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1. Introduction

The paper is concerned with the problem of localization of eigenvalues of
a normal operator A in a Hilbert space H, A: D(4)— H. An iterative method
for computing bounds for eigenvalues, based on iterative algorithm of
minimization of functionals of two vanables is considered.

For illustration, let us describe the simplest variant of this method for
a selfadjoint operator A. For any xeD(A4), x # 0, and 1e R we have

1 sll(i--A)XH
IiA—A4)~ " lixl

where o(A4) denotes the spectrum of 4. Computing the norm of residuum, we
get a certain rough bound for the distance between given AeR and o(4). In
order to improve this bound, the right-hand side can be minimized with respect
to x over some fixed finite dimensional subspace X, < D(A). Next, minimizing
this term over Ae R we get a new value A, at which this infimum is attained.
The bound

dist(4, 5(A)) =

I —A)x]

#_
' llxH

for dist(A,,0(A4)) is less than the previous one for A This process can be
continued. In such a way we get a sequence of approximate eigenvalues {1;} as
well as the computable bounds ; for the distances between A, and the spectrum
ag(A).

Such an iterative method in a more general case when X ¢ D(A4) was
proposed in [5] and its convergence was analysed in [6]. In this work we
present some more detailed analysis of such a method.

[533]
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The general procedure consists in minimizing a certain functional @ on the
right-hand side of the following inequality:

—S

(1.1) inf < DA, x).

sead(A)
This process is discussed in Section 4 for a certain class of two variable
fuctionals ¢. The idea of convergence proof is taken from [6].

In Section 5 we generalize the Kuttler and Sigillito a posteriori inequality
[5] (which implies inequality (1.1)) for a wider class of operators. It allows us to
apply the considered method not only in selfadjoint case but also for a wider
class of operators including nonselfadjoint ones.

Section 6 contains more detailed study of the case where A is selfadjoint
and ®(A,x) = ||(A—A)x||*. In this case, a characterization of a limit of the
sequence {4,} is given. This process is compared with the Galerkin (finite
element) method described in Section 2.

2. Galerkin method

For simplicity let us assume that 4 is a bounded linear operator in a Hilbert
space H with a scalar product (,) and norm || ||. Let {X) be a sequence of finite
dimensional subspaces of H such that

Yve H inf lo—x|

xeXn

0.

>
N-w

Let {Xy,py,ry} be corresponding approximation H defined as follows:

X, = CV (the complex N-dimensional space) with the
Euclidian norm denoted by | |y;

N

pv: Xy—= Xy, Vel a=(a, ay, ..., ay) pyot = Y, o,&,
(2.1) j=1

N H—»)ZN, VxeH ryx =[(x,&,), ..., (x,&]17,
where &, ..., &y is an orthonormal basis of X. Then

df
Iy =pyry: H> Xy
is the orthogonal projection onto X, and
~ dr

(2.2) Ay =ryApy = {(A&;, EMi=a
is the standard Galerkin approximation of A with respect to the basis
£11€ar-os Ey. If A is selfadjoint then the matrix 4, is hermitian. Put

(2.3) Ay S MyAT,
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In this case the following relations can easily be proved

(2.4) VN >0VaeXy pyal = loly;
(2.5) VN >0VxeH |ryx|y < lIxl;
(2.6) 0 <K <o VN>0|A,] =4 < K;

2.7) VxeH |(I-Myx|—0 and [(A—A4)x|—0 when N - oo.

Thus general theorems on spectral approximation given in [2] imply the
following one.

THEOREM 1. If s is an isolated eigenvalue of A then there exists a sequence
{sy} of eigenvalues of Ay converging to s as N — oo If the algebraic multiplicity
of s is one, then sy is also single for sufficiently large N. Moreover, there exist an
integer N and a positive constant y such that for N > N the interval (s—7v,5+9)
contains sy and no other eigenvalue of Aj.

