by {P(t, ¢)} so
that over any field k, we have p(z, ¢) = P(1, 9) ® 1.

NotatioN 1.6. Let {Q(t, ¢)} be the basis of V;,, the Z-dual of
H°(G,/P4, Ly) dual to {P(r, )}. (Note that V; ,® Q is the irreducible
G-module (over Q) with highest weight w).

The group G,. Among the two maximal parabolic subgroups
{Ps,, Ps,}, Ps, is such that m(w;) = 2 and hence, we have results for Schubert
varieties in G/P;, given by Theorem 1.4. We shall now recall (cf. [7]) results for
G/Py,. Let us denote 7, = Id, 1, = 5,, T, = 5,85, T3 = 8,5, 85, T4 = 5,5, 8, 53,
Ty =5,5,5,5,5, (note that W'& = {z,, 0 <i<5))

We have (with notation as in [7])

THEOREM 1.7. Let P = P;,. There exists a basis # = {p(z;), 0<i <5}
uH, where & ={p(t, ), 1=1, or 15, @ =71, or 1., r(z,¢), q(t, @),
(t, @) = (14, T3) or (t5, 1,)} Jor H°(G/P, L), with similar properties as in
Theorem 1.4 (for details refer to [7)).

NotaTioN 1.8. Denoting as above V, ,, the Z-dual of H%(G,/P,, L,), we
obtain a Z-basis {Q(1),0<i <5, Q(1,9), 1 =1,0r 15, ¢ =1, Or 74, E(1, 0),
F(z, @), (1, @) = (14, 13) O (75, 7,)} (note that V , is simply &, where ® is the
Lie algebra of G and the above basis is simply the Chevalley basis of &, (cf.
[7], § 4).

§ 2. A conjecture towards completing standard monomial theory

Let A be a symmetrizable, generalized Cartan matrix. Let & (resp. G) be the
associated Kac-Moody Lie algebra (resp. Kac—Moody group). (For generali-
ties on Kac-Moody Lie algebras and groups, one may refer to [5], [6], [24],
[25]). Let W be the Weyl group. Let U be the universal enveloping algebra of
® and Uz, the Z-subalgebra of U generated by X2/n!, ac S (here § is the set of
simple roots). Let ‘A be a dominant, integral weight and V, the integrable
highest weight module (over C) with highest weight 1. Let us fix a generator
e for the highest weight space (note that e is unique up to scalars). For 1e W, let
e,=1e, Vy,=Ugze.
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A conjectural basis for V2 V; has a basis B = [e,, te W} U &', where #'
is given as follows,

(1) 1, the indexing set for #': I is given by

P. P, P,
I:{1>—‘—1>J>..>—l€>0: uil<#i1<"'<#it<#it*l}
qil qiz qit )

such that
(a) there exist elements y,eW, 0 <i<r+1 with

Bo =My <Ry < fa <. ... <My , =Hi

where for 1 <1<+ 1, each y; = p, for some m, 0 € m < r+1; further, for
0<i<r, X(u)is a Schubert divisor in X (g,,,), say

Hy =S vy, My = I(#i(i)s ﬂf)|
(b) There exist positive integers n;, 0 <i < r such that

ng _ Ny n
l>—>2—2=2...2<L>0.
m, m m

Further, in (b) n/m, < n,_,/m,_, if and only if le{i,, .., i,} and for such an |/,
n/m; = p,/q,.
(2) The vectors in #'. To an element of I as in (1), we associate the vector

X ... X"y e, (here for a real root f§, X% stands for X" z/n!). Note that the
above vector is a weight vector of weight

(1 —%)uf,uw(&'p_fz) )+ T, ),

iy i i2 i

§ 3. Singular loci of Schubert varieties

This section consists of two parts. In Part I, we decribe explicitly the singular
loci of Schubert varieties for all groups of rank 2. In part II, we describe the
singular loci of Schubert varieties in G/P, G classical and P belongs to a certain
class of maximal parabolic subgroups. First, we recall results from [16], [9].
Let G be classical of rank n. In the sequel, for 1 < d < n, we shall denote the
maximal parabolic subgroup P;, by just P,. For we W, let

