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1. Introduction

The subject of this paper is the asymptotic behaviour of some integrals for
Gevrey symbols and Fourier integral operators in spaces of ultradistribu-
tions. Applications to hypoellipticity and propagation of singularities are also
considered.

The classical Gevrey pseudodifferential operators were studied by L.
Boutet de Monvel and P. Kree [1]. The basic ideas of analytic and Gevrey
microlocal analysis were set out by L. Hormander [11]. There the author
posed the problem of developing the theory of analytic and Gevrey Fourier
integral operators (F.1.O.’s). The analytic microlocal analysis was developed
further by many authors, in particular by J. Sjostrand [17], [18]. R. Lascar
[15] announced results about F.I.O.’s in nonquasianalytic Denjoy—Carleman
classes. Asymptotics in the Gevrey category were stated in [6].

Let X < R" be an open set, ¢ > 1. We denote by G?(X) the class of
Gevrey functions of order o, i.e. f(x)e G°(X) iff f(x}e C*(X) and for every
compact subset K of X (K € X) there exists Cx > 0 such that

(L) (&SI <R @), xeK,

a=(a,..,0)eZ%, =01 & al =l !

In particular, G' (X) = 4(X) is the space of all real analytic functions in
X. It is well known that G3(X)# (0}, ¢ > 1, while Gg(X) = {0}, where
G3(X) = G°(X)nC§(X) (the G° functions with compact support) [11], [12],
[20].

A sequence f,eG’(X), k=1, 2, ..., converges to feG?(X) iff for any
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K € X one can find a sequence g — 0 as k — o0, g > 0, satisfying

(1.2) sup|®(fi—= X)) < g T, aeZ%, T>0 fixed.
K

When f, e G§(X) we have f, — f as k — oo in G3(X) iff there exist K € X
and a sequence ¢ — 0, as k — o0, g > 0, for whichsuppf, <K, k=1, 2, ...,
and (1.2) holds.

Let &,(X)=[G°(X)]*, o= 1, be the space of all g-ultradistributions
with compact support, and for ¢ > 1 put Z,(X) =[G{(X)]* [1]. Evidently
the Fourier transformation is well defined in &, (X):

(1.3)  d(¢) =fe ™ u(x)dx:=u(e ™%, x-E=x;&+ .. +x,E,

Let 0 > 1, ue 2,(X) and @° = (x°, £%e T*(X)\0. The point ¢° does not
belong to the G° wave front set of u, WF,u, iff one may choose a function
@ (x)e G5(X), ¢(x°) £ 0, an open cone T2¢° in R"\0 and a positive constant
C with the property
4

ow) (O < CYVHN)(EY™N, EeT, N=0,1,..., &y =(1+&3)2,

Remark 1.1. It is easy to deduce that the inequalities (1.4) are equivalent

to

(1.5) l(ow) (&) < Cexp(—[¢['?/C), ¢EeT, C>0.

The G° symbols are considered in § 2. The asymptotics of certain
integrals and the stationary phase method for G® symbols are the subject of
§ 3. The G° Fourier integral operators are investigated in § 4, and § 5 deals
with some applications and examples.

2. G° symbols and their properties

Let us recall [1], [6], [7], [17]

Derinimion 2.1, Let Q < R?x(R3\0) be an open conic set (i.e.
(x, e <(x, t0)eQ, Vi > 0). The formal sum

(2.1) 2 Pm-u(x,8), meR,
k=0

is called a formal G* symbol of order m in Q,06 21, iff p,_,.cG°(Q),
ordg Py = m—k (i€, ppoy(x, tO) =t""*p,. _,(x,0,t>0,k=0,1, ..., and
for every compactly based conic set Q° € 2 (i.e. Q° {|f| = 1} is compact in
Q) there exists Cy > 0 satisfying

(22) |3 pr(x, O < CEITIAIHE*T (k1 gl Br)7 O™ =%~ 181,
(x, e k=01, ..., ac2%, BeZ .
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Let FS7(Q) be the space of all formal G° symbols of order m in Q.
Evidently FS™ (Q) c FS™(Q), m' < m, o' < 0.

