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To receive an error estimation of a given method for numerical solution
of some problem usually additional assumptions are made about the
solution of the problem. As a rule, these additional assumptions require
the golution to possess derivatives of a certain order, belonging to defi-
nite functional spaces. These additional assumptions require from the
solution of the problem more than the problem itself. For example in
a numerical solution of the boundary problem for an equation of second
order a bounded fourth derivative of the solution is generally required
in order to obtain a good error estimate.

The purpose of this paper is to yield error estimations in numerical
methods which are expressed by certain characteristics of solution and
do not demand additional assumptions for them. In cases where some
additional assumptions are set on the solution, the estimations already
known, as well as several new ones follow from these estimates.

1

Let us consider those characteristics of the functions with which we shall
make our estimates.

Let the function f be defined and bounded on the interval [a, b].
The local moduius of f of kth order in the point = € [a, b] is defined by

we(f,y 2; 8) = sup{|4Ef(t)|, ¢, t+kh e [2—%kd/2, 2 +ké/2]N[a, b]}

where
k

Af@) = 3 (=1 ) f( 4 mh).

m=0

[647]
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We define the following moduli:

(S 5)Lﬂ[a,b] = [lwp(f, ; 5)”Lp[a,bl’ 1<p< oo
The case p = 1 is the most interesting. In this case we have:
b
7(f3 )z, = | wilf, v; 8)dw
a

The moduli 7;(f; 6)., have many applications in different problems:
for characterization of the best onesided approximation of functions in
the metric L, ([1], [2], [3]), for estimation of the error in approximation
of functions by means of linear positive operators [10], [11] (in the met-
ric L,), for Hausdorif approximations of functions by piecewise monotone
functions [7]. Here we shall give some other applications of the moduli
(S5 5)1:

For the history of the moduli z,(Jf; )L see [1], [2].

The most essential properties of 7, (f; )L are the following ([1]-[4],
[7]):

L

(D) 7 (f3 0)z, < S 6’)Lp 4 j
<

<46
(1) wp(f; 8z, < wlfs Oz, 1 <p< o0
(ill) o (f; 6 Lm = 7 (f; )Lm,
(iv) 7, (f+9;8)r, < 7.(f; 9) 2, T 7(95 0,5
k
v %(f; a),-,,, < 5ty (f’;——— 1)
Lp
(vi) 71(f; )z, < 5”]“"1. ’
(vil) =y(f; 6) 5Vf if Vf< 003

(viii) = (f; M)Lp < (20 7, (f; 8y,

In the property (ii) w,(f; 6) r, 18 the kth modulus of continunity of
the function f in the metric L,:

b—kL
oulfs O, = sup { [ 14if P af

b
and in (vii) V f denotes the variation of the function f in the interval
[a, b]. ¢

2

The following interpolation theorem is very essential and shows the
reasons because of which the moduli play a role in the error estimations
in numerical methods:
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THEOREM 1. Let L, be a linear operator which satisfies the conditions:
(a) if the bounded function f is p-integrable in [a, b] then L,(f; ®) € L,;
(b) L, (f; ')"Lp < KI|f "z% , where K is an absolute constamt and

n

n
”f“zg, = {2 [f (@) |® Ai}llpa 4, = Byp1 — B yy Lo = Gy By = b;
n i=1
(c) if fe W, (feWs if f* is absolutely continuous and f® eL,)
then

”Ln(f’ ') —f”Lp “<\ -Krdnst ”f(r)”LpJ ) g. r,

where d, = max A4; and I, is an absolute consiant which depends eventually
1<ign
only on r.

Then for every p-integrable bounded fumection f in [a,b] the following
estimation holds for d,<1:

IEw(f5 )=l < 073 &)z,

The constant ¢ depends only on r, K, K,.

Here and in what follows we shall separate the bounded function f
from its class of equivalence in I, and we assume that every function
is given by its values in every point @ € [a, b].

3

We shall give here estimations for approximation of bounded functions
in the interval [0, 1] by means of interpolating splines in respect to L,
metrie.

We shall consider only parabolic and cubic spline interpolation on:
the uniform set of points.

Let us set:
2 =1th, +=-1,0,....,2+2, h=1/n.