(1) (4, @) 1s an admissible pair
I(w) = {p(i, 1) }

in W/Wp , for some j, 1 <j<n
2) p(4, Wiy =0 )
THEOREM 3.1 (¢ [17]). The ideal sheaf of X (w) in G/B is generated by I (w).
Let 7 < w and let J, be the (Jacobian) matrix | X _,p(4, p)l, evaluated at
e., where fe1(R™) and p(4, ) el(w), then we have
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THeorREM 3.2 (cf. [16]). rankJ = 4 R(w, 1) = {fet(R")| there exists
ap(A, Wel(wjwith X _,p(4, p) = cp(t), cek*} (here p(1) denotes the extremal
weight vector p(t, 1) corresponding to the trivial admissible pair (1, 1))

Let T{w, 1) be the Zariski tangent space to X (w) at e,, then

Thiorem 3.3 (cf. [16]). T(w, 1) is spanned by {X _;, feN(w. 1)} where
N{w, 1) ={fet(R")|for every p(i, ) with X _gpl2, ) =cp(t). cekX,
p(4, ﬂ,”x(w) # 0.

Using the above theorem and the explicit description of p(4, u) (cf. [8],
r10]), an explicit description of T(w, 1) is given for classical groups in {9]. We
take this occasion to staie the results of [9] in a more compact form. We first
recail (cf. [9]) few notation. Let G be classical of rank n. For we W, we shall
denote by X (w") the projection of X (w) under G/B —» G/P;, 1 < d < n. Given
a d-tuple (4,, ..., a,) of integers we shall denote by {¢,, ..., a,) T the d-tuple
(@, ..., ay) with the entries arranged in ascending order. For G = Sp(2n) or
SO(2n), we shall let i =2n+1—i, 1<i<2n and |if=min{i,i’}. For
G =S80@2n+1), we shall let i =2n+2—i, I1<i<2n+1, i#n+1 and
lil = min{i, i'}. For G = Sp(2n) or SO(2n) (resp. SO (2n+ 1)) we identify W as
a subgroup of the symmetric group S,, (resp. S,,,,)asin [10]. For 1 <d < n,
we identify WP¢ with certain d-tuples of integers (as described in [10]). Let w.
teW, w>1t Let f=1(a), 2eR".

THEOREM 3.4. Let G be classical. Then T(w, 1) is spanned by
(X w9 =2 ™D (in WP, 1 <d < n},
where T*Ye WP js given as follows:
D =(15,)”,  fou=¢—g, 1<j<k<n

(here s, denotes the reflection with respect to «). In the rest of the cases, T is
given as follows.

The symplectic group Sp(2n): Let t = (a,...q,,).

(1) a=2¢, 1 <d<n Then 1 =159, 1 <d < n.

(2) a =¢;+¢, 1 <j<k<n Let s=min{la], |al}. r=max{la], |a,}.
Then

L) _ (rs )@ if d <k,
@y, ...odju ..o, gy ..y05, 8,01, ifk<d<n.
The orthogonal group SO(2n+1); Let Tt =(a,...dy,44)
(1) x=¢;+¢, 1 <j<k<n
@) If d <k or d =n, then v = (ts,).
(by If k<d<n—1, then let s=min{laj, |al}, r = max{|a], |al}.
Define s;, 0 < i < c(d), as the integers
r=5,<$8 <$,<...<s{d)<n
such that s;é{la,|, ..., la}}, i #0.