DerFiNniTION 2.2, Let Zf:o Pm—x(x, )€ FS™(£2) and let Q% € Q2 be an open
cone. We say that p(x, 0) is a full G° realization of ¥ = o pm—x in Q° if p(x, 6)
is a2 G° function in x and there is a positive constant C such that

N
23) BB (P— L Pm-i)] < CHFHIOFNTL @I BINY|Gm N,
k=0

(x,0eQ° {621}, N=0,1,..., aeZ", BeZ’.

The symbol p(x, 6) is called a simple G° realization of ¥ yz o Pm—i in Q° if
for every Be Z% there exists Cp > 0 satisfying

N
(23) |EA(p— Y Pm-s)(x, B) < CHT¥ @I NYo|OmTIImN T

o (x,heQ° {0l = 1},aeZ%, N=0, 1, ...
Set
S, 2= {b(x, 0): VconeQ® €, 3C, >0,
|95 (x, ) < C§1™* (@!)"exp(—10]"/°/Co)} -
This is an analogue of S™® in C® theory [10].

THEOREM 2.1. Let Y ¢_ o Pm— (X, 0)€ FST(R), Q° € Q. Suppose 6 > 1. Then
there exists a full G realization p(x, 0) ~ Z:iopm_k(x, ) in Q° and any other

[

full G® realization p(x, 6) ~ Z:G:Op,,,_,‘(x, 0) satisfies
24) 1% B0, O < CHTBITREI @1 BN @y IAN,
(x,)eQ’, N=0,1,...,aeZ",BecZ%, C>0, C=C(p, p, 2.

In 1thc case ¢ =1 one can find a simple G' (analytic) realization
p(x, ) ~ Zf’:opm_,‘(x, 0) in Q° unique modulo the estimates

(2.5) | A(p—P)x, 0) < CRTNT LI NI (@ymTIBImN L
(x,0)eQ° BeZ4,acZ,, N=0,1,...,C;>0.

Proof. Choose he GG(R") if a > 1 (he C§(R") when o = 1) such that
supph < {10/ <2}, h(® =1 for |0 < L.

Let R be a positive constant considerably larger than C, where C, is the
constant in (2.2) for Q° € Q. Put

5 0
(26) p(x’ 0) = kg:o pm—k(x’ 9) (1 ~h ((k+ I)R))

The symbol p(x, 6) has the desired properties of full (or simple) G°
realization. This is established by direct calculations using (1.1), (2.2) [1], [7],
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{17]. The uniqueness modulo the estimates (2.4), (2.5) follows from Definition
2.2,

Remark 2.1. The relation Go(X) = {0} prevents us from constructing full
analytic realizations.

We point out that (2.2), (2.3) imply

(27) (=B pix, 6) < CEIHIIT (! grye oy 181,
(x,0eQ° Co>0,acZ, feZ¢,

if p(x, ) is a full G° realization in Q° and

(28) |3 % p(x, O) < [Co(B)™™ " (2)" <O A,
(x, 0)eQ°, e Z%, Co(f) >0, ac 2",

when p(x, #) is a simple G° realization in Q°.
In fact, one can construct a full realization globally in Q for ¢ > 1. More
precisely, we have

THEOREM 2.2. Let Y Lo Pm—y (X, )€ FST(Q), 0 > 1. Then for every 1 > ¢
there exists p(x, 0) belonging to G in (x, 8) which is a full realization of
Z:':Op,,,_,‘ in an arbitrary cone Q° € Q. The symbol p(x, 0) with this property
is unique modulo S; *(Q).