3. An implicit function theorem

Let X,Y,Z be Banach spaces. Let By(w, d), By(w, d) denote the ball with the
center w and the radius ¢ in the space X and Y, respectively. Let us consider the
equation

(3.1) G(x,y)=0

where G: Q = By(x4,0) X By(y,0) > Z. x4, ¥, are given elements and & is

a [ixed positive number.
In Section 6 we will use the following two versions of an implicit function
theorem (cf. [3]):

THEOREM 2. Ler us assume that
1°  G: Q- Z is a function of the class CP, p = 2;

d
20 the Fréchet derivative EG(xO,yO) is an isomorphism of Y onto Z;

3% there exist positive constants ¢,, k=0, ..., p such that

a -1
(2o

where G® js the k-th Fréchet derivative of G. Then there exist positive constants
a, b, d depending uniquely on 6 and ¢;, i=0,1,2, and the constants M,,
k=1,...,p, depending uniquely on c¢;, i=0,..., k such that

ey I yeQ GV Il <, k=1,...,p

d
(i) V(x,p)eBy(xg,a)x By(yg, ) é—yG(x,y): Y— Z is an isomorphism of
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(Gomn)”

(ii) if §G(xy, YoMl < d, then there exists a function g: By(x,,a)— By(y,,b) of
the class C? such that for any xe By(xy,a) y = g(x) is the unique solution of the
equation (3.1) in Bx(xo,a)xB,,(yo,b). Moreover,

VxeBy(xg,a) g®)N <M, for k=1,2,.

THEOREM 3. Let the assumptions of Theorem 2 be Satisﬁed with
1G (x4, o)l <d. Let q: By(xq,a)— By(yo,b) be a function of class C'. Then
there exists a constant K depending uniquely on ¢, and 6 such that

VxeB(x,a) |g(x)—q()l < K||G(x,q(x)].

Y onto Z and

< 2¢y;

4. Minimization of functionals of two variables

Let us consider a functional ¢: Cx H— C of the form
(4.1) VieC VxeDc H &(4,x)=(B,x,x)

where B;: D—H is a positive selfadjoint linear operator and B, = B,
+-AB,+AB%¥-+|A*B,. The domain D is supposed to be dense and independent
of .. We will assume that B, is positive definite, i.e.

e, 0<a< oo VxeD (B,x,x)>alx|?

Let X be a fixed finite dimensional subspace contained in D and let IT be
the orthogonal projection of H onto Xy Then, for yeX, ®(iy)
= (B,y.y) = (B,y,[yy) = (l1yB,y,y), 1.e. the functional ®|c.y, 15 related to
the operator IT, B,|y, which is the orthogonal Galerkin approximation of B,.

Now, we are going to discuss the convergence of two sequences {x;}7,
and {1;}2, defined as [ollows:

(42) x;eXy is such that &(1;,x) = inf{@(4;,x)|xe Xy, |x]| =1},
(43) Ai;1,€C is such that &(4;,,,x) = inf{cb(it,xj)lieA‘,

where A, 1s a given starting point. We will consider two cases
(1) A is the whole complex plane C,
(i) A is a straight line in C,

A={At) =u@)+iv(t)eClu(t) = a+th, v(t) =a'+1tb', teR} (eg. A=R).

Since ®(4;,x)/(x,x) is the Rayleigh quotient for B,, it follows that in the
both cases (i) and (ii) its infimum over finite dimensional space X is attained at
an arbitrary normed eigenvector corresponding to the mlmmdl eigenvalue
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py(4) of the operator ITyB, |x,. If the minimal eigenvalue of IIyB, |y,
is of multiplicity greater than L, x; is not uniquely determined by (4.2). In this
case we take as x; one of elements satisfying the minimum condition (4.2). We
have

(4.4) HN'('l ) = (BAJ-xj,xj)

and evidently uy(do) = pn(dy) 2 ... 2 uy(4) = 0, since B, is positive definite by
the assumption. Thus the sequence {un(4))} 7= o being decreasing and bounded
from below is convergent, but not necessarily convergent to zero. For
A=u+iv (u,veR)