?

For simplicity we shall consider only a periodical splines. We ghall
suppose that the function f is 1-periodic.

Let ,(f; @) be the parabolic spline with knots in the points (z; 4+ 2,,,)/2,
+=20,1,...,n~1, which satisfy

8(fy ) = flwy), +=0,1,...,m,
9(f;0) =s§(f;1), ¢=1,2
(see [12]), and s,(f; #) be the cubic spline with knots in the points x,
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¢ =0,1,...,n, which satisfy
ss(fs @) =flw)), ©=0,1,...,n,
$(f;0) =sP(f;1), =12,
Then the following theorems are valid:

TEEOREM 2. Let the 1-periodical function f be bounded and p-iniegrable
tn the interval [0,1]. Then

I8(f5 *) "flle < o7y (f; h)Lp
where ¢ is an absolule constant.

THEOREM 3. Let the 1-periodical function f be bounded and p-imtegrable
in [0,1]. Then

ss(f; *) —f”Lp AR h)L_,p:
where ¢ i1s an absolute constant.

From Theorems 2 and 3 we can obfain many consequences using

the properties of 7,(f; O)z,,- For example:

1
COROLLARY 1. Let the L-periodical function f be bounded. If Y f < oo,
then 0

3 (F5 ) —Fllz = O(S/f-'n“‘),
185(F; ) —F I = O(S/f-n“)-
If \}f’<: oo, then
12075 ) —Flly, = O (i/ §ren ),
lIss (f5 ) —fll, = 0(\:/ f-n7%).
If \llf” < oo, then
205 ) ~Fllg ~ 0(\:/ fren),
183 (3 ) —flp = 0(\:/f“-n"),
and if \llf”’ < o0, then

(£ ) =1l = O(V 197,
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COROLLARY 2. If f'' & L,, respect. f™V) e L, then

l82(f5 *) "'f”Lp < ch® ”fm”Lpi
185(f5 *) '_f“L_p < b’ “.f(lv)"LP‘
This property is obtained by other way in [12].

4. Application to the quadrature formulas

Now we shall congider the application of the moduli 7,(f; )r, to the
estimation of the error of the quadrature formulas. An estimation of
the error of the composite quadrature formulas of Newton—Cotes type
i3 given in [4]. Let us mention here only tree special cases:

(a) The rectangular rule:

(m do — — Z F((2i—1)2n)

feml

(1)

<c'{fyn”

(b) The trapezoidal rule:

ff(w da— (0 +22f( ) +100)| < ottt

(¢) The Simpson rule:

ff(a: yao— = {f10 +22f() 4§f(2;;1)+f(1)}'
< oz (f; 1Y)

Let us underline that the estimations are obtained without some
additional restrictions on the function f — we use only that f is bounded.
If f has some properties we obtain something about the order of the error.
Usualy the rectangular rule and trapezoidal rule have the error O(n~?)
if f/ is bounded, and the Simpson rule has the error 0(n~%) if fAV is
bounded. From the estimations (1), (2), (3) and the properties of the moduli
7, (f; 8) L, it follows tha,t the rectangular rule and trapezoidal rule have

(2)

(3)

the error O(n7?) if V f' < oo and the Simpson rule has the error 0(n™*)
1
i_f V flll < 00,
0
In the general case, estimations for error of the composite quadrature
formulas are given by K. Ivanov in [5].
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Let us have the composite quadrature formula

1 m
‘ [f@)do = D) A;f(z)+R(f)
0 =0
which is construct in the following way: we divide the interval (0,1}
in n equal parts 4; = [(1—1)/n,i/n], ¢ =1,2,...,n, and in each part
we apply the quadrature formula L(f, 4;), which is exact for the alge-
braical polynomials of kth degree. Then we have R(f) = O (rpp.(f; 77" L)
In [5] there are given also estimations for the composite quadrature
formulas containing derivatives of the function f.

5

Let us consider now the Cauchy problem:

w =f(z,u), xL<r<Lst+X,
(4)
w(®y) = Uy

If we solve (4) by means of Runge-Kutta methods it is possible
to obtain an estimation of the error by means of z,(f; (5)Lp.