Proof. Define the following function:

1
a:‘ragpm-k(xa 0) la] +18] +k+1
(29) S(X, 9) = Tﬂa,f {(a' ﬁ' k')a IGlm—k—[ﬁl l——' (x, B)EQ

Choose h(0)e E¢**(R"), h@) =1 for |6/<1, supphc i <2},
0 <& <(t—o0)/4. We can construct a function R{x, 9)e G' **(2), ordy R =0,
satisfying

(2.10) R{x, 0) 2 [4(n+d)]*" 9 (s(x, 6)+2).

Then the desired symbol p(x, 0) is given by

= 0
p(x’ 0) = I‘;O pm—k(x’ 9) (1 _h ((k+ I)R(x, 9)))

The check is based on the direct estimate of the derivatives of p(x, 6),
(x, 8)e 2, using the inequalities

0 lel ’ la] 1+¢
l‘%"’((kﬂ)mx, 0))((k+1)R<x, 0))'“ Zey >0,
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and the rule for differentiation

gyl , N
& .
((f(x))) j;o I'J! (f(x)" A )))le-x,.

k=0,1,...,1=0,1, ..., f(x)eC™, f(x)#0.
Let
S™Q) = p(x, )eG'(Q): VQ° e Q, VBeZ%,3C,(B) > 0,
|33 p(x, 0) < [Co(B)]™* (@) <O)"" P!, we 27 }.

One important question about the estimates above is whether they
remain invariant under homogeneous G° diffeomorphisms.

TueoreM  23.  Let  x(x, 6) =(z, n) =(z(x, 0), n(x, 6))e R x(RE\0),
z, 1€ G°(R), ord,z = 0, ordgn = 1 and x is a diffeomorphism between Q and O
=% (Q) = R} x(R3\0). Then x induces the isomorphisms

x*: FS™(Q)— FS™(O),
x*: S™(Q)/Ss =(R) — S™(DYS; = (D),

and if p(z, n) is a full (simple) G® realization ofz,f:(,ﬁ,,,_,‘(z, n) then p(x(x, 6))
is also a full (simple) G° realization of ¥ ye o Pm-i (% (x. 6)).

Proof. Let Y= o pm-i (2, )€ FST() and put pp_y(x, 0) = F_s (x(x, 0)).
We have

(2.11)

.x prn k(x 9) (Z '1» aza aq)pm—k(z’ n)l(z.rn=x(x.0]7 j: 15 TR (N

aQSPm—k(x, 6) - ’I;(Z, ’1, a:a an)pm—k(z’ n)ltz,m=x(.\'.0)5 § = 1’ RRE] d’
where

-3

(2.12) "

oz,

- . on :
(» ‘(..,n))ozv+zax“(,c (2 M)dy,, Jj=1....m,

u=1 J

SNz, m) e+ Z

1 OX;

" 0z,
=Zl

ag (x_l(za 17))5,,“, S=1,...,d.

Thus
(213) (A’; ag pm—k(xa 0) = La Tﬂ ﬁm—k(za n)l(:.q)=x(x.ﬂl‘
r=rt. . Tr=T1.. TN

Lemma 3.1. Let f(t)e G°(4), and let o/ be a family of G° functions on
A <= R such that for some positive constants Cq, Cy, C,,

d f(0)l < CoCL(Y, ted, j=0,1,...

(2.14) _ ‘
ldia() < CETI(jY°, ted, j=0,1,..., a(t)eod.
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Then there exists a constant Cy > 0 depending only on C,, C, so that if
0., ¢) =a,()d, a,(t)es, v=1,...,N, NeZ,, we have
(2.15) Q... Onf () < Co CY(NY’,  ted.

Proof of the lemma. One obtains inductively

Qi Onf (O =Y"a,(0d" a,0)...d" T a (VN f ()
where ZN denotes the sum over s, ..., sy with s;+ ... +sy = N, Z{=lsv <J,
' 113;1'{ A14V~ — Y"(s,!...54!)°. Then
Mysr=My+3 60 osol) (5o + 17+ ... +(sy+1)7).
One establishes by induction the inequality
My<2M(NY)y’, N=0,1,...

