APPROXIMATION AND FUNCTION SPACES
BANACH CENTER PUBLICATIONS, VOLUME 22
PWN-POLISH SCIENTIFIC PUBLISHERS
WARSAW 1989

MULTIPLICATIVE FUNCTION SYSTEMS
AND THEIR APPLICATION
IN DISCRETE INFORMATION PROCESSING

A. V. EFIMOYV

Moscow Institute of Electronic Technology, Moscow, U.S.S.R.

1

In the recent decades, along with the study of various properties of the
trigonometric system and of systems of orthogonal polynomials, there is an
intensive research of the so-called multiplicative function systems, among
which a special role is played by the Walsh, Crestenson-Levy and Price
systems. A number of surveys concerning the properties of these systems
have been published (see [1], [2], [12]). The multiplicative systems arise as
character groups of certain abelian groups (see [11]), and also can be
introduced by using products of Rademacher type functions (see [10], [5]).
We will follow the latter approach.

2
Let py, p,, ... be a sequence of (not necessarily distinct) integers 2 2. Put m,
=1, m,=p,m,_;, n=1,2,..., and for x€[0, ©v) and k=1, 2, ... let
X = [xm] (modp), O0<x <p—1,
X_x =[x/my_,] (modp), O<x_,<p—1.

Then x can be written as

ao
x=)
k=

where the first sum, corresponding to the integer part of x, is always finite,
since x_, =0 for k > ko = ko (x).

= o]
X_pmy_y+ Z xi/m, = [x]+ |x},
1 k=1

[111]
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Note that if x€[0, 1], then all x_, are zero, and if x is a positive
integer, then all x, are zero.
For x €[0, 1] the functions of Rademacher type are defined by

Xme_, (X) =exp(2rixi/p), k=1,2,...,

and the Price system in Paley’s numbering by

r(n) r(n)
(1) 1) =[] tm* () =exp(2ni Y. x,n_/py),
k=1 k=1

where
r(n)
n=Y n_ym._,.
k=1
For p=p>=3 for all k=1, 2,... we obtain the Crestenson—Levy system,
and for p, =2, k=1, 2, ..., the Walsh system in Paley’s numbering.
If x€[0, o0) and y€[0, o0), then the function

L Xy Vo +Xx_
x(x, y) = exp (21ti Y Bl ,‘y,‘)
k=1 D

is called an orthogonal kernel. For integer y = n we recover the Price system
(1), ie.
x(x, n) = 2, (x).

Analogously, x(m, y) = x.(y) for integer m. The functions y have the follow-
ing multiplicative properties:

(@) xx, =1, x(x,»=x0,x).

(b) x(x, y) = x([x1, D x(x}, DvD).

© XN x(x,2)=x(x,yD2), x(x,»xz ) =2xDz,y).
(@ x(x, M x(x, 2) = x(x, y O 2).

Here

¢ o] ®
X@y=3 vyM_1+ ) t/my,
k=1 k=1

[ o] [ o]
XQy= Y UM+ ), w/my,
k=1 k=1
where

v =(x+y) (modpy), u =(xx—y) (modpy),
0<vk€ph—-l, OSukSp,,—l, k= il, -_!-_2,
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If feL(0, 1), then the numbers

1 —
cn=c(f) = [f(Da(¥)dx, n=0,1,..,
o

are well defined; they are called the coefficients of the expansion of f with
respect to the system & = |y,!2,. If f€L(0, ov), then we can define the
multiplicative Fourier transform (MFT) of f as

(2) fo) = [f@xv,0dt, vel0, w).
0
The problems of convergence of the series
f()~ Y cnxal®)
n=0

according to the properties of f have been studied by many authors (see the

surveys [1], [2], [12)]).
We will consider the problems of existence of the inverse multiplicative

Fourier transform (IMFT)

[« o]

€) S~ [ fMxv, xdv, xel0, ),
(4]

the features of the discretization of the integrals (3) and (2), and some
peculiarities of the numerical implementation of discrete multiplicative trans-
formations.

3

Following Morgentaller [9], we introduce the notion of g-continuity. A
function f defined on [0, oo) will be called g-continuous if

sup|f(x®h)—f(x){ 0 as h—-0+;

the quantity
w,(1/m,, f) =sup sup |f(x®h)—[(x)

x O0sh<l/m,
is called the modulus of g-continuity.
In [7] it is shown that if f € L(0, o), then the MFT f defined by (2) is g-
continuous on [0, oo). If, in addition, f is g-continuous on [0, c0) and
f eL(0, ), then the IMFT

) f) = [ fOx, x)dv

0
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exists at each x €[0, o). Moreover, it is shown that (4) holds whenever the
modulus of g-continuity w,(1/m,, f) satisfies the Dini-Lipschitz condition
lim w,(1/m,, f)Inm, =0

n—aw

and the sequence {p,}2, is such that
©) rtY p<C forallr=1,2,...
k=1

Condition (5) may be satisfied by sequences {p,} with limsup ., p = .
For fe€L,(0, ), 1 < p < 2, the direct multiplicative transform is defined
as

(6) f) = lim @) [fDx(x, ydx, 1/p+1/p =1.
0

a— e

M. S. Bespalov '[3] showed that (6) exists and satisfies

Wil <Wfll,, 1<p<2

(for p = 2 this is Parseval’s inequality). The invertibility of the transformation
(6) for p = 2 1s shown in [1] (p. 84), and for 1 < p < 2 by M. S. Bespalov in

[4].