To show how we can apply 7, (f; §) we shall consider the Runge-Kutta,
method with the local error A3. It is well known that all formulas with
a local error A3 are of the form [9]:

(6) Yipr = YiT D1l +Doksy Yo = Ug,
where
ky = hf (2, v,), Ity = hf(®;+ ah, y,+ BE,),
P1+P. =1, pra=pp=1]2.

THEOREM 4. Let the function f(w, u) satisfy |f,| < L and w be the sol-
ution of (4), and let {y;}io, Yo = (@) = %y, ®, = B+ nh = x,+X, are
obtained from (6), (6). Then we have:

(6)

max |y1 —_— 'H"L’ = 0 (Tg(’u!'; h)L-l_ hT('u"; h)L) .
0siCn
a:0+X
CoroLLARY, If YV @' < oo, then
Ty
max [y, —u,| = O(R?).
oign

Let us solve now the problem (4) by means of the finite difference
method:
k

k
(M L) =D e —h D) b_if (@yeiy %) =0, @ #0,

=0 t=0
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If we know vy, vy, ..., v, from (7) we can obtain v, v,,,,... We
.shall assume that
{8) vy = Uy = U(@,y), vy = u(ax), veey Vi1 = U (D).
THEOREM 5. Let L,(P) = 0 if P is an algebraical poI/ynomzal of m th

degree and let |3f [0u] < L. Let the roots of the difference equa,twn Y‘ a =0

-1 J—i

be in absolute value < 1 (if there are multiple roots we a,sswme that they are
strictly < 1). Then if u 48 the solution of (4) amd {v;}}., are obtained from
(1), (8), then

max [y — | = O(fm(?/'i h)L)‘

0sisn

6

Let us consider the boundary problem for an ordinary linear differential
equation of a second order in the interval [0, 1]:

: (k@) u' (@) —g@u(@) = —f@), 0<a<i,
® w(©0) = a, w(l) =B,

where 0 < ¢, < k(2) < ¢y, g(x) 20

In [13] there are obtained estimations of the error by means of
a{u'; by, (ks h)r, T2(g; R)py T2(f5 R)L, if we solve numerically the
equation (9) by means of the homogeneous conservative scheme.

7

Let us congider the heat conduction equation:

0w 6%:,
6t ox?

+f(z,t), O0<e<l,0<igT,

(10) u(z, 0) = u(2), O0<2<I1,
w(0,1) = wy(t), w(l,1) =u(¥), O<IKT.

Let us solve the problem (10) by means of difference scheme (see [8],
p. 278):

Y = A(U?}+(1_G)y)+‘?y (®,t) € wp,y
(11) Yy(0,1) = u, (1), y(L,t) =u(f), tew,

y(m,O) =u0(w), D ED,
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Here y and ¢ are network functions defined on the net m,,,

Ay = Y50 = Wi~ 29+ ¥ /0% 0<o<1l, 4=y, yit'=y,
ou ou

?

y¢=(?]—'y)/z', ":"=_at_7 U =a_m’

- T
U = (T b))y Lyip =1 +§'-

Let us set:
(12) 2 =y—u.
From (11) and (12) it follows:
4 = Aloz+(1—o0)e)+y, (2,1) €y,
(1.3) 2(0,t) =2(1,t) =0, teow,
2(r,0) =0, @ead,,

where ¢ = Aow+ (1— o) u)—u+o.
From the above we obtain:

(14) y = Ao+ 1~ 0)u)— (08" +(1—0)u") + (0@ + (L —0)u") — v+
= [A(cr'&+(1—a)u)—(a&”—l—(l—a)u")]—l—[aﬁ+(1—g)u_ut]_

—[af+ (1~ 0)f —¢].
We shall use the following

LEMMA 1. Let us set 2., = x;-+h, 3,_; =x;—h. Then

' Yi1— 49+ 314

YVit1— an, < cwy(y'y @55 b),
, —3y,_,+4y,—vy ,
Yi—1— Yinr o ! hd < cwy(y'y @5 h).
Proof. From

y, _ Yia— 49,4+ 3Y141

Yir— 4+ 3%
2h

= ?/;+1 - 2?/:.'+1/z + i+ 2y;+1/2 —Yi—
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we obtain:

! Y1 — 49 +8Y51a
(16) Yit1 o

< 0 (s @35 B)+2 Yip1pp— Yin—¥: + |y — Yir1— Y1 )
h 2h
‘We have
’ Yiv1—Y: , '

Yivry2—- i+1h < Fwy (¥’ @y 212) < Foa ¥y w5 B),

(16)
v Y Y- ,
lyi—“Ti < wy (Y, w55 h).