24 — Banach Center t. 26, cz. 2
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If precisely one of {a;, a,} is > n, then

T(ad)_(a s rery a‘j’ vens dk’ "'ad’ S,’ r)T

If a;, a, are either both > n or both < n, then
d) .
™Y =(a, . dj . G, a8, S

2Qa=¢, 1<j<n
Define s;, 0 < i< m(d), as the integers

So=laf <s;<s;<...<Spy S
such that s;é{la,|, ..., lay}, i #0. Then
T(a.d) = {(Tsa)(dh !f d <.] or d= n,
(

Ayy oo g ooy Ags ST, j<d<n—1

The orthogonal group SO(2n): Let t=(a,...a,,) and a=¢;+¢,
1<j<k<n

(@) If d<k or >n=2, then 1*9 = (15)@.

(b) If k <d < n—2, then let s = min {|a}, la,|}, r = max {|a}, la,|}. Define
s, —ld<i<c(d), as the integers 5 <s_;; <S_ ;g4 <...<5_; <5,
=7 <S8 <S§;<...< Sy SN such that s;¢{la,l, ..., la,l}, i #0.

If precisely one of {a;, a;} is > n, then

’C(a‘d)=(a1, -.-,dja -'-sdk’“-ﬁad’ s, N1

If a;, a, are either both > n or both < n, then

T(a_,j)={(a1s'-" dj:"'v dk,"':ad’ S:‘(d)—lysl)Ta if( d C(d)) (0’ O)

A

(@ysooosdjyoony gy onny g, 1y ST, if (1(d), c(d)) = (0, 0).

We have results for G, (similar to Theorems 3.1-3.3) which we recall below
(cf. [7], [14]). Let G be of type G,. For P = P;,,j = 1, 2, let us denote the basis
vectors for H°(G/P, L) by {p" (z, ¢)}. To make it very precise, p® (z, ¢) is just
p(r, @), if either j=1or j=2, t #1,, t,; for j=2, t=1,,1,, we denote
q(z, @) (resp. r(t, @)) by p'*'(z, ) (resp. p'¥(z, ). For we W, let

Iw) = {p" (4, Wip” (4, Wlxw, =0}
THEOREM 3.5 (cf. [14]). The ideal sheaf of X (w) in G/B is generated by [ (w).

Let J, be the Jacobian matrix [|X_,p" (4, wl evaluated at e, where
Bet(R*) and p¥ (A, y)elI(w). Then we have

THEOREM 3.6 (cf. [14]). rankJ, = # R(w, 1), where R(w, 1) = {fet(R*
there exists a p¥ (4, pel(w) with X _,p" (4, p) = cp(7), cek*}.

THeorReM 3.7 (cf. [14]). T(w, 1), the Zariski tangent space to X (w) at e_is
spanned by {X _,, ﬁEN (w, 1)}, where N (w, 1) = {fet(R™)| for every p* (4, u)
such that X _zp" (4, u) = cp(z), cek*, p (4, Wy # O}
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Let G be classical. It can easily be seen that X _;p(4, i) = cp(1), cek*, if
and only if X ;0 (1) (@ (1) = Q(z, 1) being as in Notation 1.6) when written as
a Z-linear combination of Q (8, 8)’s, involves Q (4, u) with a coefficient that is
non-zero in k. A similar remark applies to G, also. Hence in the following
discussion, T(w, t} will be determined by computing X _;Q(z).

Part 1. Singular loci of Schubert varieties for groups of rank 2

It is enough to discuss types C, and G, (since for A4,, it is easily seen that
every Schubert variety is smooth). Let P;, = P,, i =1, 2 and L, be the ample
generator of Pic(G/P)), i = 1, 2. For we W, let § (w) denote the singular locus of
X (w). If S(w)#@, then it suffices to discuss the behaviour at e, with
codimX(r) in X(w)>2 in view of the fact that Schubert varieties are
nonsingular in codimension 1 (cf. [2] or [17]).

Type C,: We have (cf. [1])

+ .
R™ ={a,, 0,, 0, +a,, 20, +a,} = {a,, a,, d;, 0.}, say.

The following picture gives the configuration of Schubert varieties in G/B.