Taking C, = max(2°C3, 2°C, C,;) we obtain (2.15).
Let 2°€Q be an open cone and let @° = x(Q%. Take C, to be a

positive constant for which the corresponding estimates of p,_,(z, n) are
valid in Q°. The definition of T}, L, shows that I* T’ 5, _,(z, 1) consists of (n

+d)** 18 terms of the type (2.15). One proves with similar arguments that
|2 T 5 (2, m) < T OB @t BUEY°, (2, e Q00 {in] = 1},

and the fact that » is a homogeneous G° diffeomorphism implies
T 0 Pm-k(X, 0) FST(Q).

The other assertions of Theorem 2.3 are deduced in the same way, using
the considerations of Lemma 3.1.

3. The stationary phase method in
the class of G symbols

Let Q = X x YxR™, where X, Y are open domains in R”, R' respectively. As
in the C® case we will study the asymptotics for 4 — + oo of the integral

(3.1) Iy, 4 = [e*®Vg(x, y, }dx.
Here @ (x,y) is a real-valued real-analytic function in X xY and
g(x, y, e S7(Q), 6 > 1. We require that

(3.2) For every K, €Y there exists K, € X such that g(x, y, 4) = 0 when
x¢K2, yEKl, A>0.

ProprosiTioN 3.1. Let the condition (3.2) be valid and let ®,+# 0 for
(x, y)esuppg. Then 1(y, A)eS, (Y xR™).

Proof. Choose and fix an arbitrary K; € Y and let K, € X be a set
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satisfying (3.2). Using a partition of unity with G§ functions we may assume
without loss of generality that &, (x, y) # 0, (x, v)e K5 xK,. This allows us

to make the following change of variables: x —z, z; = ®(x, y), z; = x;, j
=2,...,n Put

gz, y, ) =g(x(z, ), y, Aldet x; (z, y).
Thus we get I1(y, A) = je“” d(z, y, A)dz and integration by parts gives
B 1y, D) < (=¥ rimer f A1 et gz, ) de|
S CPIHNALBINY AN N=0,1,...,C=C(m, K,, K;) >0,
or equivalently
181 (y, B < CP1* (B! exp(—AY7/Cy)

which proves the proposition.

Now we suppose that for each ye Y there is a unique critical point x(y)
of ¢ with respect to x, i.e. 9,(x(3), y) =0, and in addition this critical point
is nondegenerate:

(33) detQ(» #0, yeY, QU =did(x(y), )
Next we require that g(x, y, A) be a full (simple) G° realizaﬁon of
Y ke 0Gm-k (X, Y) A" ke FST(Q), 0 > 1.

THEOREM 3.1. Under the above conditions we have
34) I(y, 7) = 490 gy )

where q(y, A) is a full (simple) G**~1 realization in Y xR* of
(3.5) > d-m2emx(WATTETP R FST (Y X RY).
k=0

If in addition Y, o Gm—y(x, y) A" " is a formal analytic (G*) symbol near
every point (x(y), y), ye Y, then no loss of Gevrey regularity occurs,

= o]

) Gomzemx(P)A"2M ke FST™2(Y xR"),

and q(y, A) is a full (simple) G° realization of this last formal symbol in Y x R*.

Proof. As in the C* case (using the Morse lemma for analytic functions)
one has to consider, after an appropriate change of variables x — z, the
integral (x =z again)

(3.6) q(y, A) = [2QU=N2g(x, y, A)dx.
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According to the well known formula,

g (M4)signQ () (21-) -5

3.7 2 me = o, &) m— (0,
37 q_.2 () et 0 ()] 12 o (Q (y) )g (0, y)

\

and the expression above yields the loss of G°! regularity. The estimate of
the remainder (after the Fourier transformation of g and &4@W=*/2 jn (3.6))
follows from the following assertion: if &/ is a family consisting of G}
functions supported in a fixed compact subset K and for some C >0

sup|Erix) < C** 1 (al)y, aeZ, r(x)es,
then there is a positive constant C,; depending only on C and K such that
FENSCYTHUNYT Y™, N=0,1,..., r(x)ed.