From (15) and (16) the first inequality in the lemma follows. The
proof of the second inequality is analogously.
In [13] the inequality:

" — —2 + '

(1) i - BT | <oy, ai ).
is proved.

We have
. - — 47 i — 47 U
o‘ﬁ—]—(l-—-a)ffl—u,=cr['————~———-u ”+3”]+a~———“ 4Z+3“+

T
. —83u-t4im—u —dutda—u w—u
+(1—o)[u— ]+(1—a) i

_ a[&— 3u—i1’a+u] +(1—0) [d—- —3u+4u—fw] B

T

_ Ao DE—2a4u)]

T

From here and Lemma 1 it follows that

(18)  loti4(1— o) % — ]

4]0~} 0} ('ﬂ': (1) b1ya); 7/2) )

gclw;(d, ("I’utj)it)_l' 7

Let us set
(19) ¢ = of +(1L—0a)f.
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From (14), (15), (17), (18) we obtain: .
(20) |';vi|<01a)2(u (@5 85)5 T)""Ozwz (’“ (%45 811)5 h)'l“cawz(’“” (2, t,); h)-l-

+4|o—%l (u (“ 1) 7

< ok (i, (g, 1); 7)+eawf(u”’, (m, 4,); B)+
+ey0f (0" (4, 4;); h)+ ¢l —H (4, (w;, 1); 7).

Here the upper index show the variable, in respect of which the
local modulus is taken.

LeMMA 2. Let the funotion f be defined and bounded in the interval
[a,b], #;, = a+ih, b = (b—a)fn, + =0,1,...,n Then

( 3 had(f, 25 )" < eny(f; Bz,

el

Proof.
(Zhw}’;(f, T3 h))llz _ ( 2 j‘*’ o (f, h)dm)m
il =1 z2;
<( 3] [ abif, a5 3)80]" = 5,053 301, < ora( S B,
Tealy

what proves the lemma.
From (20) and ab < (a*+b2)/2 it follows that

(21)  |pl2 < o [oh(, (@, ); )|* + o [wf (w', (@, 441)5 B+
+ 6 [C'-’z ('“'"’ (@5y )3 h)]2+07 [1‘7‘“%@ ('“’ (@) %); T)]z-
Let us denote

max 7 (’“”: ()3 h)Lj, = 1,(%'"; h)Lpr

0y
max 7 (""; (25 )5 T)LJJ = 7,,(%; T)Lp-
0Tn
The estimation from [8], p. 2904
n—-1
et < 37 St
]/28 =0
1 1—e A
O'/O',=—2——-T'—';-, 0<8<1,

Lemma 2 and (21) give us
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THEOREM 6. Let w be the solution of (10) and let y be the solution of
1 1—e M2

(a1). If 0'20',='2——T ._1,'-, 0<exl, then

mﬁxlui—yfl < O3 (5 ¥)p, + 0w B)g, + 0100 — 37 (65 7).

Let us write

*u

mk

a™u

00, ||
ot

Ik ={'u,(a7, 1):

< o}

From Theorem 6 and the properties of =,(f; d) r, We have:
OOROLLARY 1. If w e I} then

max |4} — ¢! = O(h+7).

%)

CorROLLARY 2. If u € Lj then
(22) max 4] —yj| = 0(h*+7).

5

COROLLARY 3. If 0 = 1/2 and w e L} then
(23) max |ul —yi| = O(ht+12).
i

In [8] the estimations (22), (23) are obtained by the assumptions
uel}, uel}, 0 =1/2 (C% denotes the class of functions w(zx,t) for

LTI . "y .
which e 1§ continuous and e 18 continuous).
4
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