Wo
T3 D3
Ts 3]
T P,
Id

Let 7, =5,, T, =5,5;, T3 =15;5,81, Q1 =5, Q3 =515, P3=5,5;53,
1, = ¢, = Id (here w, denotes the unique element of largest length in W and s,
denotes the reflection with respect to a,, i =1, 2.

With notation as in 1.6, we have (cf. [7]):

(a) The set {Q(r;), 0 < i< 3} is a Z-basis for V; , (note that in this case,
the trivial pairs (z, 1) are the only admissible pairs in WF* and we have denoted
Q(r, 7) by just Q(1)).

(b) The set {Q (@), 0 <i< 3, Q(,, ¢,)} is a Z-basis for V, . (note that
in this case (¢,, ¢,) ts the only nontrivial admissible pair).

Let Q; be the highest weight vector in V; , (cf. Notation 1.6). (Note that
0, = Q(Id).) We have (up to +1), with notation as in 1.6.

_ Q(T[)’ l = 19 _ 09 l = 1,
X—al Ql - {O’ i: 2’ X—azQi - {Q((pl)’ i — 2’
Q(T?_)V i= 1: Q(Tj)7 l = 17

X_ P = X__ . =
os Qs {Q (02, 1), =2, oo Cu {Q(cpz), i=2.
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From this it follows (by considenng ihe dim T(w, 1d) as given by Theorem 3.3,
with 7 == Iaj that X (z5) is the only singular Schubert variety. We shall now
compute dim T(w, 1), w =13 and 7t =1,, ¢, which will then cnable us to
determine S(t,).

Discussion at ¢,. We shall denote bv O, ; the extremal weight vecter in Vi,
of weight t{w;), i = 1, 2. Further for 1 €j < 4, we shall denote t(a) by B,.
(1) t=¢,. We have (up to +1)

_fow@). i=1, _ {0 =1,
T A
Q(‘L’z), i=1, Q(Ta.‘-. i=1,

X _ = X_ .=
B3 Qr.l {Q((Pze (PI)’ i=2, fa Qr.l {Q ((Pz)’ = 2.

A. As above, considering dim T(w, 7), w = 75, we obtain that X (z,) is
smooth at e,.
(2) T=1,. We have (up to *1)

Q(ld), i=1, 0, i=1,

X—ﬂtQt.z {0, i‘—‘2, -8 Qn %Q((Pz)s P = 2’
[Q(13), i=1, {Q(r;)., i=1,

X 5,Qi=%, : X 3.Qi= . A
ﬂ~ Q . {Q((pz, (Pl)’ I = 2’ ‘; . Q((ﬁ{)ﬂ 1 == _.

B. By considerations as above we obtain that X (z,)1s singular at ¢_. Hence
we obtain

THEOREM 3.8. With notation as above, X (t4) is the only singular Schubert
variety in G/B-and S(t;) = X (t,).

Type G,: We have (cf. [1])
R* = {o;, ay, o0y, +005, 200, 42y, 3%, + %y, 3a, +20,)
= {0, 0y, Qa, O4, Ag, Ag, SAY.

The foilowing diagram gives the configuration of Schubert varieties in G/B.

u:'l
N
\/( \5_
\ )
S
w

o
X
SAVAY

S

B

QA A
N w

\\X/
S €
[\8] w

/A
A
oo,

AL

v
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Let 0 =5, ©;=58,8,. 03 = 8,551, Py = 5,588, @5 = S(5,55; 5,
Ty = §3,T3 = 8182, Ty = 855,55, Tg = 8,8, 552.Ts = 5,5; 5,5, 5,.Tg = @y = Id.
With notation as in 1.8, we have

(a) {Q(w), 0<i <5, Qles, ¢y)} is a Z-basis for 1, , ,

by {Q(1).0<i<5 Q(r,pht1=1,0r75, 0 =1,0r 7, E(t. @), F(1, o0},
(r, @) = (14, T3) OF (15, 7,)); is a Z-basis for V, .. As remarked earlier,
Vs, = ®; and the above basis is simply the Chevalley basis. To be very
precise (cf. {7]), the extremal weight vectors Q(r;), 0 < i< 5 are X ,;, f§ being
a long root. The nonextremal weight vectors are given by