®(A,x;,x)) = (B x;,x )+ 2u(ReB, x;,x,;)—20(Im B, x;,x)) +(u* +0v*)(B, X, X ),
where ReB, = (B, —BY)/2, ImB, = (B, +B})/2i. From the conditions

oo o
2 -0 el
du and dv 0.

in the case (I){A = C) we get
(4.5) Ajv1 = Ujey +ivjyy,
where

Uiy = —(ReB x;, x)/(B; x;,x3),  vjey = —(ImBy x;,x)/(B, x;,x;

In case (ii), finding di(I)( (1), x;) for A(t) = u(t)+iv(t), u(t) = a+tb, ut) = a' +1tb),

(where a,a’,b,b’ are constants defining A) we easily see that
Ajs1 = Alt;4,), where t;, satisfies the equation

A [ D,
(4.6) b(Ej+u(tj+l))+b ("Ej_'f'v(fﬁl)) =
with
4.7 A;=(ReB x;,x), D;=(ImB;x;x), C,=(B,x;x).
dZ
Observe that e P(L(r),x;) =2C;(b*+b*) > 0
LemMA 1. Let ®(A,x) satisfy the assumptions (4.1) and let
Joe >0 VxeX, (B,x,x) = afx,x).

Then for the sequence {1;} defined by (42) and (4.3) with A =C or A being
a straight line in C, the following condition holds:

|Aj41—4]—>0  when j— o0,
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Proof. In both cases (i) and (ii), we have
i) =iy (Ris 1) 2 B(R), %)= Blhys 1, X).
Using the notation (4.7) and formulae (4.5), we get
(L %)~ Dy 1,3) = Cyly = Ayusl?
in case (i). In case (ii), after simple transformations we obtain

dj(ljvxj)_ (D(Aj+1,xj) = Cjuj-/lﬁ (?

A. D.
J J
Since u(t)—u(ty+ 1) = (t;—t;+,)b and v(t)—v(t;+ 1) = (£;—t;+ )b, from (4.6) it
follows that the last term vanishes. So, the convergence of the sequence
{uy(2)}%o implies the lemma.

TueoreM 4. Let the assumptions of Lemma 1 be satisfied and let {1} be
defined by iterative formulas (4.2), (4.3) for a fixed straight line A (case (ii)).
Then the sequence {/{j} is convergent.

Proof. Since dim Xy < oo and C; > a(x;,x;), A/C; and B;/C; are uniform-
ly bounded with respect to j. From (4.6) it follows that the sequence {A;} is
bounded, and hence, it contains a converging subsequence. If every converging
subsequence converges to the same limit then, clearly, {1;} converges to this
limit too.

Suppose that there are two different accumulation points r, and r, of {4}
(r,,r,eA since A;eA for every j). Let {A,} and {A,} be subsequences
converging to r, and r,, respectively. Clearly, we can choose them in such
a way that

v <k <<k <y <kjea <.

Let r be arbitrary point of interval [r,,r,]. Let 4, be the nearest element to
r among A, k; <s< /I, Lemma 1 implies that

sy
Hence, either the sequence {1} converges or it contains subsequences
converging to every point in some interval [r,,r,] c 4.
Let us suppose that {4;} does not converge. Let r be arbitrary element of

[r;,r,] and let A,,—ras j—co. We have piy(4, ) > py for any re[r,,r,], where
py is the limit of {uy(4)}. For any fixed basis »,..., vy in Vy

det [(B;.rJ Uy U)) — 5&1#&'(}'”)] = 0
holds for j=0,1,2,...; hence, by continuity,

det[(B,v,,v)—dupy] =0
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for any re[r;,r,] = A. But reA implies r = u(t)+iv() for all ¢, §, << 9.,
with some 9,,8,, 3, < §,. Observe that the left-hand side of the last inequality
is a nonzero polynomial with respect to te R. This means that this polynomial
vanishes for any te[9,,9,], which is impossible. Hence the sequence {1} has
to converge.