This assertion is deduced using integration by parts in r(¢).

4. G° Fourier integral operators

Leto>1,Q2 =X xYxTI, where X, Y are open domains in R}, R‘, respective-
ly and I is an open cone in R§\O.
We suppose that &(x, y, 6) is an analytic phase function in €, ie.
®(x, y, 0)eA(Q), ordg® =1, ImP 20, =0 = &, #0, &, #0.
Constder the F.I.O.

(4.1) Tu(x) = [P p(x, y, O)u(y)dydd, u(y)eG3(Y),
where supp,p < I’ e r, Ia;aga;pl < Clal+|ﬁl+|vl+l(a!ﬁ!y!)a <0>m—lﬂ|’ C >0,
Va, B, 7.

The theorem below was stated by R. Lascar [15] for distributions.
THEOREM 4.1. The operator I has the following properties:
(1)) I G§(Y)— G°(X) continuously and extends naturally to a continuous

linear operator 1. &,(Y) — 2'(X).
(i) For any ultradistribution ue &,(Y)
WF,(Iu) = {(x, {)e T* X\0: 3(y, 6), (x, y, f)esuppp,
Dy(x, y,0) =0, (y, =@, (x, y, 0)e WF,u, £ = d,(x, y, 0)].
Sketch of the proof. Let K, € Y, K, € X be arbitrary fixed compact sets
and let u(y)e G3(K,) satisly for some C, >0
(4.2) sup|Bu(y) < CHI*1 (B, VBeZ'..

One can write p(x, y, 0) = p, (x, y, )+ p2(x, y, ) so that ¢, # 0 on suppp,,
¢, #£0, &, #0 on suppp,.
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Let
(4.3) Lu(x) = [e®*p(x, y, Ou(y)dydd, s=1,2.

Evidently |Re @y +|Im @, # 0 on suppp,.
As in the proof of Proposition 3.1 one may assume Re®y # 0 on

suppp, (x, v, 8), and making the homogeneous change of vanables
n==o(x,y,0,n=0;,j=2..,n we obtain (with p = p,[det;])

(4.4) Tou(x) = _[e”"'ﬁ%(x’y’"))ﬁ(x, y, pu(y)dydd., &, real.
Integration by parts with respect to #, leads to
11 u(x) < CE @), xeK, C,=Cy(Cy, Ky, K) > 0.
Concerning I, u(x) we have
(4.5) G lyu(x) = [0(e"®py)u(y)dydo
=) (;)% [P0 ch(x, y, 0) &7 py(x, y, B)u(y)dyds.

f<=a j=0

Here #(e'®) = Zlm ek (x, y,8), ordgcf =j, j=0,1,..., |, peZ", and
there exists C, > 0 satisfying in particular (@ analytic)

(4.6) |k (x, y, O) < CYHBFLOB—jyti0r, yeZ', BeZ%,
Jj=0,1,.., |8, (x, y, ) esuppp,. (x. e K, xK;.

The estimates above imply the existence of a positive constant C,
satisfying

4.7 |@(h(x, y, 0) 5 P pa(x, y, O) < CY1HI (1 (jaf — )Y B>,
veZ'y,aeZ",BeZ" , B<a,j=0,1,..., |8, (x, yeK, xK,.