X2a1+12 = E(TZ" Tl)'f X = F(TZ’ T‘[)a

X tar

‘Y—(211+11) = F(t45 1'3), X = E(‘T4, 13),

—fa; ‘\‘;():2\

X, =0(t35. 1)), X_,, =@y, 1), H, =Q(1,, 7)), H,, =0(1y, 1)

As before, we shall denote by Q, the highest weight vector in V
(note that @, = Q(Id)). We have (up to +1)

Qlpy), i=1, _fo, =1,
0, i=2, X‘“‘Q‘_{Q(rl), i=2,

Q(¢,), i=1, Q(p3, @y), i=1,
X = X =
o ¢ {E(Tzz ), =2, T @ F(t,, 1), i=2,

_j0lpy, i=1, LA UAN i=1,
X0y Qi= {Q(Tz)’ i=2, X ey Qi = {Q(r4, 7,}+20Q(14, 1), i=2.

Hence by consideration of dim T{w, Id), we find that the singular Schubert
varieties are given by X(w), w=¢,, 3<i<5, and w=1;, j=4,5 To
determine S(w), we compute as above X _;Q(1), fet(R"), 1 < w. We shall
denote by Q. ; the extremal weight vector in V, , of weight t(w), i=1, 2.
Further, for 1 <j <6, we shall denote z(a;) by §;.

(1) T=¢,. We have (up to +1)

Qd), i=1, 0, i=1,
X__ ;= X_ . =
ﬂl Qt.l {O, l — 2’ ﬂz Qt,! {Q(TZ), l — 2,

=1, 2

[0 FRd !

X—a;Qi={

Q((P3)a i 17 _ Q((pJa (Pz)a l = 1a

X Qs {F(rz,rl), i=2, X""‘Q”_{E(rz,rl), i=2,
_ Q) i=1, _ f0(0s), i=1,
X _5,0.:= {Q(Tl), =2, X _ 5,0 = {Q(Tm 1)+20(ty, 1,), i=2,
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(A) From this we obtain (by considering dim T'(w, 1)) that e, is singular
on X(p), i=3,4,5 and X(z,).

2) =1,
: _ Q((p2)7 l=1’ _ Oa l=1,
Xop Qi = {0, i=2, XopaQei = {Q(Id), i=2,

_ Q((pl)’ I= 15 _ Q((P3, sz)s l= 1’
X g Qi = {E(tz, 1), i=2, XpQui = {Q (ty, 7,), i=2,

_ Q(q):i)a i=1, _ Q(q)})a i=1,
X Qi = {Q (ty),  i=2, Xope Qi = {Q (g, T2)y  i=2.

(B) From this we obtain that e  is singular on X (¢), X (1), i =4, 5.
(3 t=0,:

Qd), i=1, 0, =1
. X L=
X_pl Q:.: {0 i=2, —f2 Qt-l Q(T3)= i=2,

_ 00, i=1 _ 0@, @), =1,
Xopi Qi = {Q(r3, 1), i=2, XopQer= {E(tz, 1), i=2,

_ Q((pl)’ l= 17 _ Q(Qos), l= 1,
R A "“*'Q”_{Q(rg), i=2,

(C) From this we obtain that e, is singular on X(¢), i=4, 5.
4) 1=1,:

0(p,), i=1, 0, i=1,
X = X =
—f Qt.l {0’ i=2, —B2 Qt.l Q(]d), =2,

_ jedud), i=1, _[Q(es, 0, i=1,
X_”3Q""—{F(tz,r,), i=2, X““Q"“{Q(Q,rz), i=2,

Q(@s), i=17 _ Q((Pz), i=1,
Qry), =2, Xpeei = {Q(rg,, 1), i=2.