Remark 1. Let B, £ (A—A4)?, where A is a selfadjoint linear operator with
a dense domain D(A) in H and AeR. As it was mentioned in Introduction,

(B,x, x)

dist(4,0(A4))* < o)

for arbitrary xeD(A), x # 0. The iteration process (4.2), (4.3) for X, = D(A)
and A4 = R was used by Kuttler and Sigillito in [5] in order to obtain better
computable bounds for eigenvalues of 4. Namely, by (4.4),

dist(A;, 0 (A)? < puy(d) S up(Ai—) <. S uylle), j=1,2...

for 4, = A. According to Theorem 4, we have Aj—hf. This convergence result
was first obtained in [6].

Remark 2. Let A be a selfadjoint differential operator with a domain
D(A) = [*(Q), Q = R", and let 4 be its extension generated by the differential
expression only (without boundary conditions). Let 02 be Lipschitz con-
tinuous. Assume that we know an explicit a priori inequality, i.e. that there are
known constants ¢, and c, such that

YweD(A)  [wiiF < ¢y [Awllg+c; (Wl Eean

where ! is an operator corresponding to boundary conditions generating A. For
this case and for AeR, Kuttler and Sigillito proved the following a priori-
a posteriori mequality (cf. [5]):

. (1 —s|? <o)
sea(A)l s |7 (%)

where (1, x) = ¢, | Ax— x|y + ¢, | Ix) 3200

4.7) for x e D(A)

To improve this bound they propose to apply the iteration process (4.2), (4.3)
for A = R and X,  D(A). It should be mentioned that functions belonging to
X y need not satisfy the boundary conditions. This fact simplifies the algorithm
and is one of the most important advantages of their method. Convergence of
this method was proved and a certain characterization of a limit point of {4,}is
given in [6]. Let 4 denote the limit of A;and let X be an arbitrary accumulation
point of {x,}. Then {4, %} is a critical pomt for the functional ®(A,x) on the set
Rx Sy, Sy={YeXy, Wl =1} (cf [6], th. 3).
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5. A posteriori inequality for eigenvalues

In [5], for the case of selfadjoint operator A with compact inverse, a priori-
a posteriori inequalities for eigenvalues of A were considered (cf. (4.7)). Using
the completeness of the system of eigenfunctions of selfadjoint operator with
compact inverse, the authors proved a posteriori inequality of the form:

Ao Inl
R ET

where x # 0 is an arbitrary clement of the domain of a certain extension A of
A, and w is a solution of an auxiliary equation

(5.2) Aw = Ax—Ax, w—xeD(A).

(5.1) VieR  inf

sec(A)

S

For some differential operators and their extensions generated by the differen-
tial expression only there exists an explicit a priori estimation for the solution
of (5.2) (cf. [7]). In these cases we have the so-called a priori-a posteriori
inequality of the form (4.7), for which the iteration method (4.2), (4.3) can be
used. ,

Now, we are going to show that inequality (5.1) holds not only for
selfadjoint operators with compact inverse but also for normal operators. It is
a simple consequence of the spectral mapping theorem.

THEOREM 5. Let A be a closed normal operator with a dense domain in
a Hilbert space H. If Oéc(A), then YAeR VxeH, x #0,

s

5

Iwil
<
Ix]”

(5.3) inf

sea(A)

where we H is a solution of the following auxiliary problem:

(5.4) Aw—x)= —Ax, w—xeD(A)

Proof. The function f(z) = (A—2)/z is holomorphic in C\{0}. Since, by the
assumption, a(A) = C\{0}, thus f(A4) is well defined and
fd) = (o= )4~
Since A 1s normal, f(A4) is normal too. So, we have

1
min [t} = ———.
tea(f(4)) I/ (A) l”
Using now the spectral mapping theorem, which says that o(f(4)) = f(a(4)),
we conclude that
A—5s
A

_ 1
A=A

min
sealAd)
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Thus for arbitrary xe H, x # 0 we have

As| _JA=4)A” x|
A 1!

Now, it is enough to observe that the element

min
sea(A)

we (A—-A)A™'x
is the solution of (5.4).

Remark 3. 1f w is the solution of (5.4) then w is also the solution of (5.2) for
an arbitrary extension A of A such that we D(A) = H.