4

The transform (2) has an important property, applied in numerical informa-
tion processing: it has a bounded support. It was shown by S. Yu. Zolotare-
va [14] and M. S. Bespalov [4] that if feL,(0, o0) is g-continuous on
[0, «0) and f(y) =0 for y > m,, then f is a step function, constant on the
intervals 4,(r) = [v/m,, (v+1)/m,), v=20, 1, ... The converse assertion is also
true.

Comparing this with the Paley—Wiener theorem (see [15], p. 408) on the
boundedness of the support of the Fourier transform, we may conclude that
the step functions with discontinuities at {p,}-adically rational points are
analogues of entire functions of finite order, which ensure the boundedness of
the support of the Fourier transform. Therefore such step functions may be
taken to form the approximation machinery for functions feL, (0, c0). A
function g, defined on [0, ) is called {p,}-adically entire of order <r if it is
constant on each of the intervals 4,(r) = [v/m,, (v+1)/m,),v=0,1, ... Let N,
denote the set of all {p,}-adically entire functions of order r. We put

(g(p:,) = lnf ”f—gr”Lp(O,oo)s

grent,
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P (Ufm, f) = sup If (x DK~ f (L0,

0<h<1/m,

where
Q
ol 0,0 = ([ lo(x)IPdx)'’?  for 1 <p < oo,
0

lollL j0.00 = sup | (x)].

xe[0, o)

For feL;(0, 0)NnL,0, ©), 1 <p<oo, it is not difficult to prove the
inequalities

g(nf,)(f) <o (1/m,, f) < 2&1:')(”;

their analogues for the Walsh system were established by Watari [13], and
for the Price system by A. V. Efimov [5].

5

The discretization of the MFT (2) is understood to be the approximate
calculation of the integral (2) by the rectangular formula with finite sum, i.e.
‘passing from the MFT to the sum

N-1
fory=Y fdx( y) .
k=0

It is proved (see [8]) that if, for f €L, (0, o), the MFT f has a bounded
support, ie. f(y) = 0 for y > m,, then for equally spaced discretization knots
(4t, = 1/m,) and for N = m,m, we have

N-1
m;' Y fk/m)y(k/m,.y) for 0<y<m,
(7) Jy = . k=0

for m, <y <o,

and the relation between f(y) and the original f(y) is

1/my,

_JImt [ fyovd for 0<y<m,
® fo) = | y
0 for m <y <o0.

Since, by (8), f is constant on the intervals [I/m,, (I+1)/m,), 1=0,1, ..., we
obtain from (7) the discrete multiplicative transformation (DMT)

N-1
©  fUmy=m;' Y fkim)xkim, Ym), 1=0,1,..., N—1,
k=0



116 A. V. EFIMOV

whose inverse is
N-1

(10)  fk/m)=m " Y fl/m)xk/m,l/m), k=0,1,...,N—1.
=0

To compute the transforms (9) and (10), fast algorithms are applied (see [6]).

6

If po=p for k=1,2,..., then using the relation between the orthogonal
Crestenson-Levy kernels and the Crestenson-Levy functions:

xO/p5, mip") = x (v, m/p**") = x,(m/p**"),

one sees that the discrete multiplicative transformation of a column vector X
= (Xg, X, ..., X,m_;)7 to a column vector Y = (yo, yi, ..., y,m_;)T may be
written in the form

m-1

yl=pr;l Z kak(l/pm)’ l=05 l"'-spm—l’

k=0
or in matrix form

Y=p, WX, W=wul¢,

where w;, = x, (J/p™, I, k=0, 1, ..., p"—1. The matrix W may be factored
into a product of m weakly filled p™ x p™-matrices W,, v=1, ..., m. In
contrast to the discrete Fourier transform, the matrices W, may be identical.
For instance, there exists a matrix B such that W = CB™, where C is the
matrix of a p-adic permutation of the column vector B™ X. Moreover, B has
block structure: the entries in every pth row are the same, possibly in
different columns. For instance, for p =3 any 3 rows can be obtained from
the matrix

111
By=|1q 3|, q=exp(2mi/3),

~) ~

1gq°q

by adding 3™—3 zero columns. Such a structure of B permits the vector BZ
to be calculated by parallel computations on p™~! processors of the same
kind.

Note, moreover, that it is more reasonable to calculate not in the
complex basis (1, i), but in the basis (1, gq, ..., g¢°~ %), where g = exp(2ni/p).
This permits the vector B™ X to be computed using addition only (without
multiplication).
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