(D) From this it follows that e, is singular on X (¢5) and X (1,).
(5) T =0y

_ ey, =1, _ o, i=1,
X—ﬁl Qt,l' - {0, i — 2, X—ﬂz Qt.l' - {Q(T4), i = 2,

_ Q(q:'s)a !:1’ _ Q(%, (Pz)a l=19
X‘ﬂs Qt.i - {Q(T‘p ‘52)5 | = 2’ X‘ﬁa Qt.l’ - {F('L’z, Tl), j— 2’

_ Q(Id)s l=1, _ Q((p4)’ [:1,
05 Qi = {Q(Id), i=2, X9 Qi = {Q(za, 1,), i=2.

X—ﬁ5 Qt,i = {

S
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(E) From this it follows that ¢, is singular on X(¢s).
(6) T = 14:

_JOfel), i=1, _ o, i=1,
X_ﬁthJ_{O, 1=2, X_ﬂZQt.i_ Q(Tl), l_—‘2,
Q(Id)a i=1, Q(‘P3s ﬁoz)a [ = 15
X_ﬁj Qt‘[ {Q (T3, rl), = 2, b Qt'l E(T4a T3)a I= 2:

_ Q((DS)’ i=1, _ Q((pl)’ i=1,
X“"SQ**‘“{Q(IS), i=2, X"’SQT-‘_{Q(Ta,rZ), i=2.

(F) Hence we see that e is smooth on all X (w), w = 1;.
Now using (A) through (F) (and the fact that Schubert varieties are
nonsingular in codimension one), we obtain

THEOREM 3.9. Let G be of type G,. The singular Schubert varieties in G/B
are given by X(w), w=9, i=3,45 and w=r1;, j=4,5 Further
S(p)=X(p;_,), i=3,4,5 and S(1,) (resp. S(ts) is X (1,) (resp. X (1,)).

Part II. Singular loci of Schubert varieties in G/P

In this part, we shall describe singular loci of Schubert varieties in G/P,
G classical and P 1s a maximal parabolic subgroup given as follows:

A,: P is any maximal parabolic subgroup.

B,C, P=P,i=1orn

D, P=P,i=1,n—1 or n
The proof of the results in this part will apear in [21].

A,: Let P = P, Then recall (cf. [10], for example) that WF, the set of
minimal representatives in W/W, is given by

WP ={(a,,....,a)|1 <a, <...<a;<n+1}.

For a =(a,, ..., a,), let us denote the associated Schubert variety in G/P
by X (a) and its singular locus by S(a); further, let us denote by A, the
partition

Ayt g—d=za,_,—(d-1)=...2a,—1.

TueorEM 3.10. S(a) = | J, X (b) where b < a and A,/2, is a hook (refer to
[22] for the definition of a hook; also recall that b=({b,,...,b,) <a
=(a,,...,a))<= b, < a, | <t<d). In particular, X (a) is smooth if and only if
a is a rectangle.

The above Theorem (and also the Theorems below) is proved by
computing m_(w), the multiplicity of X (w) at e, (cf. [20]).

C,: For P = P,, G/P is a projective space and every Schubert variety is
smooth. For P = P,, we have (cf. [10])
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(1)1 < a, < 2n,
WP =<(a,,... (2) for 1 1< n. precisely one of
| {i,2n+1—i} belongs to {«,,...a,}J

a

..=2a,—1, we have /, is sell-dual. With notation as above, we have

For a=(a,,...,q,), denoting as above ., a,-nza, —(n-1j>

THEOREM 3.11. S(a) = | J, X (b). where b < a and ,/4, is a sum of two
hooks dual to each other or a self-dual hook (different from a box). In particular,
X (a) is smooth if and only if 4, is u square.