Theorem 5 allows us to apply the iteration method (4.2), (4.3) for
computing bounds for eigenvalues of a wider class of operators. Namely, if
there exists explicit a priori estimation for the solution w of the equation (5.2)

Iwl* < a®(4, x)

with a known constant a and ¢ of the form (4.1) then we can apply the method
(4.2), (4.3) for improving the bound (5.3). If A is a straight line then {4} is
convergent (Theorem 3).

6. The selfadjoint casc

Now, we are going to discuss a behaviour of the process (4.2), (4.3) for
(6.1) @A, x) = ||[(A—-A)x]|®>. 2eR, xeXy

when the starting point /4, is in a neighbourhood of a single eigenvalue of A.

For simplicity, in the following we assume that 4 is a linear bounded
selfadjoint operator on a real Hilbert space H and A:H— V< H where Vis
a dense subspace with a norm || |, stronger than the norm || | in H. It should
be mentioned that many results discussed below hold in more general
situations, and the above restrictions are chosen so as to avoid some tedious
calculations in deriving and presenting results.

Using the notation of Section 2, let us introduce the following auxiliary
matrices:

(6.2) By =ryA’py, Ry =By—A}.
They are symmetric since A is selfadjoint.

LEMMA 2. Let (X} be such that YveV inl |v—x|| <eyllvl, and ¢y —0
NS N 1 N
xeXn

when N> co. If ry,py are defined by (2.1) and IT, = pyry then
vxeH (ry)"Ryryx = [[(I= T A x|

and 5
[Rylny < ||A%e% =20  when N — .
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Proof. For a=ryx we have

(1= Al yx||* = ((1~HN)AHNx,AHNx) = (Apyo—py Ay, Apyo)

N N . R
= Z (Azéj’éi)aiaj—_ Z (A'fi,fk)(Afjaék)aj“i = o (By— AR)a,
=1 k=1

since 4 = A*. Moreover, since [ is an orthogonal projection and Al xecV,

(- )ADyx| = inf [Allyx—y| < eyl AITyx|| < oy Al 7y Xy -

yeXn

Thus, for symmetric matrix R, we have
VaeXy ol Ryo < eill 4120,

what ends the proof.
Let us consider the function uy of real variable le R

(6.3) pa(2) = inf {2~ A)x)? | x€ X, fx]l = L.

This function appears in the process. (4.2), (4.3) and, as it was -mentioned in
Section 4, it is equal to the minimal eigenvalue of the operator Ty (4— A)?|x,.
Since

My(A—A) |y, = pyl(A— "im)2 + RN]"N'XN,
iy(4) is also the minimal eigenvalue of the matrix
(6.4) (A=A + R,

Let uy(4) denote a normed eigenvector of (A—fiN)2+RN corresponding to the
eigenvalue uy(4). Let s be a single eigenvalue of A, and let {sy}, N > N,
be a sequence of single eigenvalues of 4, converging to s (the existence of {sn}
follows from Theorem 1). Let us denote by sy,s%, ..., sy~ ! the eigenvalues of
A, and by vy,vk, ..., vN"! the corresponding orthonormal eigenvectors.
Similarly, denote by py(2), un(d), ..., uy~1(1) eigenvalues of the symmetric
positively semidefinite matrix (A—A,)>+ R, repeated according to their
multiplicity, and by wuy(4), uy(4), ..., uf " "(A) corresponding orthonormal
eigenvectors.

LemMA 3. Let C be N x N symmetric matrix with eigenvalues yu,u,, ..., in-1
and corresponding orthonormal eigenvectors u, u, ..., uy_;. Let

u—=C u
M = .
|:2uT 0:'

- Q0 u/2
M l_[u'r 0 ]

If u is single, then
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where

Nll
0= %

J=1 B H;

T
u;uj,

Proof. We have
[Q u/ZjI[y.—C u] _ [Q(,u—C)+uuT Qu |
u? 0 T 0 | uT(u—0) wul

Qu =0 and uTu = 1 by orthonormality of the system u, u,,..., uy_,. Moreo-
ver, uT(u—C) = 0 because u is an eigenvector corresponding to y. Finally,