In v1ew of (47) and the arguments in the proof of Theorem 2.3,
if 'L = ZJ 1i7 T k(x, y, 0)8,;, k; =16) yJ/It,’b |2, then |0 1L(e“’) ¢® and for
some Cs > 0 (assuming p, =0 for [ < 1)

48) L& pyrw)(x, y, O < CEHIT ((lnd — )t vY) (O,
v=0,1,...,xeK,, yeK,,a, feZ%,B<a, j=0,1,..., |fl.
Thus when xe K, we get

o\ 1Bl [itmtd+1
ﬂ) 2 W(C‘“ #p,-wdydé

j=0
18]
< Z (ﬂ) Z C|¢I+m+d+l(al)¢ _[dy j |9|—d—ld9 < Cl—}lHl(a!)"_

f<a j=0 Ky 16121

49) |G ILu(x)l = ‘je“" (
ﬁ<¢

The fact that C,; depends only on C,, K,, K5, p means that I: G3(Y)
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— G?(X) 1s continuous. This proves (i) because the formal adjoint ‘I of I acts
continuously from G§(X) to G*(Y).

The inclusion (i1) is established with the methods in (i) (integration by
parts, applying the estimates of the type (4.8), (4.9)) and taking into account
Theorem 2 from [6] (see also [7], Chap. 3).

5. Some applications and examples

Let now X =Y, I' < R*"\0, &{x, y,0) =(x—y)-0 and let p(x, y, 0) be a full
G° realization of 3 y= ¢ Pn-k(X, y, 0)e FST(Q), o > 1. Consider the p.d.o.

(5.1) p(x, D)u(x) = [P p(x, y, O)u(y)dydd.

If we do not impose further restrictions on z;n:o Pm—«(x, v, 0) near the
diagonal {x =y} the usual operations for p.d.o.’s like expressing the full
symbol o,(x, £), transposition and composition of two p.d.o’s will lead to
the loss of some sort of —1 regularity.

So naturally we require that in a neighbourhood of {x =y}, Z:;Op,,,_k
be a formal analytic symbol with respect to (x, y), i.e.

(52) 13 & Gy Pm-i(x, y, O) < CRITIHITITE= Lyt g1kt p1)e|g)m =k,

Ix—y] <e&.
(If ' = R"\0 one can assume Zf:opm_keFS’{' with respect to 6.) Then all
usual operations preserve the class of the corresponding p.d.o.s.

Let Y4eoPi—x(x, E)eFSI(X xR™\0). Suppose p,(x, £) is real-valued,
d.:py #0on p, =0and N, = p; } (0) n(T* X \0) contains no radial points.
If ¢ > 1 and p(x, &) is a full G realization of Z:;Opl_,‘(x, £), then Egorov’s
theorem is valid in the G° category. More precisely, for every ¢°e N, such
that d, p, (¢° # O there exists a G° FI1.O.

(5.3) Ev(x) = [ a(x, p) Sy, n =na, ..., 1),
transforming migrolocally, near ¢° p(x, D) into D, , ie.
(5.4) piocE-EoD, =R, RweG’, wed,.

In the case d p; (¢°) =0, d, p, (¢°) # 0, one can construct a G° F1.0. E,
of the type (5.3) for which microlocally near @°

(3:5) p1oE,—E o(y,Inl) = R,.

In particular, the relations (5.4), (5.5) imply that WF,u\WF_(pu) is
invariant under the Hamiltonian flow of H, , which generalizes Theorem 7.3
of [11]. For example, the Tricomi operator x, D +DZ, has the properties
X2 €1 +E3 = p1(x2, &), p1(0,¢1,0)=0, d, py(0,¢,0)#0, N, contains no
radial points.
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X2

x

Let now d¢ Pm(x, &) # 0 and the famous (P) condition hold near ¢°eN,,.
Then p(x, D) is G° hypoelliptic in a conic neighbourhood I'3¢" ie.

(5.6) WF,unT =WF,(pu) T, uc&(X).

The equality above can be proved by constructing a microlocal parame-
trix following the ideas of F. Treves and using formal asymptotic solutions in
the spaces of formal analytic symbols, for formal analytic p.d.o.’s [8].
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