B,,P=F, and D,,, P=P,_,, P, Let G, be of type B,_, and G, of type
D,. Let W..i=1,2 be the corresponding Weyl groups. We have (cl. [10])

(N 1<a, <. L<a,<n,. € 2n—1,
Wl =< (a;,...,a,_,) | (2) for 1 <i< n—1, precisely one of ,
PVzP"-: '{(al,...,a)

{1, l}e(aj, ,,__1) where i = 2n—i
Let 0: Wi Wy be the map ()(al, oy @,_y)=I(a,...,a,), where
a, = nor (n+1) according as # {ila; > n} is even or odd (under the map 0, the
i’ appearing in (4¢,, ..., a,_,) (resp. 0(a,, ..., a,_,)) should be understood as
2n—i (resp. 2n+ 1 —1i)). It turns out that 0 is a bijection and that for b < a,
a, be WP, the multiplicity of X (a) at b and that of X (0 (a)) at 0 (b) are equal.
A similar remark applies to the map

d: WZP"—PW2P"_1, 5(01,.‘.,an)=(b1,...,b"_1),

where (b, ..., b,_,) is obtained from (a,,...,a,_,) by replacing n by #’
(= n+1) (resp. n’ by n), if n (resp. n')e {a,, ..., a,_,}. Hence we shall state the
results just for the case B,, P = P,. For a = (a,, ..., a,)e WP~ denoting by 4,
the partitiona,—n 2 a,_,—(n-1) = ... = a,— 1, we have 4, is self-dual. With
notation as above, we have

f,:,c(al ., a,) where i =2n+1—i

(h 1< .<a, < 2n,
(2) for l &1 n, preCIsely one of .

THEOREM 3.12. S(a) = | J, X (b), where b < a and i,/4, is either
(a) sum of two hooks dual to each other which are either disjoint or
connected at one box or

(b) a doubie hook which is self-dual.
B,, P = P,: We have

wre_ LD 1<i<2me1)
(2) i #n+]1

Further
X ey Q01d) = Q(j),
X-(el+aj)Q(Id) = Q(2n+2_j):
X_, 0{d)=0(n+2,n),
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(note that in this case (1, @) = (n+ 2, n) 1s the only nontrivial admissible pair).

From this we see, by considering dim T'(w. Id), that X (w) = X (j) is smooth for

j=1,2,....n,2n+1 and X(w), w=2n+1—j, | £j<n—1, is singular.
Proceeding as in Part I, if X (1) = X(j), j < n—1, then

Qi) i>j,
Qu—-1, i<y,
_jQ(2n+2-i), i>].
S le@a+3-i. i<,
X e @) =0Q(n+2, n).

From this we find that for X (w)= X (2n+1—j), dim T(w, 1) = 2n—j >
2n—j—1=dimX (w) and for X (2n+2—j), dim T(w, 1) = 2n—j = dim X (w).
Hence we obtain

X_ ey —eq) Q (T)) = {

‘.'Y-r(el +e[-) Q (T)

THEOREM 3.13. Let X (w) = X (i). Then X (w) is smooth for i=1,2, ..., n,
2n+1. For n42<i<2n, SW)=X2n+1-1i).

D, P=P,: We have

WP =1i, 1 <i<2n}.

"’

Further

X oegQUd) = Q). X_( 40y Q(d) = Q2041 —0).

From this, we find as above that X (w) = X (j)is smooth forj= 1.2, ..., n,
n+1,2n and X(w), w=2n—j,j < n—2 is singular. Proceeding as above, if
X (t) = X (j). then in WF

i > ],
o /ll— 1. i<},
Cj2al—i, i>,

TSo. e, .
I 2 i / '
'LL"‘L.;.—I. lé]

e

From this we see that for X(w)y=X(2n—j), dmT(w,t)=2n—j—1>
2n—j—-2=dim X (w) and for X(w)=XQ2n+1--j), dmT(w, 1) =2n—j—1
= dim X (w).

Hence we obtain

THeoOREM 3.14. Let X (w) = X (i). Then X (w) is smooth for i=1,2,..., n,
n+1,2n and is singular for i=n+2,...,2n—1. For n+2<i<2n—1,
Sw)= X (2n—i).
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