N—-1 1 N—-1
Qu—-0C) =( Y F——uju}")(,u—C) = Z uju}

=1 Rl

since u] (u—C) = (u—p,)uj. Hence
No1
Qu—C)+uu” = Y uul +uu” =1
j=1

and the result follows.
As in Section 3, let By(w,d) denote the ball in X with a center w and
a radius é. Let us define the function Fy:

[y—(ﬂ.—ffN)z—Ii]uJ

ulu—1

(65) FN(A,R,M,,U) = [
of the variables Ac R, Re ", ueR, ueR" with values in R¥*', where S is the
space of N x N real symmetric matrices.

THEOREM 6. Let s he a single eigenvalue of A and let {sy} be u sequence of
eigenvalues of Ay converging to s. If N is so large that sy is single, then there
exist constants a,, b independent of N such that, for any A€ Bg(sy. a,), uy(4) is
a single eigenvalue of (6.4),

fy: Bgsy,a;)— Bg(0,b),  uy: Brlsy,a,)— By,((vy, b))
and uy and py are arbitrarily differentiable in Bp(sy,a,).

Proof. Apply Theorem 2 for G = Fy, X =RxSY, Y=R"xR, Z=R"""'
with the following norms:

A . -
for x = I:R:|EX, x|l = |4+ |Rlx;

U
for y = [!JE Y, vl = (ul + 1B

for zeZ, Izl = (7 2)Y2.
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Let xy = l:g"}eX, Yo = I:SN]E Y. Observe that we can choose § > 0 arbit-

rarily, because F, is everywhere defined and regular. Clearly, we can find
positive constants ¢, ..., ¢, (for any p) depending uniquely on K and 6, where
VN |A,ly < K (see (2.6). These constants majorize the norms of derivatives of
Fy, as in Theorem 2. Let us find now the constant ¢, majorizing

. We have

|9 d p—(A—A)*—R u
Oy Fy= [(MFN ' p FN:'

d _
”(—TyFN(XanO) !

I
’

and
d —(sy— AW v
FyFN(xo,}’o)=li I;u‘r . ON:|=MN_

Since, for 2= sy and Ry, =0, we have uy(2) =0, uh = (sy—sh)% uy = vy,
uh=1vd, j=1,2,...,n—1, from Lemma 3 we get

-1 _ Qn vn/2
My _[v}{} 0 :'

with
N-L
Oy =~ X Whok"sy—sh?].
i=1
We need to majorize the norm [My'|y+,. For {= l:x], xeR", geR
q

Ml = [QN'anqu/Q:l‘

vIx
Since Qyv, =0, we have
IMy IR+ 1 = 100X+ [olR g2/4 + (vhx)? < |QylRIxIE + g% +|xI3

< QNF+ 11117 +1-
N—-1 N-1
If yeRY and |yly =1 then y= Y a;vh+avy with Y a?+u?=1. Thus
j=1 i=1
N-1 ] )
1Quyli = ) ajfisy—sh)* < max  [/sy—sh)*.
i=1 1<j<SN-1

Finally,

IMy'lys: < [IQN]%V‘*'HUZ < 1+]|Qxly = 1+ max 1/(31\/_3{\')2~
1€£jEN=-1
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Taking into account Theorem 1, we see that [My'|y+, can be majorized by
some ¢, >0 independently of N. Hence Theorem 2 implies existence of
functions uy(4, R) and uy(4, R) for |A—s|+IR], < a, a > 0, where a does not
depend on N. We shall treat the variable R as a small parameter (see Lemma
2). We can assume that |R|y < a, = a/2. Then the theorem follows.

In order to analyze behaviour of the function uy(4) in (sy—a,,sy+a,) we
neced some additional information about wuy(A).

LEMMA 4. Let the assumptions of Theorem 6 be satisfied. If vy is a normed
eigenvector of Ay corresponding to sy then for any le(sy—a,,sy+a;)

uy(d) =vy+n(2)  and  n(A)ly < kolRyly
with constant k, independent of N.

Proof. To get this result we apply Theorem 3 for G = Fy and

v
HN=|" .
We have

Dy = luy () —vyly < [y () —vplf +luy(4) — (2 —sy)*?]12

uy(4) .
—q(4
LN(AJ q(4)

_ k‘[[u—w—u—iN)w-ijvq

vhuy—1

< k| Fy(A, RyBy (A=s3)Y)n+1
N+1

N+1

= k[I[(A—s5y)* — (A=A = RyJnyl} +(vhoy—1)2]42,

where k is some constant. Finally, since [(1—sy)>—(Ai—A4,)*]vy =0 and
vhv, =1, we obtain |7(A)ly < JolRyvnly-

Now, let us calculate the first and second derivative of pu,. For first
derivatives of uy and uy we &an apply the equation Fy(Z, Ryuy(d), uy(2)) = 0

for fixed R,. We get
oy [oFy P[] g
/. du ou |di| g

—2(A— Ay)u, N py—=(i— AN =Ry uy d [ uy _0
0 ug 0 |di| iy '

Theorem 2 implies that for Ae(sy—a,,sy+a,) the matrix

ar AF _ fiy—(Ai—A)*—Ry  uy
My = ‘éf()»o»}()) = [ 2l 0

or

35 Banach Center t. 24
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is invertible and (see Lemma 3)
- Oy uy/2
1
(6.6) My' = [u’,v. 0

where
N-1

Oy = 3, (hudy )i —ph)-

j=1

Finally:
d .
(6.7) 7= 20(A—Ay)uy,
d T -
(6.8) E#N = 2uy(A—Ap)uy,
2
(6.9) =24 8ul(A—-A,)0y(A—A)u,.

ﬁil‘w

THEOREM 7. Let s be a single eigenvalue of A and {sy} be a sequence of single
eigenvalues of A, converging to s. Then there exists N such that for N > N, the
function py is convex in (sy—a,Sy+a,), and attains in this interval the unique
minimum at s§, and

sk =sy +O(Ry1Z)—»sy as N—co.
Proof. From (6.9) and Lemma 4 it follows that
d2
WF‘N = 2+05(4)

where
oy(@) = 817 (sy— A Qlsy— Ay

Using now (6.6) and the result obtained above: |My'|y+; < 2¢, for
[A—sy] < a, (see the proof of Theorem 6) we easily get that for any
yeRY, |yly =1
1O VIN < [Qn VIR +Iufyl* < dcd.
Thus
lon(A) < 8lnlklsy— ANRIQnly < kIRyF -0 as N-0

which is implied by Lemma 4. So, we have
d?
aztn >0
: l . . . L
for |[A—=syl<a, and N large enough, ie. ;7;LN is strictly increasing in

(sy—ay,sy+a,). Similarly, since ufj(sy—Ay) =n"(sy—A,), from (6.8) and
Lemma 4 we get

d . -
JA_#N = 2(A—sy)+ 2'77 (sy—ApNn
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and
sup |’1T(SN—AN)’1| < k1|RN|§r-

£ —sn|<ay

d _ . . . . .
For N large enough ks is strictly increasing function, negative for some

A < sy and positive for some A" > sy. Hence, there exists s§ unique in
(sy—a,,sy+a,) satisfying

d d?
ﬁ#N(SR‘:)=0 and W#N

Finally, let us observe that

(s#) > 0.

s —sul = In"(sy— Ap)nl < ky IRJZ—-0  as N— oo,

which ends the proof of the theorem.
Now, let us observe that since

d . .
i) = 2uy (DA — Ay)uy(4),
we have
s = uR(s%) Ayuy (s3).
So s¥ is the fixpoint of the function

WAZE W) Ay (d)

on the interval (sy—a,,sy+a,).
Let us consider the method of successive approximations for ¥
(610) lk+1 = Yl(/lk), k = 0, 1,2, SN

THEOREM 8. The process (6.10) of successive approximations for ¥ is
equivalent to the process (4.2), (4.3) for ®(i,x) = |(A—A)x|* and A =R.

Proof. If 4, , is defined by (6.10) then
Awr = un(y) AANHN(;-k)-

Here u,(4,) is a normalized eigenvector corresponding to the smallest
eigenvalue of the matrix (4, —A,)* + R, ie. it minimizes the quadratic form

0l [(A—~ A)?+ RyJo = |[(Ag— A)x||? = (4, x)

N
for x =Y &u,eXy=pyXy. Let
=1

J

) S (4, x,) = ub ()i~ A2+ RJuy (i)



548 K. MOSZYNSKI AND T. REGINSKA

for x, = pyuy(4). We have f'(x) = 2(A—¥ (1)), /(1) = 2. Tt is clear that f(1)
attains its local minimum for A, = ¥(4,); hence the two processes are
equivalent.

THEOREM 9. Let sy be a Galerkin approximation of a single eigenvalue s of A.
Then there exist constants d < a/2 and Ny such that for A, satisfying
|[Ao—syl < d, and for N > N, (fixed), the sequence {.} defined by (6.10)
converges as k—co to the point s¥ in which py attains its local minimum.

Proof. If l’,i”e(sN——al,sN+.;11) then by (6.7} we have
Py
uy(X) —uy(A") = 2 [ Qn(A— Ayuy(A)da.
1

Since Qy(A—Ay)uy(d) = Qu(s,— Ay)n (see Lemma 4) and |Qyly < 2¢,, thus
applying once more Lemma 4 we get.

Jup (XY =ty (A")] < |V — 2" dcglsy—Axly sup |7(2)
).e[/l'.l"]

< kA — A |Ryly-

This implies that for any ', 4" e(ly—d, A5 +d) < (sy—a,sy+a,) we have, by
the definition of ¥(4),

[P ()~ (A < LA =2

where L =k,|R,|y <1 for N sufficiently large (cf. Lemma 2). Moreover,
Lemma 4 implies that

o= () = do—sy+un(Ao)sy—Apd = dg—sy+17 (sy—Ap)n.
Thus

. df . 5
Ilo_ lI’(Ao)l < ¥y :'/LO—SNI +k4|RN|12V

for some constant k, independent of N. It is easy to verify that if 0 < L <1 and
y <{1—L)a, /2, then the process (6.10) converges to the unique fixpoint of the
function ¥ in (4,—a,/2,4,+a,/2). Let us observe that the last inequality can
be written as follows:

d+k |R% < (1= k3R, /2.

So, it holds for N large enough.

The residuum @(4,x) = ||(A— A)x|? attains its local (or global) minimum
for all xe Xy, [Ix[ =1, and A in a neighbourhood of the Galerkin point s, at
4 =s%. One could presume that 4= s} is a better approximation of the
eigenvalue s of A then its Galerkin approximation sy. However, as was
observed by J. Descloux [private communication], this presumption is in
general false.
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Assume that the single eigenvalue s of 4 is the smallest element of the
spectrum a(A4) of A. We have

s= inf (Ax,x)< inf (Ax,x)< inf oTAya=sy
xel,||x]|[=1 xeXn, [ %] =1 areRN,lc:IN=1

< uf(sk) Ayuy(s§) = P(s) = s¥.

Hence s < sy < s. Similar inequality can easily be derived when s is the largest
element of o(A): sf < sy <s. In both the cases, Galerkin point s, ap-
proximates better the point s than s} does. Hence, starting in the process (6.10)
with 4, = s, (which is allowed and reasonable) we may arrive, after iterations
to the worse approximation of s then the starting point was, even in extremally
regular situation. Examples show that when s is an intermediate eigenvalue of
A this phenomenon can appear or not.

At any rate u,(sf) is always some computable error bound. For example
in the case of the smallest eigenvalue s of A we have

|s —snl < [s— s} < pn(sR).

On the other hand, the method may be applied to computation of ap-
proximated eigenvalues 4, starting with arbitrary point 4,. It should be stressed
that on each step the bound for distance of 4; from o(A4) is computed.

Similar algorithm to (6.10), but always looking for the global minimum of
Uy, 18 discussed in details in [4] for large matrices.
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